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Abstract. (333 words)
The massive accumulation of genome-sequences in public databases promoted the proliferation of 
genome-level phylogenetic analyses in many areas of biological research. However, due to diverse 
evolutionary and genetic processes, many loci have undesirable properties for phylogenetic 
reconstruction. These, if undetected, can result in erroneous or biased estimates, particularly when 
estimating species trees from concatenated datasets. To deal with these problems, we developed 
GET_PHYLOMARKERS, a pipeline designed to identify high-quality markers to estimate robust 
genome phylogenies from the orthologous clusters, or the pan-genome matrix (PGM), computed by 
GET_HOMOLOGUES. In the first context, a set of sequential filters are applied to exclude 
recombinant alignments and those producing anomalous or poorly resolved trees. Multiple sequence 
alignments and maximum likelihood (ML) phylogenies are computed in parallel on multi-core 
computers. A ML species tree is estimated from the concatenated set of top-ranking alignments at the 
DNA or protein levels, using either FastTree or IQ-TREE (IQT). The latter is used by default due to its 
superior performance revealed in an extensive benchmark analysis. In addition, parsimony and ML 
phylogenies can be estimated from the PGM. 
We demonstrate the practical utility of the software by analyzing 170 Stenotrophomonas genome 
sequences available in RefSeq and 10 new complete genomes of environmental S. maltophilia complex 
(Smc) isolates reported herein. A combination of core-genome and PGM analyses was used to revise 
the molecular systematics of the genus. An unsupervised learning approach that uses a goodness of 
clustering statistic identified 20 groups within the Smc at a core-genome average nucleotide identity of 
95.9% that are perfectly consistent with strongly supported clades on the core- and pan-genome trees. 
In addition, we identified 14 misclassified RefSeq genome sequences, 12 of them labeled as S. 
maltophilia, demonstrating the broad utility of the software for phylogenomics and geno-taxonomic 
studies. The code, a detailed manual and tutorials are freely available for Linux/UNIX servers under the 
GNU GPLv3 license at https://github.com/vinuesa/get_phylomarkers. A docker image bundling 
GET_PHYLOMARKERS with GET_HOMOLOGUES is available at 
https://hub.docker.com/r/csicunam/get_homologues/, which can be easily run on any platform.

Keywords. Phylogenetics, genome-phylogeny, maximum-likelihood, species-tree, species delimitation, 
Stenotrophomonas maltophilia complex, Mexico.
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INTRODUCTION

Accurate phylogenies represent key models of descent in modern biological research. They are applied  
to the study of a broad spectrum of evolutionary topics, ranging from the analysis of populations up to 
the ecology of communities (Dornburg et al., 2017). The way microbiologists describe and delimit 
species is undergoing a major revision in the light of genomics (Rosselló-Móra and Amann, 2015; 
Vandamme and Peeters, 2014), as reflected in the emerging field of microbial genomic taxonomy 
(Konstantinidis and Tiedje, 2007; Thompson et al., 2009, 2013). Current geno-taxonomic practice is 
largely based on the estimation of (core-)genome phylogenies (Ciccarelli et al., 2006; Daubin et al., 
2002; Lerat et al., 2003; Tettelin et al., 2005; Wu and Eisen, 2008) and the computation of diverse 
overall genome relatedness indices (OGRIs) (Chun and Rainey, 2014), such as the popular genomic 
average nucleotide identity (gANI) values (Goris et al., 2007; Konstantinidis and Tiedje, 2005; Richter 
and Rossello-Mora, 2009). These indices are rapidly and effectively replacing the traditional DNA-
DNA hybridization values used for species delimitation in the pre-genomic era (Stackebrandt et al., 
2002; Stackebrandt and Goebel, 1994; Vandamme et al., 1996). 

The ever-increasing volume of genome sequences accumulating in public sequence repositories 
provides a huge volume of data for phylogenetic analysis. This significantly improves our capacity to 
understand the evolution of species and any associated traits (Dornburg et al., 2017). However, due to 
diverse evolutionary forces and processes, many loci in genomes have undesirable properties for 
phylogenetic reconstruction. If undetected, these can lead to erroneous or biased estimates (Parks et al., 
2018; Shen et al., 2017), although, ironically, with strong branch support (Kumar et al., 2012). Their 
impact is particularly strong in concatenated datasets (Degnan and Rosenberg, 2009; Kubatko and 
Degnan, 2007), which are standard in microbial phylogenomics (Wu and Eisen, 2008). Hence, robust 
phylogenomic inference requires the selection of well-suited markers for the task (Vinuesa, 2010). 

For this study we developed GET_PHYLOMARKERS, an open-source and easy-to-use software 
package designed with the aim of inferring robust genome-level phylogenies and providing tools for 
microbial genome taxonomy. We describe the implementation details of the pipeline and how it 
integrates with GET_HOMOLOGUES (Contreras-Moreira and Vinuesa, 2013; Vinuesa and Contreras-
Moreira, 2015). The latter is a popular and versatile genome-analysis software package designed to 
identify robust clusters of homologous sequences. It has been widely used in microbial pan-genomics 
and comparative genomics (Lira et al., 2017; Nourdin-Galindo et al., 2017; Sandner-Miranda et al., 
2018; Savory et al., 2017), including recent bacterial geno-taxonomic (Gauthier et al., 2017; Gomila et 
al., 2017), and plant pan-genomic studies (Contreras-Moreira et al., 2017; Gordon et al., 2017). 
Regularly updated auxiliary scripts bundled in the GET_HOMOLOGUES package compute diverse 
OGRIs, at the protein, CDS and transcript levels, provide graphical and statistical tools for a range of 
pan-genome analyses, including inference of pan-genome phylogenies under the parsimony criterion. 
GET_PHYLOMARKERS was designed to work both at the core-genome and pan-genome levels, 
using either the homologous gene clusters or the pan-genome matrix computed by 
GET_HOMOLOGUES. In the first context, it identifies single-copy orthologous gene families with 
optimal attributes (listed further down) and concatenates them to estimate a genomic species tree. In the 
second scenario, it uses the pan-genome matrix (PGM) to estimate phylogenies under the maximum 
likelihood (ML) and parsimony optimality criteria. In addition, we implemented unsupervised learning 
methods that automatically identify species-like genome clusters based on the statistical analysis of the 
PGM and core-genome average nucleotide identity matrices (cgANIb). 
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To demonstrate these capabilities and benchmark performance, we applied the pipeline to critically 
evaluate the molecular systematics and taxonomy of the genus Stenotrophomonas. Species delimitation 
is problematic and far from resolved in this genus (Ochoa-Sánchez and Vinuesa, 2017), despite recent 
efforts using genomic approaches with a limited number of genome sequences (Lira et al., 2017; Patil 
et al., 2016; Yu et al., 2016).

The genus Stenotrophomonas (Gammaproteobacteria, Xhanthomonadales, Xanthomonadaceae) 
(Palleroni, 2005; Palleroni and Bradbury, 1993) groups ubiquitous, aerobic, non-fermenting bacteria 
that thrive in diverse aquatic and edaphic habitats, including human-impacted ecosystems (Ryan et al., 
2009). As of March 2018, 14 validly described species were listed in Jean Euzeby's list of prokaryotic 
names with standing in nomenclature (http://www.bacterio.net/stenotrophomonas.html). By far, its 
best-known species is S. maltophilia. It is considered a globally emerging, multidrug-resistant (MDR) 
and opportunistic pathogen (Brooke, 2012; Chang et al., 2015). S. maltophilia-like organisms display 
high genetic, ecological and phenotypic diversity (Valdezate et al., 2004; Vasileuskaya-Schulz et al., 
2011), forming the so-called S. maltophilia complex (Smc) (Berg and Martinez, 2015; Svensson-
Stadler et al., 2012). Heterogeneous resistance and virulence phenotypes have been reported for 
environmental isolates of diverse ecological origin classified as S. maltophilia (Adamek et al., 2011; 
Deredjian et al., 2016). We have recently shown that this phenotypic heterogeneity largely results from 
problems in species delimitations within the Smc (Ochoa-Sánchez and Vinuesa, 2017). We analyzed 
the genetic diversity in a collection of 108 Stenotrophomonas isolates recovered from several water 
bodies in Morelos, Central Mexico, based on sequence data generated for the 7 loci used in the 
Multilocus Sequence Typing (MLST) scheme available for S. maltophilia at https://pubmlst.org. We 
assembled a large set of reference sequences retrieved from the MLST database (Kaiser et al., 2009; 
Vasileuskaya-Schulz et al., 2011) and from selected genome sequences (Crossman et al., 2008; 
Davenport et al., 2014; Lira et al., 2012; Patil et al., 2016; Vinuesa and Ochoa-Sánchez, 2015), 
encompassing 11 out of the 12 validly described species at the time. State-of-the-art phylogenetic and 
population genetics methods, including the multispecies coalescent model coupled with Bayes factor 
analysis and Bayesian clustering of the multilocus genotypes consistently resolved five conservatively-
defined genospecies within the Smc clade, which were named S. maltophilia and Smc1-Smc4. The 
approach also delimited Smc5 as a sister clade of S. rhizophila. Importantly, we  showed that i) only 
members of the Smc clade that we designed as S. maltophilia were truly MDR and ii) that S. 
maltophilia was the only species that consistently expressed metallo-beta-lactamases (Ochoa-Sánchez 
and Vinuesa, 2017). Strains of the genospecies Smc1 and Smc2 were only recovered from the Mexican 
rivers and displayed significantly lower resistance levels than sympatric S. maltophilia isolates, 
revealing well-defined species-specific phenotypes.

