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In the cerebral cortex, the selectivity of neurons for features of sen-
sory stimuli arises through the interaction of excitatory and inhibitory
synaptic inputs. Excitatory neurons receive inhibitory input that
closely tracks excitation1–4, stabilizing network dynamics5 while im-
proving efficiency and robustness of the neural code6–8. However,
how this balance of excitation and inhibition is achieved by corti-
cal circuits is unclear, since inhibitory interneurons are thought to
pool the inputs of nearby excitatory cells and provide them with
non-specific inhibition proportional to the activity of the local net-
work9–13. Here we show that although parvalbumin-expressing (PV)
inhibitory cells make connections with the majority of nearby pyra-
midal cells, the strength of their synaptic connections is structured
according to the similarity of the cells’ responses. Individual PV
cells strongly inhibit those pyramidal cells that provide them with
strong excitation and share their visual selectivity. This fine-tuning
of synaptic weights supports co-tuning of inhibitory and excitatory
inputs onto individual pyramidal cells despite dense connectivity be-
tween inhibitory and excitatory neurons. Our results indicate that
individual PV cells are preferentially integrated into subnetworks
of inter-connected, co-tuned pyramidal cells, stabilising their recur-
rent dynamics. Conversely, weak but dense inhibitory connectivity
between subnetworks is sufficient to support competition between
them, de-correlating their output. We suggest that the history and
structure of correlated firing adjusts the weights of both inhibitory
and excitatory connections, supporting stable amplification and se-
lective recruitment of cortical subnetworks.
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Cortical neurons derive their functional properties from the patterns of
their synaptic inputs. Thus a characterization of the rules that govern
these patterns is essential for understanding the mechanisms of cortical
computations. While pyramidal neurons in the cortex are organized
into specific excitatory subnetworks and make connection with only a
small fraction of nearby excitatory cells that receive common feedforward
inputs14 and share their response properties15,16, inhibitory neurons, such
as parvalbumin-expressing (PV) basket cells, are thought to make dense
and unstructured connections within cortical networks9–12. Although
some studies have challenged this conclusion17–19, the prevailing view is
that PV neurons pool their inputs and provide uniform inhibition to the
surrounding excitatory neurons.

The dense nonspecific connectivity of PV neurons is seemingly at odds
with the observation that inhibitory inputs onto individual pyramidal
cells, while often broadly tuned, tend to match the tuning preference and
strength of excitatory inputs2,20 even for features that are not organized in
a columnar fashion3,4,21. However, these observations can be reconciled
if the inhibitory interneurons reflect the diversity of the local excitatory
population rather than merely its average and provide stronger inputs to
contemporaneously active pyramidal cells22. To test these predictions, we
simultaneously characterized visual responses and synaptic connectivity
of PV-positive interneurons and pyramidal cells in mouse primary visual
cortex.

We expressed GCaMP6f in transgenic mice expressing tdTomato in PV-
positive interneurons and recorded the visual responses of PV-positive
and PV-negative cells in layer 2/3 of primary visual cortex using two-
photon calcium imaging. We used a rich stimulus set including full field
gratings of varying direction, spatial and temporal frequency (Figure 1a).
We quantified the tuning selectivity of single neurons by measuring the
skewness of the distribution of responses over the set of visual stimuli.
PV neurons tended to be less selective than pyramidal cells, responding to
a broader range of stimuli (Figure 1b; p = 8.8×10−56, ranksum test, 209
PV+ and 7399 PV- neurons from 10 mice). In agreement with previous
reports10,12, PV cells were broadly tuned to orientation and direction, as
well as spatial and temporal frequency (Figure 1c–f). Furthermore, spatial
and temporal frequency tuning of PV cells was often multi-peaked and
poorly structured (e.g. Figure 1k, cell 1).