Given this context, the present study was designed with two major goals. The first one was to develop 
GET_PHYLOMARKERS, a pipeline for the automatic and robust estimation of genome phylogenies 
using state-of-the art methods. The emphasis of the pipeline is on selecting top-ranking markers for the 
task, based on the following quantitative/statistical criteria: i) they should not present signs of 
recombination, ii) the resulting gene trees should not be anomalous or deviating from the distribution of 
tree topologies and branch lengths expected under the multispecies coalescent model and iii) they 
should have a strong phylogenetic signal. The top-scoring markers are concatenated to estimate the 
species phylogeny under the maximum likelihood optimality criterion using either FastTree (Price et 
al., 2010) or IQ-TREE (Nguyen et al., 2015). The second aim was to apply GET_PHYLOMARKERS 
to challenge and refine the species delimitations reported in our previous MLSA study (Ochoa-Sánchez 
and Vinuesa, 2017) using a genomic approach, focusing on resolving the geno-taxonomic structure of 
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the Smc and S. maltophilia sensu lato clades. For this purpose we sequenced five strains from the new 
genospecies Smc1 and Smc2 and analyzed them together with all reference genome sequences 
available for the genus Stenotrophomonas as of August 2017 using the methods implemented in 
GET_PHYLOMARKERS. The results were used to critically revise the molecular systematics of the 
genus in light of genomics, identify misclassified genome sequences, suggest correct classifications for 
them and discover multiple novel genospecies within S. maltophilia.

MATERIALS AND METHODS

Genome sequencing, assembly and annotation
Ten Stenotrophomonas strains from our collection were selected (Table 1) for genome sequencing 
using a MiSeq instrument (2x300 bp) at the Genomics Core Sequencing Service provided by Arizona 
State University (DNASU). They were all isolated from rivers in the state of Morelos, Central Mexico, 
and classified as genospecies 1 (Smc1) or 2 (Smc2), as detailed in a previous publication (Ochoa-
Sánchez and Vinuesa, 2017). Adaptors at the 5'-ends and low quality residues at the 3' ends of reads 
were trimmed-off using ngsShoRT v2.1 (Chen et al., 2014) and passed to Spades v3.10.1 (Bankevich et 
al., 2012) for assembly (with options --careful -k 33,55,77,99,127,151). The resulting assembly 
scaffolds were filtered to remove those with low coverage (< 7X) and short length (< 500 nt). All 
complete genome sequences available in RefSeq for Stenotrophomonas spp. were used as references 
for automated ordering of assembly scaffolds using MeDuSa v1.6 (Bosi et al., 2015). A final assembly 
polishing step was performed by remapping the quality-filtered sequence reads on the ordered scaffolds 
using BWA (Li and Durbin, 2009) and passing the resulting sorted binary alignments to SAMtools (Li 
et al., 2009) for indexing. The indexed alignments were used by Pilon 1.21 (Walker et al., 2014) for gap 
closure and filling, correction of indels and single nucleotide polymorphisms (SNPs), as previously 
described (Vinuesa and Ochoa-Sánchez, 2015). The polished assemblies were annotated with NCBI's 
Prokaryotic Genome Annotation Pipeline (PGAP v4.2) (Angiuoli et al., 2008). BioProject and 
BioSample accession numbers are provided in Table S1.

Reference genomes
On August 1st, 2017, a total of 169 annotated Stenotrophomonas genome sequences were available in 
RefSeq, 134 of which were labeled as S. maltophilia. The corresponding GenBank files were retrieved, 
as well as the corresponding table with assembly metadata. Seven complete Xanthomonas spp. 
genomes were also downloaded to use them as outgroup sequences. In January 2018, the genome 
sequence of S. bentonitica strain VV6 was added to RefSeq and included in the revised version of this 
work to increase the taxon sampling.

Computing consensus core- and pan-genomes with GET_HOMOLOGUES
We used GET_HOMOLOGUES (v05022018) (Contreras-Moreira and Vinuesa, 2013) to compute 
clusters of homologous gene families from the input genome sequences, as previously detailed 
(Vinuesa and Contreras-Moreira, 2015). Briefly, the source GenBank-formatted files were passed to 
get_homologues.pl and instructed to compute homologous gene clusters by running either our heuristic 
(fast) implementation of the bidirectional best-hit (BDBH) algorithm ('-b') to explore the complete 
dataset, or the full BDBH, Clusters of Orthologous Groups - triangles (COGtriangles), and OrthoMCL 
(Markov Clustering of orthologues, OMCL) algorithms for the different sets of selected genomes, as 
detailed in the relevant sections and explained in the GET_HOMOLOGUES's online manual (eead-
csic-compbio.github.io/get_homologues/manual/manual.html). PFAM-domain scanning was enabled 
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for the latter runs (-D flag). BLASTP hits were filtered by imposing a minimum of 90% alignment 
coverage (-C 90). The directories holding the results from the different runs were then passed to the 
auxiliary script compare_clusters.pl to compute either the consensus core genome (-t 
number_of_genomes) or pan-genome clusters (-t 0). The commands to achieve this can be found in the 
online tutorial https://vinuesa.github.io/get_phylomarkers/#get_homologues-get_phylomarkers-
tutorials provided with the distribution.

Overview of the computational steps performed by the GET_PHYLOMARKERS pipeline
Figure 1 presents a flow-chart that summarizes the computational steps performed by the pipeline, 
which are briefly described below. For an in-depth description of each step and associated parameters, 
as well as for a full version of the pipeline's flow-chart, the reader is referred to the online manual 
(https://vinuesa.github.io/get_phylomarkers/).  The pipeline is primarily intended to run DNA-based 
phylogenies ('-R 1 -t DNA') on a collection of genomes from different species of the same genus or 
family. However, it can also select optimal markers for population genetics ('-R 2 -t DNA'), when the 
source genomes belong to the same species (not shown here). For more divergent genome sequences 
the pipeline should be run using protein sequences ('-R 1 -t PROT').  The analyses are started from the 
directory holding single-copy core-genome clusters generated either by 'get_homologues.pl -e -t 
number_of_genomes' or by 'compare_clusters.pl -t number_of_genomes'. Note that both the protein 
(faa) and nucleotide (fna) FASTA files for the clusters are required, as detailed in the online tutorial 
(https://vinuesa.github.io/get_phylomarkers/#get_homologues-get_phylomarkers-tutorials). The former 
are first aligned with clustal-omega (Sievers et al., 2012) and then used by pal2nal (Suyama et al., 
2006) to generate codon alignments. These are subsequently scanned with the Phi-test (Bruen et al., 
2005) to identify and discard those with significant evidence for recombinant sequences. Maximum-
likelihood phylogenies are inferred for each of the non-recombinant alignments using by default IQ-
TREE v.1.6.2 (Nguyen et al., 2015), which will perform model selection with ModelFinder 
(Kalyaanamoorthy et al., 2017) using a subset of models and the '-fast' flag enabled for rapid 
computation, as detailed in the online manual. Alternatively, FastTree v2.1.10 (Price et al., 2010) can 
be executed using the '-A F' option, which will estimate phylogenies under the GTR+Gamma model. 
FastTree was compiled with double-precision enabled for maximum accuracy (see the manual for 
details).  The resulting gene trees are screened to detect ‘outliers’ with help of the R package kdetrees 
(v.0.1.5) (Weyenberg et al., 2014, 2017). It implements a non-parametric test based on the distribution 
of tree topologies and branch lengths expected under the multispecies coalescent, identifying those 
phylogenies with unusual topologies or branch lengths. The stringency of the test can be controlled 
with the -k parameter (inter-quartile range multiplier for outlier detection, by default set to the standard 
1.5). In a third step, the phylogenetic signal of each gene-tree is computed based on mean branch 
support values (Vinuesa et al., 2008), keeping only those above a user-defined mean Shimodaira-
Hasegawa-like (SH-alrt) bipartition support (Anisimova and Gascuel, 2006) threshold ('-m 0.75' by 
default). To make all the previous steps as fast as possible, they are run in parallel on multi-core 
machines using GNU parallel (Tange, 2011). The set of alignments passing all filters are concatenated 
and subjected to maximum-likelihood (ML) tree searching using by default IQ-TREE with model 
fitting to estimate the genomic species-tree. 
The complete GET_PHYLOMARKERS pipeline is launched with the master script 
run_get_phylomarkers_pipeline.sh, which calls a subset of auxiliary Bash, Perl and R programs to 
perform specific tasks. This architecture allows the user to run the individual steps separately, which 
adds convenient flexibility for advanced users (examples provided in the Supplementary Materials). 
The pipeline is highly customizable, and the reader is referred to the latest version of the online manual 
for the details of each option. However, the default values should produce satisfactory results for most 
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purposes, as these were carefully selected based on the benchmark analysis presented in this work. All 
the source code is freely available under the GNU GENERAL PUBLIC LICENSE V3 from 
https://github.com/vinuesa/get_phylomarkers. Detailed installation instructions are provided 
(https://github.com/vinuesa/get_phylomarkers/blob/master/INSTALL.md), along with a hands-on 
tutorial (https://vinuesa.github.io/get_phylomarkers/). The software has been extensively tested on 
diverse Linux distributions (CentOS, Ubuntu and RedHat). In addition, a docker image bundling 
GET_HOMOLOGUES and GET_PHYLOMARKERS is available at 
https://hub.docker.com/r/csicunam/get_homologues/. We recommend running the docker image to 
avoid potential trouble with the installation and configuration of diverse dependencies (second party 
binaries, as well as Perl and R packages), making it easy to install on any architecture, including 
Windows, and to reproduce analyses with exactly the same software.

Estimating maximum likelihood and parsimony pan-genome trees from the pan-genome matrix 
(PGM).
The GET_PHYLOMARKERS package contains auxiliary scripts to perform diverse clustering and 
phylogenetic analyses based on the pangenome_matrix_t0.* files returned by the compare_clusters.pl 
script (options '-t 0 -m') from the GET_HOMOLOGUES suite. In this work, consensus PGMs (Vinuesa 
and Contreras-Moreira, 2015) were computed as explained in the online tutorial 
(https://vinuesa.github.io/get_phylomarkers/#get_homologues-get_phylomarkers-tutorials). These 
represent the intersection of the clusters generated by the COGtriangles and OMCL algorithms. Adding 
the -T flag to the previous command instructs compare_clusters.pl to compute a Wagner (multistate) 
parsimony tree from the pan-genome matrix, launching a tree search with 50 taxon jumbles with pars 
from the PHYLIP (Felsenstein, 2004b) package (v.3.69). A more thorough and customized ML or 
parsimony analysis of the PGM can be performed with the aid of the auxiliary script 
estimate_pangenome_phylogenies.sh, bundled with GET_PHYLOMARKERS. By default this script 
performs a ML tree-search using IQ-TREE v1.6.2 (Nguyen et al., 2015). It will first call ModelFinder 
(Kalyaanamoorthy et al., 2017) using the JC2 and GTR2 base models for binary data, the latter 
accounting for unequal state frequencies. The best fitting base model + ascertain bias correction + 
among-site rate variation parameters are selected using the Akaike Information Criterion (AIC). IQ-
TREE (Nguyen et al., 2015) is then called to perform a ML tree search under the selected model with 
branch support estimation. These are estimated using approximate Bayesian posterior probabilities  
(aBypp), a popular single branch test (Guindon et al., 2010), as well as the recently developed ultrafast-
bootstrap2 (UFBoot2) test (Hoang et al., 2017). In addition, the user may choose to run a parsimony 
analysis with bootstrapping on the PGM, as detailed in the online manual and illustrated in the tutorial. 
Note however, that the parsimony search with bootstrapping is much slower than the default ML 
search.

Unsupervised learning methods for the analysis of pairwise average nucleotide (ANI) and 
aminoacid (AAI) identity matrices 
The GET_HOMOLOGUES distribution contains the plot_matrix_heatmap.sh script which generates 
ordered heatmaps with attached row and column dendrograms from squared tab-separated numeric 
matrices. These can be presence/absence PGM matrices or similarity / identity matrices, as those 
produced with the get_homologues -A option. Optionally, the input cgANIb matrix can be converted to 
a distance matrix to compute a neighbor joining tree, which makes the visualization of relationships in 
large ANI matrices easier. Recently added functionality includes reducing excessive redundancy in the 
tab-delimited ANI matrix file (-c max_identity_cut-off_value) and sub-setting the matrix with regular 
expressions, to focus the analysis on particular genomes extracted from the full cgANIb matrix. From 
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version 1.0 onwards, the mean silhouette-width (Rousseeuw, 1987) goodness of clustering statistics to 
determine the optimal number of clusters automatically. The script currently depends on the R packages 
ape (Popescu et al., 2012) , dendextend (https://cran.r-project.org/package=dendextend), factoextra 
(https://cran.r-project.org/package=factoextra) and gplots (https://CRAN.R-
project.org/package=gplots).

RESULTS

Ten new complete genome assemblies for the Mexican environmental Stenotrophomonas 
maltophilia complex isolates previously classified as genospecies 1 (Smc1) and 2 (Smc2).
In this study we report the sequencing and assembly of five isolates each from the genospecies 1 
(Smc1) and 2 (Smc2) recovered from rivers in Central Mexico, previously reported in our extensive 
MLSA study of the genus Stenotrophomonas (Ochoa-Sánchez and Vinuesa, 2017). All assemblies 
resulted in a single chromosome with gaps. No plasmids were detected. A summary of the annotated 
features for each genome are presented in Table 1. Assembly details for each genome are provided in  
supplementary Table S1.

Rapid phylogenetic exploration of Stenotrophomonas genome sequences available at NCBI's 
RefSeq repository running GET_PHYLOMARKERS in fast runmode
A total of 170 Stenotrophomonas and 7 Xanthomonas reference genomes were retrieved from RefSeq 
(see methods). Figure 2A depicts parallel density plots showing the distribution of the number of 
fragments for the Stenotrophomonas assemblies at the Complete (n = 16), Chromosome (n = 3), 
Scaffold (n = 63) and Contig (n = 88) finishing levels. The distributions have conspicuous long tails, 
with an overall mean and median number of fragments of ~238 and ~163, respectively. The table insets 
in Fig. 2A provide additional descriptive statistics of the distributions. A first GET_HOMOLOGUES 
run was launched using this dataset (n = 177) with two objectives: i) to test its performance with a 
relatively large set of genomes and ii) to get an overview of their evolutionary relationships to select a 
non-redundant set of those with the best assemblies. For this analysis, GET_HOMOLOGUES was run 
in its “fast-BDBH” mode (-b), on 60 cores (-n 60; AMD OpteronTM Processor 6380, 2500.155 MHz), 
and imposing a stringent 90% coverage cut-off for BLASTP alignments (-C 90), excluding 
inparalogues (-e). This analysis took 1h:32m:13s to complete and identified 132 core genes. These 
were fed into the GET_PHYLOMARKERS pipeline, which was executed using a default FastTree 
search with the following command line: run_get_phylomarkers_pipeline.sh -R 1 -t DNA -A F, which 
took 8m:1s to complete on the same number of cores. Only 79 alignments passed the Phi 
recombination test. Thirteen of them failed to pass the downstream kdetree test. The phylogenetic 
signal test excluded nine additional loci with average SH-alrt values < 0.70.  Only 57 alignments 
passed all filters and were concatenated into a supermatrix of 38,415 aligned residues, which were 
collapsed to 19,129 non-gapped and variable sites. A standard FastTree maximum-likelihood tree-
search was launched with the command: 'run_get_phylomarkers_pipeline.sh -R 1 -t DNA -A F'. The 
resulting phylogeny (lnL = -475237.540) is shown in supplementary Figure S1. Based on this tree and 
the level of assembly completeness for each genome (Fig. 2A), we decided to discard those with > 300 
contigs (Fig. 2B). This resulted in the loss of 19 genomes labeled as S. maltophilia. However, we 
retained S. pictorum JCM 9942, a highly fragmented genome with 829 contigs (Patil et al., 2016) to 
maximize taxon sampling. Several S. maltophilia subclades contained identical sequences (Fig. S1) and 
were trimmed, retaining only the assembly with the lowest numbers of scaffolds or contigs.
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Selection of a stringently defined set of orthologous genes using GET_HOMOLOGUES
 After the quality and redundancy filtering described in the previous section, 109 reference genomes 
(102 Stenotrophomonas + 7 Xanthomonas) were retained for more detailed investigation. Table S2 
provides an overview of them. To this set we added the 10 new genomes reported in this study (Table 
1). Figure 2B depicts parallel density plots summarizing the distribution of number of contigs/scaffolds 
in the selected reference genomes and the new genomes for the Mexican environmental Smc isolates 
previously classified as genospecies 1 (Smc1) and 2 (Smc2) (Ochoa-Sánchez and Vinuesa, 2017). A 
high stringency consensus core-genome containing 239 gene families was computed as the intersection 
of the clusters generated by the BDBH, COG-triangles and OMCL algorithms (Fig 3A).

GET_PHYLOMARKERS in action: benchmarking the performance of FastTree and IQ-TREE 
to select top-scoring markers for phylogenomics
The set of 239 consensus core-genome clusters (Fig. 3A) was used to launch multiple instances of the 
GET_PHYLOMARKERS pipeline to evaluate the phylogenetic performance of FastTree (FT; v2.1.10)  
and IQ-TREE (IQT; v1.6.2), two popular fast maximum-likelihood (ML) tree searching algorithms. 
Our benchmark was designed to compare: i) the execution times of the FT vs. IQT runs under default 
(FTdef, IQTdef) and thorough (FThigh, IQThigh) search modes (see methods and online manual for 
their parameterization details); ii) the phylogenetic resolution (average support values) of gene trees 
estimated by FT and IQT under both search modes; iii) the rank of lnL scores of the gene trees found in 
those searches for each locus; iv) the distribution of consensus values of each node in majority rule 
consensus trees computed from the gene trees found by each search type; v) the distribution of edge-
lengths in the species-trees computed by each search type. The results of these analyses are 
summarized in Table 2 and in Figure 3. The first steps of the pipeline (Fig. 1) comprise the generation 
of codon alignments and their analysis to identify potential recombination events. Only 127 alignments 
(53.14 %) passed the Phi-test (Table 2). Phylogenetic analyses start downstream of the recombination 
test (Fig. 1). The computation times required by the two algorithms and search intensity levels were 
significantly different (Kruskal-Wallis, p < 2.2e-16), FastTree being always the fastest, and displaying 
the lowest dispersion of compute times across trees (Fig. 3B). This is not surprising, as IQT searches 
involved selecting the best substitution model among a range of base models (see methods and online 
manual) and fitting additional parameters (+G+ASC+I+F+R) to account for heterogeneous base 
frequencies and rate-variation across sites. In contrast, FT searches just estimated the parameter values 
for the general time-reversible (GTR) model, and among-site rate variation was modeled fitting a 
gamma distribution with 20 rate categories (+G), as summarized in Table 2. Similar numbers of 
“outlier” trees (range 18:22) were detected by the kdetrees-test in the four search types (Table 2). 
However, the distributions of SH-alrt support values are strikingly different for both search algorithms 
(Wilcoxon, p < 2.2e-16), revealing that gene-trees found by IQT have a much lower average support 
than those found by FT (Fig 3C). Consequently, the former searches were significantly more efficient 
to identify gene trees with low average branch support values (Table 2 and Fig. 3C). This result is in 
line with the well-established fact that poorly fitting and under-parameterized models produce less 
reliable tree branch lengths and overestimate branch support (Posada and Buckley, 2004), implying that 
the FT phylogenies may suffer from clade over-credibility. These results demonstrate that: i) FT-based 
searches are significantly faster than those performed with IQT, and ii) that IQT has a significantly 
higher discrimination power for phylogenetic signal than FT. Due to the fact that the number of top-
scoring alignments selected by the two algorithms for concatenation is notably different (Table 2), the 
lnL scores of the resulting species-trees are not comparable (Table 2). Therefore, in order to further 
evaluate the quality of the gene-trees found by the four search strategies, we performed an additional 
benchmark under highly standardized conditions, based on the 105 optimal alignments that passed the 
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kdetrees-test in the IQThigh search (Table 2). Gene trees were estimated for each of these alignments 
using the four search strategies (FTdef, IQTdef, FThigh and IQThigh) and their lnL scores ranked for 
each gene tree. An association analysis (deviation from independence  in a multi-way chi-squared test) 
was performed on the lnL ranks (1 to 4, coding for highest to lowest lnL scores, respectively) attained 
by each search type for each gene tree. As shown in Fig. 3D, the IQThigh search was the winner, 
attaining the first rank (highest lnL score) in 76/105 of the searches (72.38%), way ahead of the number 
of FThigh (26%), and IQTdef (0.009%) searches that ranked in the first position (highest lnL score for 
a particular alignment). A similar analysis performed on the full set of input alignments (n = 239) 
indicated that when operating on an unfiltered set, the difference in performance was even more 
striking, with IQT-based searches occupying > 97 % of the first rank positions (data not shown). These 
results highlight two points: i) the importance of proper model selection and thorough tree searching in 
phylogenetic inference and ii) that IQT generally finds better trees than FT. Finally, we evaluated 
additional phylogenetic attributes of the species-trees computed by each search type, either as the 
majority rule consensus (mjrc) tree of top-scoring gene-trees, or as the tree estimated from the 
supermatrices of concatenated alignments. Figure 3E shows the distribution of mjrc values of the mjrc 
trees computed by each search type, which can be interpreted as a proxy for the level phylogenetic 
congruence among the source trees. These values were significantly higher for the IQT than in the FT 
searches (Kruskal-Wallis, p = 0.027), with a higher number of 100% mjrc clusters found in the former 
than in the latter type of trees (Fig. 3E). An analysis of the distribution of edge-lengths of the species-
trees inferred from the concatenated alignments revealed that those found in IQT searches had 
significantly (Kruskal-Wallis, p = 1e-07) shorter edges (branches) than those estimated by FT (Fig. 3F). 
This highlights again the importance of adequate substitution models for proper edge-length estimation. 
Tree-lengths (sum of edge lengths) of the species-trees found in IQT-based searches are about 0.63 
times shorter than those found by FT (Fig. S2). As a final exercise, we computed the Robinson-Foulds 
(RF) distances of each gene tree found in a given search type to the species tree inferred from the 
corresponding supermatrix. The most striking result of this analysis was that no single gene-tree had 
the same topology as the species tree inferred from the concatenated top-scoring alignments (Fig. S3).