According to the non-specific pooling model, the tuning of individual PV
neurons reflects the average selectivity of nearby pyramidal cells12,13. To
determine the extent to which visual responses of PV neurons could be
explained by local biases in tuning, we attempted to predict the tuning
of individual cells by computing a weighted average of the responses of
surrounding neurons, with Gaussian drop-off of weights with distance.
Single-trial responses of individual cells were predicted by computing the
local population activity averaged over all other trials. In agreement with
previous reports12, pooled local population activity was typically better
at predicting the selectivity of PV neurons than that of pyramidal cells
(Figure 1g, p = 9.9× 10−53, ranksum test). However, the predictions
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Figure 1: Response properties of PV neurons in layer 2/3 of mouse visual cortex.
a. Responses of an example PV neuron to sinusoidal gratings of different spatial and
temporal frequencies. Traces show individual (gray) and mean (black) responses of the
cell at its preferred direction (315 degrees). Color maps show mean responses to the
moving phase of the grating across all directions. b. PV+ cells are less selective than
PV- cells, quantified by skewness of their F/F distributions. Triangles indicate medians.
c. PV+ cells are broadly tuned to orientation. N.T.: cell untuned for orientation. d. PV+
cells are less direction selective than PV- cells. e–f. PV+ cells are more broadly tuned
to spatial (e) and temporal (f) frequency than PV- cells. h. Local population activity
predicts the responses of PV+ cells better than that of PV- cells. i. PV+ cells tend to
be more selective than local population activity. j. Locations of PV+ cells depicted in
panel k within the field of view. Note that some of the cells were recorded in a different
imaging plane. Scale bar: 100 µm. k. Comparison of PV cell responses to the local
population. Polar plots show responses at spatial and temporal frequency that evoked the
highest mean response (blue: PV cell; black: local population). Colormaps show spatial
and temporal frequency responses averaged across direction. RC−P values quantify the
correlation between single cell responses and population mean as in panel g.
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Supplemental Figure 1: Pooled population activity falls short of predicting PV
neuron visual selectivity, independent of the spatial scale of pooling. a. Mean cor-
relation of single trial PV cell responses with local population (black) or same cells
response (blue) averaged across all other trials for different spatial scales of population
pooling. Shading 95% confidence interval, derived by bootstrap resampling across
cells. b. Selectivity of PV cell and local population responses across for different spatial
scales of population pooling. Shading 95% confidence interval, derived by bootstrap
resampling across cells.

were typically poor even for PV cells (median correlation between PV
cell responses and population prediction RC−P = 0.16).

Do the weak correlations between single PV cell and population responses
reflect high response variability, or a true deviation from the non-specific
pooling model? We estimated the upper bound for response predictions
imposed by measurement noise and trial-to-trial neural variability by com-
puting the correlation between single trial visual responses and the cell’s
own mean response on other trials. This estimate consistently outper-
formed the population prediction (Figure 1h), indicating that individual
PV cell responses indeed deviate significantly from the local population.
These deviations were apparent in the direction, spatial and temporal
frequency tuning profiles of individual PV cells, which often differed dra-
matically from the local population and from other nearby interneurons
(Figure 1j–k). Finally, responses of PV cells were consistently more se-
lective than the population mean response (Figure 1i). These conclusions
were independent of the spatial scale of population pooling (Supplemental
Fig. 1). Thus, responses of PV neurons are heterogeneous and not fully
explained by biases in the tuning of the local population.