Effect of tree-search intensity on the quality of the species trees found by IQT-REE and FastTree
Given the astronomical number of different topologies that exist for 119 terminals, we decided to 
evaluate the effect of tree-search thoroughness on the quality of the trees found by FT and IQT, 
measured as their log-likelihood (lnL) score. To make the results comparable across search algorithms, 
we used the supermatrix of 55 top-scoring markers (25,896 variable, non-gapped sites) selected by the 
IQThigh run (Table 2). One thousand FT searches were launched from the same number of random 
topologies computed with the aid of a custom Perl script. In addition, a standard FT search was started 
from the default  BioNJ tree. All these searches were run in “thorough” mode (-quiet -nt -gtr -bionj 
-slow -slownni -gamma -mlacc 3 -spr 16 -sprlength 10) on 50 cores. The resulting lnL profile for this 
search is presented in Figure 4A, which reached a maximal score of -717195.373. This is 121.281 lnL 
units better than the score of the best tree found in the search started from the BioNJ seed tree (lnL 
-717316.654, lower discontinuous blue line). In addition, 50 independent tree searches were run with 
IQ-TREE under the best fitting model previously found (Table 2), using the shell loop command (# 5) 
provided in the Supplementary Material. The corresponding lnL profile of this search is shown in Fig. 
4B, which found a maximum-scoring tree with a score of -707932.468. This is only 8.105 lnL units 
better than the worst tree found in that same search (Fig. 4B). Importantly, the best tree found in the 
IQT-search is 9262.905 lnL units better that of the best tree found in the FT search, despite the much 
higher number of seed trees used for the latter.  This result clearly demonstrates the superiority of the 
IQ-TREE algorithm for ML tree searching. Based on this evidence, and that presented in the previous 
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section (Table 2; Fig. 3), IQ-TREE was chosen as the default tree-search algorithm used by 
GET_PHYLOMARKERS. The Robinson-Foulds distance between both trees was 46. 

A robust genomic species phylogeny for the genus Stenotrophomonas: taxonomic implications and 
identification of multiple misclassified genomes
Figure 5 displays the best ML phylogeny found in the IQ-TREE search (Fig. 4B) described in the 
previous section. This is a highly resolved phylogeny. All bipartitions have an approximate Bayesian 
posterior probability (aBypp) p >= 0.95. It was rooted at the branch subtending the Xanthomonas spp. 
clade, used as an outgroup. A first taxonomic inconsistency revealed by this phylogeny is the placement 
of S. panacihumi within the latter clade, making the genus Stenotrophomonas paraphyletic. It is worth 
noting that S. panacihumi is a non-validly described, and poorly characterized species (Yi et al., 2010). 
The genus Stenotrophomonas, as currently defined, and excluding S. panacihumi, consists of two major 
clades, labeled as I and II in Fig. 5, as previously defined (Ochoa-Sánchez and Vinuesa, 2017). 
Clade I groups environmental isolates, recovered from different ecosystems, mostly soils and plant 
surfaces, classified as S. ginsengisoli (Kim et al., 2010), S. koreensis (Yang et al., 2006), S. 
daejeonensis (Lee et al., 2011), S. nitritireducens (Finkmann et al., 2000), S. acidaminiphila (Labat et 
al., 2002), S. humi and S. terrae (Heylen et al., 2007). The recently described S. pictorum (Ouattara et 
al., 2017) is also included in clade I. These are all rather poorly studied species, for which only one or a 
few strains have been considered in the corresponding species description or to study particular aspects 
of their biology. None of these species have been reported as opportunistic pathogens, but some contain 
promising strains for plant growth-promotion and bio-remediation. Particularly notorious are the 
disproportionally long terminal branches (heterotachy) of S. ginsengisoli and S. koreensis (Fig. 5). The 
potential distortion of these long branches on the estimated phylogeny needs to be evaluated in future 
work.
Clade II contains the species S. rhizophila (Berg et al., 2002), S. chelatiphaga (Kaparullina et al., 
2009), the recently described S. bentonitica (Sánchez-Castro et al., 2017), along with multiple species 
and genospecies lumped in the S. maltophilia complex (Smc; shaded area in Fig. 5) (Berg and 
Martinez, 2015; Svensson-Stadler et al., 2012). The Smc includes the validly described S. maltophilia 
(Palleroni and Bradbury, 1993) and S. pavanii (Ramos et al., 2011) (collapsed subclades Sm6 and Sm2, 
respectively, located within the clade labeled as S. maltophilia sensu lato in Figure 5), along with at 
least four undescribed genospecies (Sgn1-Sgn4) recently identified in our MLSA study of the genus 
(Ochoa-Sánchez and Vinuesa, 2017). In light of this phylogeny, we discovered 14 misclassified RefSeq 
genome sequences (out of 119; ~11.76 %), 12 of them labeled as S. maltophilia. These genomes are 
highlighted with black arrows in Figure 5. The phylogeny also supports the classification, either as a 
validly published species, or as new genospecies, of 8 (~ 6.72 %) additional RefSeq genomes (gray 
arrows) lacking a species assignation in the RefSeq record, as summarized in Table 3. In addition, the 
phylogeny resolved 13 highly supported lineages (aBypp > 0.95) within the S. maltophilia sensu lato 
(Smsl) cluster, shown as collapsed clades. They have a core-genome average nucleotide identity > 96 
% (Fig. 5). These lineages may represent 11 additional species in the Smsl clade, as detailed in 
following sections. Supplementary Figure S4 shows the non-collapsed version of the species-tree 
displayed in Figure 5. 
No genome sequences, nor MLSA data are available for the recently described S. tumulicola (Handa et 
al., 2016). 

Pan-genome phylogenies for the genus Stenotrophomonas recover the same species clades as the 
core-genome phylogeny
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A limitation of core-genome phylogenies is that they are estimated from the small fraction of single-
copy genes shared by all organisms under study. Genes encoding adaptive traits relevant for niche-
differentiation and subsequent speciation events typically display a lineage-specific distribution. Hence, 
phylogenetic analysis of pan-genomes, based on their differential gene-composition profiles, provide a 
complementary, more resolved and often illuminating perspective on the evolutionary relationships 
between species. 
A consensus pan-genome matrix (PGM) containing 29,623 clusters was computed from the intersection 
of the clusters generated by the COG-triangles and OMCL algorithms (Figure 6). This PGM was 
subjected to ML tree searching using the binary and morphological models implemented in IQ-TREE 
for phylogenetic analysis of discrete characters with the aid of the estimate_pangenome_phylogenies.sh 
script bundled with GET_PHYLOMARKERS (Fig. 1). As shown in the tabular inset of Figure 6, the 
binary GTR2+FO+R4 model was by large the best-fitting one (with the smallest AIC and BIC values). 
Twenty five independent IQ-TREE searches were performed on the consensus PGM with the best-
fitting model. The best tree found is presented in Figure 6, rooted with the Xanthomonas spp. outgroup 
sequences. It depicts the evolutionary relationships of the 119 genomes based on their gene content 
(presence-absence) profiles. The numbers on the nodes indicate the approximate Bayesian posterior 
probabilities (aBypp) / UFBoot2 support values (see methods). The same tree, but without collapsing 
clades, is presented in the supplementary figure S5. This phylogeny resolves exactly the same species-
like clades highlighted on the core-genome phylogeny presented in Figure 5, which are also grouped in 
the two major clades I and II. These are labeled with the same names and color-codes, for easy cross-
comparison. However, there are some notorious differences in the phylogenetic relationships between 
species on both trees, like the placement of S. panacihumi outside of the Xanthomonas clade, and the 
sister relation of genospecies 3 (Sgnp3) to the S. maltophilia sensu lato clade. These same relationships 
were found in a multi-state (Wagner) parsimony phylogeny of the PGM shown in Supplementary 
Figure S6.  In summary, all core-genome and pan-genome analyses presented consistently support our 
previous claim that the five genospecies defined in our MLSA study represent distinct species and 
support the existence of multiple cryptic species within the Smsl clade, as defined in Figure 5.