To understand the origin and impact of the diverse responses of PV neu-
rons within cortical microcircuits, we examined the organization of PV
cell connections with pyramidal cells using whole-cell patch clamp record-
ings in acute slices. Consistent with previous reports, we found that PV
cells were reciprocally connected with the majority of nearby excitatory
neurons (Figure 2a; 157 PV to Pyr pairs, 138 Pyr to PV pairs from 35
mice). However, the strengths of both excitatory inputs onto PV cells and
their inhibitory inputs onto pyramidal cells spanned almost two orders of
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Figure 2: Heterogeneity of synaptic strength of PV neuron connections. a. Rates
of pyramidal / PV neuron connectivity. b. Distribution of the strength of excitatory
connections from pyramidal cells onto PV neurons. c. Distribution of the strength of
inhibitory connections from PV neurons onto pyramidal cells. d. Example recording of
a PV neuron reciprocally connected to two pyramidal cells. PV neuron provides stronger
inhibition to the pyramidal cell that provides it with stronger excitatory input. e. EPSP
and IPSP strengths are correlated for reciprocally connection PV / pyramidal neuron
pairs. Black line: best fit regression line of log-IPSP magnitude against log-EPSP;
gray shading: 95% confidence interval for the regression line estimated from bootstrap
resampling; R and p are Pearson correlation and its p-value, respectively. Cell pairs in
panel d are highlighted. f. In recordings with multiple pyramidal neurons reciprocally
connected to a PV cell, the correlation between EPSP and IPSP magnitude persists after
controlling for slice quality by normalizing each by the geometric mean of EPSP/IPSP
strength in the recording. Notation as in panel e. P-value was estimated using a shuffling
procedure (see methods).
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Supplemental Figure 2: Distance does not account for the correlation between EPSP
and IPSP magnitude for reciprocally connected PV / pyramidal cell pairs.
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magnitude and followed a log-normal distribution (Figure 2b–c). In recip-
rocally connected pairs the magnitude of the EPSP onto the PV neuron
was highly correlated with the magnitude of the IPSP onto the pyramidal
cell (Figure 2d–e, 88 connections including 58 PV cells and 79 pyramidal
cells from 29 mice). This relationship persisted when controlling for dis-
tance between patched cells (partial correlation R = 0.57, p = 1.2×10−8;
Supplemental Fig. 2). To exclude the possibility that this correlation arose
as a consequence of variability in slice quality, we examined recordings
where we simultaneously measured the strength of connections between
a PV cell and multiple pyramidal cells. We normalized the strength of
excitatory and inhibitory connections by the geometric mean EPSP or
IPSP magnitude of all simultaneously recorded cells. The correlation
between the strength of inhibitory and excitatory connectivity persisted
following this correction for variation in slice quality (Figure 2f; 53 pairs
including 23 PV cells from 16 mice; p = 0.0095, see methods). Together,
these observations show that the strength of excitatory and inhibitory
connections of PV interneurons is heterogeneous and organized in a non-
random manner. Contrary to the nonspecific pooling model, individual
PV cells receive the strongest excitatory inputs from a subset of nearby
excitatory neurons, to which they provide strong feedback inhibition.

To determine how the heterogeneity of PV neuron synaptic weights relates
to their visual responses, we identified pyramidal and PV cell pairs, whose
visual responses we characterized in vivo10,15,16 (Figure 3a–c). We first
examined the relationship between responses of PV/pyramidal neuron
pairs and their connection probabilities, using a cosine similarity measure
to quantify overlap in their activity patterns (total response similarity).
Consistent with previous reports, we found that PV neurons provided
inhibition to and received excitatory input from the majority of nearby
excitatory cells, independent of the similarity of their responses (Figure
3d–e; 56 PV to Pyr pairs from 21 mice, 55 Pyr to PV pairs from 20 mice).
Since absolute rates of connectivity are difficult to estimate in vitro due to
artefacts introduced by the slicing procedure, the absence of a relationship
between PV / pyramidal connection probability and functional similarity
is consistent with the interpretation that PV cells make connections with
all or nearly all nearby pyramidal cells, independent of their functional
properties9.