Application of non-supervised learning approaches to BLAST-based core-genome average 
nucleotide distance (cgANDb) and Gower pan-genome distances (pgGdist) provide statistically-
consistent results for prokaryotic species delimitation
The final goal of any geno-taxonomic study is to identify species-like clusters. These should consist of 
monophyletic groups identified on genome trees that display average genome identity (gANI) values > 
94 %, based on a widely accepted cutoff-value (Rosselló-Mora and Amann, 2015). In this section we 
searched for such species-clusters within the taxonomically problematic Stenotrophomonas maltophilia 
complex (Smc). Our core- and pan-genome phylogenies consistently identified potential species-clades 
within the Smc that grouped exactly the same strains (compare Figs. 5 and 6). We additionally 
performed a cluster analysis of core-genome ANI values computed from the pairwise BLASTN 
alignments (cgANIb) used to define OMCL core-genome clusters for the 86 Smc genomes analyzed in 
this study. The resulting cgANIb matrix was then converted to a distance matrix (cgANDb = 100 % – 
cgANIb) and clustered with the aid of the plot_matrix_heatmap.sh script from the 
GET_HOMOLOGUES suite. Figure 7 shows the resulting tree, which resolves 16 clusters within the 
Smc at a conservative cgANDb cutoff value of 5% (cgANIb = 95%). At this distance level, the four 
genospecies labeled as Sgn1-Sgn4 on Figure 5 are resolved as five clusters because the most divergent 
Sgn1 genome (ESTM1D_MKCIP4_1) is split as a separate lineage. This is the case also at cgANDb = 
6 (Fig. 7), reason why this strain most likely represents a sixth genospecies. All these genospecies are 
very distantly related to the large S. maltophilia s. lato cluster, which gets split into 11 sub-clusters at 
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the conservative cgANDb = 5 % cutoff. Thirteen clusters are resolved at the 4 % threshold, and a 
minimum of seven at the 6 % level (cgANIb = 94%), as shown by the dashed lines (Fig. 7). These 
results strongly suggest that the S. maltophilia sensu lato clade (Fig. 5) actually comprises multiple 
species. The challenging question is how many? In an attempt to find a statistically-sound answer, we 
applied an unsupervised learning approach based on the evaluation of different goodness of clustering 
statistics to determine the optimal number of clusters (k) for the cgANDb matrix. The gap-statistic and 
a parametric, model-based cluster analysis yielded k values >= 35 (data not shown). These values seem 
too high for this dataset, as they correspond to a gANI value > 98%. However, the more conservative 
average silhouette width (ASW) method (Kaufman and Rousseeuw, 1990) identified an optimal k = 19 
(inset in Fig 7) for the complete set of Smc genomes. This number of species-like clusters is much 
more reasonable for this data set, as it translates to a range of cgANDb between 4.5 and 4.7 (cgANIb 
range: 95.5% - 95.3%). Close inspection of the ASW profile reveals that the first peak is found at k = 
13, which has an almost identical ASW as that of the maximal value and maps to a cgANDg = 5.7 
(cgANIb of 94.3%). In summary, the range of reasonable numbers of clusters proposed by the ASW 
statistic (k = 13 to k = 19) corresponds to cgANDb values in the range of 5.7% - 4.5% (cgANIb range: 
94.3% - 95.5%), which fits well with the new gold-standard for species delimitation (gANI > 94%), 
established in influential works (Konstantinidis and Tiedje, 2005; Richter and Rossello-Mora, 2009). 
We noted however, that at a cgANDb = 4.1% (cgANIb = 95.9 %) the strain composition of the clusters 
was 100% concordant with the monophyletic subclades shown in the core-genome (Fig. 5) and pan-
genome (Fig. 6) phylogenies. Importantly, at this cutoff, the length of the branches subtending each 
cluster is maximal, both on the core-genome phylogeny (Fig. 5) and on the cgANDb cladogram (Fig. 
7). Based on the combined and congruent evidence provided by these complementary approaches, we 
can safely conclude that: i) the Smc genomes analyzed herein may actually comprise up to 19 or 20 
different species-like lineages, and ii) that only the strains grouped in the cluster labeled as Sm6 in 
Figs. 5, 6 and 7 should be called S. maltophilia. The latter is the most densely sampled species-like 
cluster (n = 19) and includes ATCC 13637T, the type strain of the species. 

On the ecology and other biological attributes of the species-like clusters in the 
Stenotrophomonas maltophilia complex
In this final section we present a brief summary of the ecological attributes reported for selected 
members of the species-like clusters resolved within the Smc (Figs 5 and 7). The four unnamed 
genospecies (Sgn1-Sgn4) group mainly environmental isolates. This is consistent with our previous 
evolutionary and ecological analyses of a comprehensive multilocus dataset of the genus (Ochoa-
Sánchez and Vinuesa, 2017). In that study only Mexican environmental isolates were found to be 
members of the newly discovered genospecies Sgn1 and Sgn2 (named as Smc1 and Smc2, 
respectively). In this work we discovered that the recently sequenced maize root isolate AA1 (Niu et 
al., 2017), misclassified as S. maltophilia, clusters tightly with the Sgn1 strains (Fig. 5). The S. 
maltophilia sensu lato clade is split into 13 or 14 groups based on cgANDb (Fig 7). Sm6 forms the 
largest cluster, grouping mostly clinical isolates related to the type strain S. maltophilia ATCC 13637T, 
like the model strain K279a (Crossman et al., 2008), ISMMS4 (Pak et al., 2015), 862_SMAL, 
1149_SMAL and 1253_SMAL (Roach et al., 2015), as well as EPM1 (Sassera et al., 2013), recovered 
from the human parasite Giardia duodenalis. However, this group also comprises some environmental 
isolates like BurE1, recovered from a bulk soil sample (Youenou et al., 2015). In summary, cluster Sm6 
holds the bona fide S. maltophilia strains (sensu stricto), which may be well-adapted to associate with 
different eukaryotic hosts and cause opportunistic infections in humans. Cluster Sm4a contains the 
model strain D574 (Lira et al., 2012) along with four other clinical isolates (Conchillo-Solé et al., 2015) 
and therefore may represent a second clade enriched in strains with high potential to cause 

13

547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573

574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2018. ; https://doi.org/10.1101/294660doi: bioRxiv preprint 

https://doi.org/10.1101/294660
http://creativecommons.org/licenses/by-nc-nd/4.0/


opportunistic pathogenic infections in humans. Noteworthy, this group is distantly related to Sm6 (Figs. 
5 and 7). Cluster Sm4b is closely related to Sm4a based on the pan-genome phylogeny and the 
cgANDd cladogram (Figs. 6 and 7). It groups the Brazilian rhizosphere-colonizing isolate JV3, the 
Chinese highly metal tolerant strain TD3 (Ge and Ge, 2016) and strain As1, isolated from the Asian 
malaria vector Anopheles stephensi (Hughes et al., 2016). The lineage Sm3 holds eight isolates of 
contrasting origin, including the Chinese soil isolate DDT-1, capable of using DDT as the sole source 
of carbon and energy (Pan et al., 2016), as well as clinical isolates like 1162_SMAL (Roach et al., 
2015) and AU12-09, isolated from a vascular catheter (Zhang et al., 2013), and environmental isolates 
like SmF22, Sm32COP and SmSOFb1, isolated from different manures in France (Bodilis et al., 2016). 
Cluster Sm2 groups the S. pavanii strains, including the type strain DSM_25135T, isolated from the 
stems of sugar cane in Brazil (Ramos et al., 2011), together with the clinical isolates ISMMS6 and 
ISMMS7, that carry mutations conferring quinolone resistance and causing bacteremia (Pak et al., 
2015), and strain C11, recovered from pediatric cystic fibrosis patients (Ormerod et al., 2015). Cluster 
Sm5 includes two strains recovered from soils, ATCC 19867 which was first classified as 
Pseudomonas hibiscicola, and later reclassified as S. maltophilia based on MLSA studies 
(Vasileuskaya-Schulz et al., 2011), and the African strain BurA1, isolated from bulk soil samples 
collected in sorghum fields in Burkina Faso (Youenou et al., 2015). Cluster Sm9 holds clinical isolates, 
like 131_SMAL, 424_SMAL and 951_SMAL (Roach et al., 2015). Its sister group is Sm10. It holds 9 
strains of contrasting geographic and ecological provenances, ranging from Chinese soil and plant-
associated bacteria like the rice-root endophyte RR10 (Zhu et al., 2012), the grassland-soil tetracycline 
degrading isolate DT1 (Naas et al., 2008), and strain B418, isolated from a barley rhizosphere and 
displaying plant-growth promotion properties (Wu et al., 2015), to clinical isolates (22_SMAL, 
179_SMAL, 453_SMAL, 517_SMAL) collected and studied in the context of a large genome 
sequencing project carried out at the University of Washington Medical Center (Roach et al., 2015). 
Cluster Sm11 tightly groups the well-characterized poplar endophyte R551-3, which is a model plant-
growth-promoting bacterium (Alavi et al., 2014; Ryan et al., 2009; Taghavi et al., 2009) and SBo1, 
cultured from the gut of the olive fruit fly Bactrocera oleae (Blow et al., 2016). Cluster Sm 12 contains 
the environmental strain SKA14 (Adamek et al., 2014), along with the clinical isolates ISMMS3 (Pak 
et al., 2015) and 860_SMAL (Roach et al., 2015). Sm1, Sm7 and Sm8 each hold a single strain. 
The following conclusions can be drawn from this analysis: i) the species-like clusters within the S. 
maltophilia sensu lato (Smsl) clade (Fig. 5) are enriched in opportunistic human pathogens, when 
compared with the Smc clusters Sgn1-Sgn4; ii) most Smsl clusters also contain diverse non-clinical 
isolates isolated from a wide range of habitats, demonstrating the great ecological versatility found 
even within specific Smsl clusters like Sm3 or Sm10; iii) taken together, these observations strongly 
suggest that the Smc species-like clusters are all of environmental origin, with the potential for the 
opportunistic colonization of diverse human organs. This potential may be particularly high in certain 
lineages, like in S. maltophilia sensu stricto (Sm6) or Sm4a, both enriched in clinical isolates. 
However, a much denser sampling of genomes and associated phenotypes is required for all clusters to 
be able to identify statistically sound associations between them.

DISCUSSION

In this study we developed and benchmarked GET_PHYLOMARKERS, an open-source, 
comprehensive, and easy-to-use software package for phylogenomics and microbial genome taxonomy. 
Programs like amphora (Wu and Eisen, 2008) or phylosift (Darling et al., 2014) allow users to infer 
genome-phylogenies from huge genomic and metagenomic datasets by scanning new sequences against 
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a reference database of conserved protein sequences to establish the phylogenetic relationships between 
the query sequences and database hits. The first program searches the input data for homologues to a 
set of 31 highly conserved proteins used as phylogenetic markers. Phylosift is more oriented towards 
the phylogenetic analysis of metagenome community composition and structure. Other approaches 
have been developed to study large populations of a single species. These are based on the 
identification of single nucleotide polymorphisms in sequence reads produced by high-throughput 
sequencers, using either reference-based or reference-free approaches, and subjecting them to 
phylogenetic analysis (Timme et al., 2013). The GET_PHYLOMARKERS software suite was designed 
with the aim of identifying orthologous clusters with optimal attributes for phylogenomic analysis and 
accurate species-tree inference. It also provides tools to infer phylogenies from pan-genomes, as well as 
non-supervised learning approaches for the analysis of overall genome relatedness indices (OGRIs) for 
geno-taxonomic studies of multiple genomes. These attributes make GET_PHYLOMARKERS unique 
in the field.

It is well-established that the following factors strongly affect the accuracy of genomic phylogenies: i) 
correct orthology inference; ii) multiple sequence alignment quality; iii) presence of recombinant 
sequences; iv) loci producing anomalous phylogenies, which may result for example from horizontal 
gene transfer, differential loss of paralogues between lineages and v) amount of the phylogenetic signal. 
GET_PHYLOMARKERS aims to minimize the negative impact of potentially problematic or poorly 
performing orthologous clusters by explicitly considering and evaluating these factors. Orthologous 
clusters were identified with GET_HOMOLGOUES (Contreras-Moreira and Vinuesa, 2013) because of 
its distinctive capacity to compute high stringency clusters of single-copy orthologs. In this study we 
used a combination of BLAST alignment filtering imposing a high (90%) query coverage threshold, 
PFAM-domain composition scanning and calculation of a consensus core-genome from the 
orthologous gene families produced by three clustering algorithms (BDBH, COGtriangles and OMCL) 
to minimize errors in orthology inference. Multiple sequence alignments were generated with 
CLUSTAL-OMEGA (Sievers et al., 2012), a state-of-the-art software under constant development, 
capable of rapidly aligning hundreds of protein sequences with high accuracy, as reported in recent 
benchmark studies (Le et al., 2017; Sievers and Higgins, 2018).  GET_PHYLOMARKERS generates 
protein alignments and uses them to compute the corresponding DNA-alignments, ensuring that the 
codon structure is always properly maintained. Recombinant sequences have been known for a long 
time to strongly distort phylogenies because they merge independent evolutionary histories into a 
single lineage. Recombination erodes the phylogenetic signal and misleads classic treeing algorithms, 
which assume a single underlying history (Didelot and Maiden, 2010; Martin, 2009; Pease and Hahn, 
2013; Posada and Crandall, 2002; Schierup and Hein, 2000; Turrientes et al., 2014). Hence, the first 
filtering step in the pipeline is the detection of putative recombinant sequences using the very fast, 
sensitive and robust phi(w) statistic (Bruen et al., 2005). The genus Stenotrophomonas has been 
previously reported to have high recombination rates (Ochoa-Sánchez and Vinuesa, 2017; Yu et al., 
2016). It is therefore not surprising that the phi(w) statistic detected significant evidence for 
recombination in up to 47% of the orthologous clusters. The non-recombinant sequences are 
subsequently subjected to maximum-likelihood phylogenetic inference to identify anomalous trees 
using the non-parametric kdetrees statistic (Weyenberg et al., 2014, 2017). The method estimates 
distributions of phylogenetic trees over the "tree space" expected under the multispecies-coalescent, 
identifying outlier trees based on their topologies and branch lengths in the context of this distribution. 
Since this test is applied downstream of the recombination analysis, only a modest, although still 
significant proportion (14%-17%) of outlier trees were detected (Table 2). The next step determines the 
phylogenetic signal content of each gene tree (Vinuesa et al., 2008). It has been previously established 
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that highly informative trees are less prone to get stuck in local optima (Money and Whelan, 2012). 
They are also required to properly infer divergence at the deeper nodes of a phylogeny (Salichos and 
Rokas, 2013), and to get reliable estimates of tree congruence and branch support in large concatenated 
datasets typically used in phylogenomics (Shen et al., 2017). We found that IQ-TREE-based searches 
allowed a significantly more efficient filtering of poorly resolved trees than FastTree. This is likely due 
to the fact that the former fits more sophisticated models (with more parameters) to better account for 
among-site rate variation. Under-parameterized and poorly fitting substitution models partly explain the 
apparent overestimation of bipartition support values done by FastTree. This is also the cause of the 
poorer performance of FastTree, which finds gene trees that generally have lower lnL scores than those 
found by IQ-TREE. A recent comparison of the performance of four fast ML phylogenetic programs 
using large phylogenomic data sets identified IQ-TREE (Nguyen et al., 2015) as the most accurate 
algorithm. It consistently found the highest-scoring trees. FastTree (Price et al., 2010) was, by large, the 
fastest program evaluated, although at the price of being the less accurate one (Zhou et al., 2017). This 
is in line with our findings. We could show that the higher accuracy of IQ-TREE is particularly striking 
when using large concatenated datasets. As stated above, this is largely attributable to the much richer 
choice of models implemented in the former. ModelFinder (Kalyaanamoorthy et al., 2017) selected 
GTR+ASC+F+R6 model for the concatenated supermatrix, which is much richer in parameters than the 
GTR+CAT+Gamma20 model fitted by FastTree. The +ASC is an ascertainment bias correction 
parameter, which should be applied to alignments without constant sites (Lewis, 2001), such as the 
supermatrices generated by GET_PHYLOMARKERS (see methods). The FreeRate model (+R) 
generalizes the +G model (fitting a discrete Gamma distribution to model among-site rate variation) by 
relaxing the assumption of Gamma-distributed rates (Yang, 1995). The FreeRate model typically fits 
data better than the +G model and is recommended for the analysis of large data sets (Soubrier et al., 
2012). 
The impact of substitution models in phylogenetics has been extensively studied (Posada and Buckley, 
2004). However, the better models implemented in IQ-TREE are not the only reason for its superior 
performance. A key aspect strongly impacting the quality of phylogenomic inference with large 
datasets is tree-searching. This has been largely neglected in most molecular systematic and 
phylogenetic studies of prokaryotes (Ochoa-Sánchez and Vinuesa, 2017; Vinuesa, 2010; Vinuesa et al., 
2008). Due to the factorial increase of the number of distinct bifurcating topologies possible with every 
new sequence added to an alignment (Felsenstein, 2004a), searching the tree-space for large datasets is 
an NP-hard (non-deterministic polynomial-time) problem that necessarily requires heuristic algorithms. 
This implies that once an optimum is found, there is no way of telling whether it is the global one. The 
strategy to gain quantitative evidence about the quality of a certain tree is to compare its score in the 
context of other trees found in searches initiated from a pool of different seed trees. Due to the high 
dimensionality of the likelihood space, and the strict “hill-climbing” nature of ML tree search 
algorithms (Felsenstein, 2004a), they generally get stuck in local optima (Money and Whelan, 2012). 
The scores of the best trees found in each search can then be compared in the form of an “lnL score 
profile”, as performed in our study. Available software implementations for fast ML tree searching use 
different branch-swapping strategies to try to escape from early encountered “local optima”. IQ-TREE 
implements a more efficient tree-searching strategy than FastTree, based on a combination of hill-
climbing and stochastic nearest-neighbor interchange (NNI) operations, always keeping a pool of seed 
trees, which help to escape local optima (Nguyen et al., 2015). This was evident when the  lnL score 
profiles of both programs were compared. IQ-TREE found a much better scoring species tree despite 
the much higher number of independent searches performed with FastTree (50 vs. 1001) using its most 
intensive branch-swapping regime. An important finding of our study is the demonstration that the lnL 
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search profile of IQ-TREE is much shallower than that of FastTree. This suggests that the former finds 
trees much closer to the potential optimum than the latter. It has been shown that the highest-scoring 
(best) trees tend to have shorter branches, and overall tree-length, than those stuck in worse local 
optima (Money and Whelan, 2012). In agreement with this report, the best species-tree found by IQ-
TREE has a notoriously shorter total length and significantly shorter edges than those of the best 
species-tree found by FastTree. 