We next examined the strength of synaptic connections of PV neurons.
In contrast to connection probability, the magnitude of IPSPs from PV
cells onto pyramidal cells was positively correlated with the similarity
of their activity patterns (Figure 3f; 46 pairs from 18 mice, R = 0.55,
p = 8×10−5). The strength of excitatory connections from pyramidal
cells onto PV cells showed a similar but weaker trend (Figure 3g; 37
pairs from 19 mice, R = 0.33, p = 0.044). To determine whether this
relationship was driven by the similarity of the cells’ visual tuning, we
computed response similarity between trial-averaged response traces
from pairs of cells, and related this metric to the strength of synaptic
connections between the pair. This signal response similarity measure
was significantly correlated with the strength of connections formed
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Figure 3: Functional similarity predicts the strength of PV neuron connections.
a. PV-pyramidal neuron pair identified during in vivo imaging (top left), and in vitro
recording (top middle and right). The in vivo image was generated by resampling the in
vivo Z-stack to match to the coordinate frame of the in vitro volume. b. Example in vivo
calcium traces (left) of the cells in panel a and in vitro current-clamp recordings of evoked
action potentials in the PV cell (top right) and IPSPs in the pyramidal cell (bottom left).
c. Visual tuning and postsynaptic potentials for 3 reciprocally connected PV / pyramidal
cell pairs. Cell pair 1 is depicted in panels a–b. d. Frequency of inhibitory connections
from PV onto pyramidal cells does not depend on total response similarity. P-value
corresponds to the slope coefficient of logistic regression of connection probability
against total response similarity. e. Frequency of excitatory connections from pyramidal
onto PV cells does not depend on total response similarity. f. Strength of inhibitory
connections from PV onto pyramidal cells correlates with total response similarity. Cell
pairs shown in panel c are highlighted. Black line: best fit regression line of log-IPSP
magnitude against response similarity; gray shading: 95% confidence interval for the
regression line estimated by bootstrap resampling; R and p are Pearson correlation and
its p-value, respectively. g. Relationship between the strength of excitatory connections
from pyramidal onto PV cells and total response similarity. Notation as in panel f. h–i.
Similarity of trial-average responses but not selectivity for individual visual features
predicts the strength of inhibitory connections from PV cells onto pyramidal cells (h)
and excitatory connections from pyramidal cells onto PV cells (i). Error bars are 95%
confidence intervals. ***: p < 0.001, **: p < 0.01, *: p < 0.05.
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Supplemental Figure 3: Correlation between signal response similarity and connection
strength across a range of responsiveness cut-offs for pyramidal neurons. Error bars are
95% confidence intervals.

by PV cells with excitatory neurons (Figure 3h–i, Supplemental Fig.
3–5). This correlation was not observed if we discarded information
about the time-course of the cells responses or examined the similarity
of direction, spatial, or temporal frequency tuning in isolation (Figure
3h–i, Supplemental Figure 4–6). On the contrary, just as for connections
between pairs of excitatory neurons15, connections between PV neurons
and pyramidal cells appear to adjust their synaptic weights based on
the overall similarity of the responses of the pre- and post-synaptic cell,
consistent with Hebbian plasticity of inhibitory connections22.

Specific inhibition is thought to improve robustness of neuronal tuning to
variation in the strength and structure of feedforward inputs8, decorrelate
spiking of individual neurons7, and improve reliability and efficiency of
the neural code6. On the other hand, broadly tuned inhibition is proposed
to sharpen the selectivity of excitatory neurons21. To explore the rela-
tionship between the rules of excitatory and inhibitory connectivity, and
computational properties of cortical networks, we built a spiking neuronal
model of recurrent cortical connectivity (Figure 4a). In a simple model
configuration, neurons were placed into pre-defined functional cohorts
(subnetworks; SN) and preferentially made recurrent synaptic connections
within and between subnetworks. Excitatory and inhibitory specificity
parameters defined independently the proportion of total synaptic strength
restricted to be made between partners in the same functional cohort; the
remainder of synapses were distributed uniformly across the network.

In the presence of uniform, non-specific inhibition, specific excitatory
connectivity within subnetworks quickly led to network instability23 (Fig-
ure 4b-e; stability measure λQ > 1 indicates an unbalanced network, see
Methods). Unstable network activity modes were caused by recurrent
amplification of excitatory activity within subnetworks. Introducing spe-
cific connectivity between inhibitory and excitatory neurons caused single
inhibitory neurons to become more strongly coupled to subnetworks; this
improved network stability by balancing unstable subnetwork activity
modes (Figure 4c,f; I Spec. > 0). Conversely, inhibitory specificity that
was counter-tuned with excitatory specificity tended to degrade the sta-
bility of a network, by boosting the effectiveness of subnetwork-specific
recurrent excitatory connectivity (Figure 4c; I Spec. < 0). This relation-
ship persisted over a wide range of excitatory and inhibitory connection
strength parameters (Supplemental Figure 7a). Co-tuned inhibitory speci-
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ficity therefore permits a greater degree of excitatory specificity, while
maintaining network stability.