Our extensive benchmark analysis conclusively demonstrated the superior performance of IQ-TREE.  
Based on this evidence, it was chosen as the default search algorithm for GET_PHYLOMARKERS. 
However, it should be noted that topological differences between the best trees found by both programs 
were minor, not affecting the composition of the major clades in the corresponding species trees. It is 
therefore safe to conclude that the reclassification of Stenotrophomonas genome sequences proposed in 
Table 3 is robust. They are consistently supported by the species-trees estimated with both programs. 
This result underlines the utility of GET_PHYLOMARKERS to identify misclassified genomes in 
public sequence repositories, a problem found in many genera (Gomila et al., 2017; Sangal et al., 
2016). GET_PHYLOMARKERS is unique in its ability to combine core-genome phylogenomics with 
ML and parsimony phylogeny estimation from the pan-genome matrix. In line with other recent studies 
(Caputo et al., 2015; Tu and Lin, 2016), we demonstrate that pan-genome analyses are valuable in the 
context of microbial molecular systematics and taxonomy. All genomes found to be misclassified based 
on the phylogenomic analysis of core-genomes were corroborated by the ML and parsimony analyses 
of the PGM. Furthermore, the combined evidence gained from these independent approaches 
consistently revealed that the Smc contains up to 20 monophyletic and strongly supported species-like 
clusters. These are defined at the cgANIb 95.9% threshold, and include the previously identified 
genospecies Smc1-Smc4 (Ochoa-Sánchez and Vinuesa, 2017), and up to 13 genospecies within the S. 
maltophilia sensu lato clade. This threshold fits well with the currently favored gANI > 94% cutoff for 
species delimitation (Konstantinidis and Tiedje, 2005; Richter and Rossello-Mora, 2009). The 
consistency among all the different approaches strongly supports the proposed delimitations. We used 
an unsupervised learning procedure to determine the optimal number of clusters (k) in the cgANDb 
matrix computed from the 86 Smc genomes analyzed. The average silhouette width goodness of 
clustering statistic proposed an optimal k = 19, which corresponds to a gANI = 95.5%. At this cutoff, 
13 (instead of 14) species-like clusters are delimited within the S. maltophilia sensu lato clade. This 
unsupervised learning method therefore seems promising to define the optimal number of clusters in 
ANI-like matrices using a statistical procedure. However, it should be critically and extensively 
evaluated in other geno-taxonomic studies to better understand its properties and possible limitations, 
before being broadly used.

Current models of microbial speciation predict that bacterial species-like lineages should be identifiable 
by significantly reduced gene flow between them, even when recombination levels are high within 
species (Cadillo-Quiroz et al., 2012; Shapiro et al., 2012). Such lineages should also display 
differentiated ecological niches and phenotypes (Koeppel et al., 2008; Shapiro and Polz, 2015). In our 
previous comprehensive multilocus sequence analysis of species borders in the genus 
Stenotrophomonas (Ochoa-Sánchez and Vinuesa, 2017) we could show that those models fitted our 
data well. We found highly significant genetic differentiation and marginal gene-flow across strains 
from sympatric Smc1 and Smc2 lineages, as well as highly significant differences in the resistance 
profiles of S. maltophilia sensu lato isolates versus Smc1 and Smc2 isolates. We could also show that 
all three lineages have different habitat preferences (Ochoa-Sánchez and Vinuesa, 2017). The genomic 
analyses presented in this study for five Smc1 and Smc2 strains, respectively, fully support their 
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separate species status from a geno-taxonomic perspective. Given the recognized importance of gene 
gain and loss processes in bacterial speciation and ecological specialization (Caputo et al., 2015; 
Jeukens et al., 2017; Richards et al., 2014; Shapiro and Polz, 2015), as reported also in plants (Gordon 
et al., 2017), we think that the evidence gained from pan-genome phylogenies is particularly 
informative for microbial geno-taxonomic investigations. We believe they should be used to validate 
the groupings obtained by the classical gANI cutoff-based species delimitation procedure (Goris et al., 
2007; Konstantinidis and Tiedje, 2005; Richter and Rossello-Mora, 2009) that dominates current geno-
taxonomic research. It is well documented that pan-genome-based groupings tend to better reflect 
ecologically relevant phenotypic differences between groups (Caputo et al., 2015; Jeukens et al., 2017; 
Lukjancenko et al., 2010). We recommend that future geno-taxonomic studies search for a consensus of 
the complementary views of genomic diversity provided by OGRIs, core- and pan-genome 
phylogenies, as performed herein. GET_PHYLOMARKERS is a useful and versatile tool for this task.

In summary, in this study we developed a comprehensive and powerful suite of open-source 
computational tools for state-of-the art phylogenomic and pan-genomic analyses. Their application to 
critically analyze the geno-taxonomic status of the genus Stenotrophomonas provided compelling 
evidence that the taxonomically ill-defined S. maltophilia complex holds many cryptic species. 
However, we refrain at this point from making formal taxonomic proposals for them because we have 
not yet performed the above-mentioned population genetic analyses to demonstrate the genetic 
cohesiveness of the individual species and their differentiation from closely related ones. This will be 
the topic of a follow-up work in preparation. We think that comparative genomic analyses designed to 
identify lineage-specific genetic differences that may underlie niche-differentiation of species are the 
most powerful and objective criteria to delimit species in any taxonomic group (Ochoa-Sánchez and 
Vinuesa, 2017; Vinuesa et al., 2005). 
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Table 1. Overview of key annotation features for the 10 new genome assemblies reported in this study 
for environmental isolates recovered from Mexican rivers and classified as genospecies 1 (Smc1) and 2 
(Smc2) in the study of Ochoa-Sánchez and Vinuesa (2017). Details of their isolation sites and 
antimicrobial resistance phenotypes can be found therein. All genomes consist of a single gapped 
chromosome. Supplementary table S1 provides additional information of the assemblies. Their 
phylogenetic placement within the Stenotrophomonas maltophilia complex is shown in Figure 5 
(clades Sgn1/Smc1 and Sgn2/Smc2).

Genome Size_nt CDSs 
(coding)

rRNAs tRNAs pseudo-
genes

RefSeq 
Acc. num.

Stenotrophomonas genospecies 1 
(Smc1; Sgn1) ESTM1D MKCIP4 1

4,475,880 3,904 6 59 67 CP026004

Stenotrophomonas genospecies 1 
(Smc1; Sgn1) SAU14A NAIMI4 5

4,570,883 4,020 6 69 66 CP026003 

Stenotrophomonas genospecies 1 
(Smc1; Sgn1) ZAC14A NAIMI4 1

4,698,328 4,150 7 45 66 CP026002

Stenotrophomonas genospecies 1 
(Smc1; Sgn1) ZAC14D1 NAIMI4 1

4,702,461  4,131 6 42 66 CP026001

Stenotrophomonas genospecies 1 
(Smc1; Sgn1) ZAC14D1 NAIMI4 6

4,700,343 4,128 6 45 63 CP026000

Stenotrophomonas genospecies 2 
(Smc2; Sgn2) SAU14A NAIMI4 8 

4,479,100  3,893 5 54 69 CP025999

Stenotrophomonas genospecies 2 
(Smc2; Sgn2) YAU14A MKIMI4 1

4,487,007 3,918 7 43 67 CP025998

Stenotrophomonas genospecies 2 
(Smc2; Sgn2) YAU14D1 LEIMI4 1

4,319,112 3,819 6 51 66 CP025997

Stenotrophomonas genospecies 2 
(Smc2; Sgn2) ZAC14D2 NAIMI4 6

4,431,104 3,882 6 52 66 CP025996

Stenotrophomonas genospecies 2 
(Smc2; Sgn2) ZAC14D2 NAIMI4 7

4,468,731 3,918 6 66 62 CP025995
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Table 2. Comparative benchmark analysis of the filtering performance of the 
GET_PHYLOMARKERS pipeline when run using the FastTree (FT) and IQ-TREE (IQT) maximum-
likelihood algorithms under default and high search-intensity levels. The analyses were started with the 
stringently defined set of 239 consensus core-genome clusters computed by GET_HOMOLOGUES for 
a dataset of 119 genomes (112 Stenotrophomonas spp. and 7 Xanthomonas spp.). 

Test FTdef FThigh IQTdef IQThigh

Alignments passing 
the Phi recombination 
test

127/239 (53.14 %) 125/239 (52.30 %) 125/239 (52.30 %) 127/239 (53.14 %)

Outlier phylogenies 
(kdetrees test; k = 1.0) 
out of the indicated 
number of non-
recombinant 
alignments

22/127 (17.32 %)
passing: 105

18 (14.17 %)
passing: 107

19 (14.96 %)
passing: 106

22 (17.32%)
passing: 105

Alignments passing 
the phylogenetic 
signal
(mean SH-alrt 
bipartition support; m 
>= 0.7) test

98/105 (93.33 %) 99/107 (92.52 %) 52/106 (49.05 %) 55/105 (52.38 %)

Concatenated top-
scoring markers, lnL 
score, substitution 
model and number of 
independent searches

98 markers
var. sites = 36082
lnL = -917444.522
GTR+G
searches = 1

99 markers
var. sites = 35509
lnL = -899898.614
GTR+G
searches = 1

52 markers
var. sites = 25383
lnL = -666437.563
GTR+F+ASC+R6
searches = 1

55 markers
var. sites = 26988 
lnL = -707933.476
GTR+F+ASC+R6
searches = 5

Total wall-clock time 
of runs on 50 cores

0h:13m:39s 0h:38m:30s 1h:22m:18s 2h:40m:13s
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Table 3. RefSeq genome sequences reclassified in this study based on the diverse genomic evidence 
presented herein (see Figures 5, 6 and 7).
DEFINITION (RefSeq classification) Species/reclassifi

cation*
Status Fragments BioProject BioSample PMID

Stenotrophomonas sp. 69-14 S. acidaminiphila draft 27 PRJNA279279 SAMN05660631 NA

Stenotrophomonas maltophilia ZBG7B S. chelatiphaga draft 145 PRJNA272355 SAMN03280975 26659682

Stenotrophomonas maltophilia AA1 genospecies 2 
(Sgn2/Smc2)

complete 1 PRJNA224116 SAMN06130959 28275097

Stenotrophomonas maltophilia 5BA-I-2 genospecies 3 draft 4 PRJNA224116 SAMN02641498 24604648

Stenotrophomonas sp. 92mfcol6.1 genospecies 3 draft 11 PRJNA224116 SAMN04488690 NA

Stenotrophomonas maltophilia PierC1 genospecies 3 draft 59 PRJEB8824 SAMEA3309462 26276674

Stenotrophomonas sp. RIT309 genospecies 3 draft 45 PRJNA224116 SAMN02676627 24812212

Stenotrophomonas sp. SC-N050 genospecies 3 draft 24 PRJNA224116 SAMN05720615 NA

Stenotrophomonas maltophilia SeITE02 genospecies 3 draft 63 PRJNA224116 SAMEA3138997 24812214

Stenotrophomonas sp. YR347 genospecies 3 draft 11 PRJNA224116 SAMN05518671 NA

Stenotrophomonas maltophilia B4 genospecies 4 draft 180 PRJNA224116 SAMN03753636 NA

Stenotrophomonas maltophilia 
Sm41DVV

genospecies 4 draft 26 PRJNA323790 SAMN05188789 27540065

Stenotrophomonas maltophilia SmCVFa1 genospecies 4 draft 30 PRJNA323845 SAMN05190067 27540065

Stenotrophomonas maltophilia 13146 S. bentonitica 
complex

draft 60 PRJNA224116 SAMN07237143 NA

Stenotrophomonas maltophilia  BR12S S. bentonitica draft 80 PRJNA224116 SAMN03456145 26472823

Stenotrophomonas sp. HMSC10F07 S. bentonitica draft 63 PRJNA269850 SAMN03287020 NA

Stenotrophomonas sp. LM091 S. bentonitica complete 1 PRJNA344031 SAMN05818440 27979933

Stenotrophomonas maltophilia PML168 S. bentonitica draft 97 PRJNA224116 SAMEA2272452 22887661

Stenotrophomonas sp. Leaf70 S. nitritireducens draft 11 PRJNA224116 SAMN04151613 26633631

Stenotrophomonas sp. KCTC 12332 S. terrae complex complete 1 PRJNA310387 SAMN04451766 28689013

Stenotrophomonas nitritireducens 2001 S. terrae complex complete 1 PRJNA224116 SAMN05428703 NA

Stenotrophomonas maltophilia S028 Stenotrophomonas 
sp.

Stenotrophomonas rhizophila  QL-P4 Stenotrophomonas 
sp.

complete 1 PRJNA326321 SAMN05276013 NA

*The numbered genospecies correspond to novel unnamed species identified by Ochoa-Sánchez and 
Vinuesa (2017) and in this study. Unnamed species classified as members of the S. maltophilia sensu 
lato clade (Fig. 5) are labeled as S. maltophilia s. l. Strains assigned to the S. terrae complex most 
likely represent novel species related to S. terrae.
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FIGURE LEGENDS

Figure 1. Simplified flow-chart of the GET_PHYLOMARKERS pipeline showing only those parts 
used and described in this work. The left branch, starting at the top of the diagram, is fully under 
control of the master script run_get_phylomarkes_pipeline.sh. The names of the worker scripts called 
by the master program are indicated on the relevant points along the flow. Steps involving repetitive 
computational processes, like generating multiple sequence alignments or inferring the corresponding 
gene trees, are run in parallel with the aid of GNU parallel, which is called from 
run_parallel_cmmds.pl. The right-hand branch at the top of the diagram summarizes the analyses that 
can be performed on the pan-genome matrix (PGM). In this work we only present the estimation of 
maximum-likelihood and parsimony pan-genome phylogenies. However, unsupervised learning 
approaches are provided by the hcluster_pangenome_matrix.sh script (not shown) for statistical 
analysis of the PGM. In addition, the plot_matrix_heatmap.sh script was used to analyze average 
nucleotide identity matrices generated by get_homologues.pl. It implements the unsupervised learning 
method described in this work to define the optimal number of clusters in such matrices. The  
plot_matrix_heatmap.sh script is distributed with the GET_HOMOLOGUES suite. 

Figure 2.  Density plots showing the distribution of the number of fragments of the Stenotrophomonas 
genomes available in RefSeq as of August 2017, plus the genome of S. bentonitica VV6, released in 
January 2018. A) Distribution of the number of fragments in the assemblies of 170 annotated 
Stenotrophomonas genomes as a function of assembly status (contigs vs. scaffolds) plus 7 
Xanthomonas genomes used as outgroup to root the tree. Inset tables provide additional summary 
statistics of the RefSeq assemblies. B) Distribution of the number of fragments in the assemblies of the 
119 genomes selected for the analyses presented in this study, which include 102 reference 
Stenotrophomonas genomes, 10 new genomes generated for this study, and 7 complete Xanthomonas 
spp. genomes.

Figure 3. Combined filtering actions performed by GET_HOMOLOGUES and 
GET_PHYLOMARKERS to select top-ranking phylogenetic markers to be concatenated for 
phylogenomic analyses, and benchmark results of the performance of the FastTree (FT) and IQ-TREE 
(IQT) maximum-likelihood (ML) phylogeny inference programs. A) Venn-diagram indicating the 
number consensus and algorithm-specific core-genome orthologous clusters. B) Parallel box-plots 
summarizing the computation time required by FT and IQT when run under “default” (FTdef, IQTdef) 
and thorough (FThigh, IQThigh) search modes (s_type) on the 239 consensus clusters, as detailed in 
the main text. Statistical significance of differences between treatments were computed with the 
Kruskal-Wallis (robust, non-parametric, ANOVA-like) test. C) Distribution of SH-alrt branch support 
values of gene-trees found by the FThigh and IQThigh searches. Statistical significance of differences 
between the paired samples was computed with the Wilcoxon signed-rank test. This is a non-parametric 
alternative to paired t-test used to compare paired data when they are not normally distributed. D) 
Association plot (computed with the vcd package) summarizing the results of multi-way Chi-Square 
analyses of the lnL score ranks (1 to 4, meaning best to worst) of the ML gene-trees computed from the 
set of 105 codon alignments passing the kdetrees filter in the IQThigh run (Table 2) for each search-
type. The height and color-shading of the bars indicate the magnitude and significance level of the 
Pearson residuals. E) Statistical analysis (Kruskal-Wallis test) of the distribution of consensus values 
from majority-rule consensus trees computed from the gene trees passing all the filters, as a function of 
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search-type.  D) Statistical analysis (Kruskal-Wallis test) of the distribution of the edge-lengths of 
species-trees computed from the concatenated top-scoring markers, as a function of search-type.

Figure 4. Comparative analysis of log-likelihood tree search profiles. A) Sorted lnL profile of FastTree 
(FT) tree searches launched from 1000 random trees + 1 BioNJ phylogeny, using the “thorough” tree-
search settings described in the main text and the 55 top-ranking markers (26,988 non-gapped, variable 
sites) selected by the IQThigh run for 119 genomes (Table 2). The dashed blue line indicates the score 
of the search initiated from the BioNJ tree. B) Sorted lnL profile of 50 independently launched IQ-
TREE (IQT) searches under the best-fitting model using the same matrix as for the FT search. 

Figure 5. Best maximum-likelihood core-genome phylogeny for the genus Stenotrophomonas found in 
the IQ-TREE search described in Fig. 4B, based on the supermatrix obtained by concatenation of 55 
top-ranking alignments (Table 2). The tree was rooted using the Xanthomonas spp. sequences as the 
outgroup. Arrows highlight genomes not grouping in the S. maltophilia sensu lato clade (Smsl), for 
which we suggest a reclassification, as summarized in Table 3. Black arrows indicate misclassified 
strains, while gray ones mark unclassified genomes. The shaded area highlights the strains considered 
as members of the S. maltophilia complex (Smc). The genospecies 1 and 2 (Sgn1 = Smc1; Sgn2 = 
Smc2) were previously recognized as separate species-like lineages by Ochoa-Sánchez and Vinuesa 
(2017). Strains grouped in the Smsl clade are collapsed into sub-clades that are perfectly consistent 
with the cluster analysis of core-genome average nucleotide identity (cgANIb) values presented in Fig. 
7 at a cutoff-value of 95.9%. Integers in parentheses correspond to the number of genomes in each 
collapsed clade. Supplementary Figure S4 displays the same tree in non-collapsed form. Strains from 
genospecies 1, 3 and 5 (Sgn1, Sgn3, Sgn5) marked with an asterisk may represent additional species, 
according to the cgANIb values. Nodes are colored according to the lateral scale, which indicates the 
approximate Bayesian posterior probability values. The scale bar represents the number of expected 
substitutions per site under the best-fitting GTR+ASC+F+R6 model.

Figure 6. Maximum-likelihood pan-genome phylogeny estimated with IQ-TREE from the consensus 
pan-genome displayed in the Venn diagram. Clades of lineages belonging to the S. maltophilia complex 
are collapsed and are labeled as in Fig. 5. Numbers on the internal nodes represent the approximate 
Bayesian posterior probability/UFBoot2 bipartition support values (see methods). The tabular inset 
shows the results of fitting either the binary (GTR2) or morphological (MK) models implemented in 
IQ-TREE, indicating that the former has an overwhelmingly better fit. The scale bar represents the 
number of expected substitutions per site under the binary GTR2+F0+R4 substitution model.
 
Figure 7. Application of an unsupervised learning approach to the cgANIb distance matrix to identify 
statistically-consistent species-like clusters. The cgANIb matrix was converted to a distance matrix 
(cgANDb) and clustered using the Ward.D2 algorithm. The optimal number of clusters (k) was 
determined with the average silhouette-width statistic. The inset shows the statistic's profile, with k = 
19 as the optimal number of clusters. This number corresponds to an cgANIb of 95.5 % (gray dashed 
line). At a cgANDb of 4.1 % (cgANIb = 95.9%) the groups delimited by the clustering approach are 
perfectly consistent with those delimited by the core- and pan-genome ML phylogenies displayed in 
Figure 5 and Figure 6, respectively. 
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