How does the interaction between excitatory and inhibitory specificity
affect the way networks respond to a stimulus? We measured the strength
of recruitment and correlation of spiking output of functional cohorts,
when they were driven with correlated input currents (Figure 4d-f top
panels; see Methods). Networks with only weak excitatory specificity,
not exceeding the threshold of instability, exhibited weak recruitment and
highly correlated responses (Figure 4d; correlation R = 0.85). Further
increasing excitatory specificity while maintaining uniform inhibition
lead to network instability and oscillatory bouts of synchronous network
activity, as predicted (Figure 4e; correlation R = 0.56). On the other
hand, subnetworks with specific inhibitory as well as excitatory connec-
tions supported strong yet stable recruitment within functional cohorts,
which coincided with reduced correlations between cohorts (Figure 4f;
correlation R =−0.32; Supplemental Figure 7b) and increased gain (Sup-
plemental Fig. 7c). This behavior is consistent with activity of neurons in
the cortex, whose mean firing rate correlations are close to zero7. Interest-
ingly, the temporal correlations between the responses of the subnetworks
were determined by the parameters of specific connectivity in the network
and independent of the temporal correlations in the input (Supplemental
Figure 7b).

Computational models for competition in cortical networks emphasise
global or counter-tuned inhibitory feedback24–27. What governs com-
petition and response suppression in the presence of specific inhibitory
connectivity as we found in mouse V1? To answer this question we built
a model where both inhibitory and excitatory connection strength varied
smoothly as a function of tuning similarity (Figure 4g) and stimulated
subpopulations of co-tuned excitatory neurons (Figure 4h-k). Neurons
with tuning distinct from the stimulated ensemble received strong disy-
naptic inhibitory input and decreased their firing (Figure 4i,k). Although
co-tuned neurons received even stronger inhibitory inputs, these were
offset by strong excitatory input mediated by monosynaptic connections
(Figure 4i,j). Thus, specific inhibitory and excitatory connectivity act
in concert to facilitate competition between subpopulations of cortical
neurons.

We found that connections between inhibitory and excitatory cells in
cortex are organized under a similar rule to that of recurrent excitatory
connectivity: inhibitory neurons connect more strongly to nearby excita-
tory neurons with similar responses to visual stimulation. Despite the sea
of dense connections between inhibitory and excitatory neurons, selective
modulation of connection strength facilitates fine-tuning of inhibition
received by individual excitatory neurons and may give rise to the cor-
relations between inhibitory and excitatory synaptic inputs observed in
intracellular recordings.

Our results suggest that selective tuning of inhibitory connection strength
plays a role in balancing strong recurrent excitatory recruitment, intro-
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duced by recurrent connectivity of co-tuned excitatory neurons15. To-
gether, the structure of excitatory and inhibitory connections determines
the statistical structure of cortical responses, independent of the statistics
of feedforward inputs24. This circuit architecture ensures that inhibitory
and excitatory neurons in mouse visual cortex cooperate to amplify corti-
cal responses and maintain their sparseness, permitting robust decoding
of sensory features. Since synaptic weights of interneurons and pyrami-
dal cells are determined by their overall response similarity rather than
selectivity for individual features of visual stimuli, this wiring rule may
be shared by PV cells in other regions of the cortex.
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S.H., T.M.-F., P.Z., M.H.K., and M.F.I. designed the experiments; P.Z.,
M.H.K., and M.F.I. carried out the experiments; P.Z., M.H.K., and T.M.-F.
analyzed the data; D.R.M. performed the theoretical and modeling work;
P.Z., D.R.M., and T.M.-F. wrote the paper.

Methods summary

All animal procedures were conducted in accordance with institutional
animal welfare guidelines and licensed by the Swiss cantonal veterinary
office.

Networks of integrate-and-fire spiking neurons with conductance synapse
models were simulated using Nest 2.1228. Code for reproducing all
network simulations is available from figshare29. Network stability was
quantified by numerically estimating the eigenspectrum of the network
weight matrix, under the assumption of linear dynamics.
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Supplemental Figure 4: Post-hoc analysis of relationships between IPSP magnitude
and the following response similarity metrics. a. Total response similarity (as in
Figure 3). b. Signal response similarity. c. Signal response similarity, computed
over time-averaged responses to moving phase of the grating. d. Total correlation. e.
Signal correlation. f. Correlation of temporal frequency tuning curves, computed from
responses to the moving phase of the grating after averaging across spatial frequencies,
directions, and time. g. Correlation of spatial frequency tuning curves, computed from
responses to the moving phase of the grating after averaging across temporal frequencies,
directions, and time. h. Correlation of direction tuning curves, computed from responses
to the moving phase of the grating after averaging across temporal and spatial frequencies,
and time. i. Absolute difference of preferred temporal frequencies, estimated from model
fit. j. Absolute difference of preferred spatial frequencies, estimated from model fit. k.
Absolute difference of preferred speed, estimated from model fit. l. Absolute difference
of preferred orientations, estimated from model fit. m. Distance between cell pairs in the
cortical plane. n. Residuals of linear regression of log-IPSP and cortical distance against
total response similarity. o. Residuals of linear regression of log-IPSP and total response
similarity against cortical distance. p. Residuals of linear regression of log-IPSP and
signal response similarity against cortical distance.
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Supplemental Figure 5: Post-hoc analysis of relationships between EPSP magnitude
and individual response similarity metrics.
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Full methods

Responses and connectivity of PV interneurons

Animals and surgical procedures All experiments were conducted in
accordance with institutional animal welfare guidelines and licensed by
the Swiss cantonal veterinary office. To label parvalbumin expressing
interneurons, Ai9 or Ai14 LSL-tdTomato mice were crossed with PV-Cre
mice.

At P18–30 male and female animals were anaesthetized with 5 mg/kg
midazolam, medetomidine 0.5 mg/kg, and 0.05 mg/kg fentanyl. A metal
headplate was implanted exposing the skull over the right visual cortex
and 60 nl of AAV 2.1 hSyn-GCaMP6f were injected into V1. To facil-
itate identification of the injection site in vitro, the injection capillary
was coated with DiI. Approximately 5 days after the injection, animals
were anaesthetized again and a craniotomy 4 mm in diameter was made
exposing the visual cortex. A glass coverslip (4 mm diameter, 0.17 mm
thickness) was implanted for chronic calcium imaging.

In vivo two-photon calcium imaging Awake mice were head-fixed
and allowed to run on a styrofoam wheel. A monitor (47 cm wide)
was placed 20–25 cm away from the eye spanning a field of view of
122 visual degrees. Monitor position was adjusted such that the center
of the screen matched the preferred retinotopic location of the imaging
site, as judged by two-photon fluorescence responses to grating patches
flashed at different locations on the screen.

Fluorescence signals were recorded using a ThorLabs Bergamo and a
ThorLabs Bergamo II resonant scanning two-photon microscopes with a
Nikon 16x water-immersion objective (NA 0.8) operated using ScanImage
4 or 5.1 software. GCaMP6f fluorescence was imaged using 930 nm
excitation at 10–30 mW with a 520/40 nm emission filter (Chroma).
Volumes of 8 frames spanning 80 µm in depth and ∼350–520 µm in
X-Y were acquired at 3.75 Hz using a piezo focuser (PI P-726). For
identification of PV-positive neurons, tdTomato fluorescence was imaged
at 930 nm with a 607/70 nm emission filter (Semrock).

To prevent the light from the monitor from interfering with imaging,
the monitor backlight was controlled by a custom electronic circuit and
only switched on during the turn-around of the resonant X mirror30.
Gratings of 6 spatial frequencies, 6 temporal frequencies and 8 directions
were interleaved randomly and presented without gaps. Each grating
first remained stationary for 1.3 or 2.1 seconds (5 or 8 volumes), before
moving for 2.1 seconds (8 volumes). A single presentation of the stimulus
set constituted a single imaging segment, 6–10 of which were repeated
during each imaging session.
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In vivo/in vitro registration Following the in vivo imaging session,
animals were anaesthetized using isolfuorane (1.5–2%). A detailed Z-
stack of GCaMP6f, tdTomato, and DiI fluorescence at the imaging site
was acquired at 830 nm, spanning the volume from 0 to ∼300 µm below
pia. Since GCaMP6f fluorescence at this wavelength does not depend on
calcium concentration, neurons could be readily identified independent of
their level of activity.

The slice containing the in vivo imaging site was identified in vitro, using
DiI fluorescence and parenchymal blood vessels as landmarks. As in
vivo, a Z-stack was acquired at 830 nm spanning all or most of the
slice thickness. In vivo and in vitro volumes were then aligned using
custom software written in Matlab (https://github.com/znamensk/
RegisterStack). Four or more manually selected control points were
used to estimate forward (in vivo to in vitro) and inverse (in vitro to in
vivo) affine transformation matrices using least squares regression. The
quality of the registration was verified by rotating and reslicing the in vivo
Z-stack in the coordinate frame of the in vitro volume using the forward
transformation. If necessary, control points were added or replaced until
the registration quality was satisfactory. A similar procedure was used to
register the in vivo Z-stack with the in vivo functional imaging planes.

The inverse transformation matrices were used to identify the in vivo
imaging ROI corresponding to each of the neurons recorded in vitro.
Registration accuracy was confirmed by manual inspection and 12/250
patched neurons, which were located within the imaging volume but could
not be unambiguously identified, were excluded from further analysis.

In vitro whole-cell patch clamp recording At least 12 hours after
the imaging session, mice were lightly anesthetized with sodium pento-
barbital and transcardially perfused with a cold choline chloride based
solution containing (in mM): 110 choline chloride, 25 NaHCO3, 25 D-
glucose, 11.6 sodium ascorbate, 7 MgCl2, 3.1 sodium pyruvate, 2.5 KCl,
1.25 NaH2PO4, and 0.5 CaCl231 with ∼325 mOsm. Visual cortex slices
(300–350 µm thickness) were cut coronally on a vibrating blade mi-
crotome (VT1200S, Leica Biosystems) with the same choline chloride
based solution bubbled with 95% O2/5% CO2. Then, the brain slices
were incubated at 34◦C for 20–40 min with artificial cerebrospinal fluid
(ACSF) solution containing 125 mM NaCl, 2.5 mM KCl, 1 mM MgCl2,
1.25 mM NaH2PO4, 2 mM CaCl2, 26 mM NaHCO3, 25 mM D-glucose;
315–320 mOsm adjusted by adding the amount of D-glucose, bubbled
with 95% O2/5% CO2, pH 7.4. Afterwards, the brain slices were contin-
uously maintained at room temperature before being transferred to the
recording chamber.

In vitro imaging and patch-clamp recordings were performed with Sci-
entifica MP-1000 multiphoton imaging microscope and a mode-locked
Ti:sapphire laser (Vision-S, Coherent) with a Nikon 16x water-immersion
objective (NA 0.8). Scanning and image acquisition were controlled by
SciScan (Scientifica) and custom software written in LabVIEW (National
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Instruments).

Recording pipettes were mounted on remote-controlled motorized mi-
cromanipulators (MicroStar, Scientifica). Recording pipettes were made
using thick-walled filamentous borosilicate glass capillaries (G150F-4,
Warner Instruments) using a horizontal puller (P-1000, Sutter Instrument)
adjusted to produce pipette resistance of 7–8 MOhm with a long taper
when filled with intracellular solution in 34◦C ACSF. The potassium based
internal solution containing 5 mM KCl, 115 mM K-gluconate, 10 mM
HEPES, 4 mM Mg-ATP, 0.3 mM Na-GTP, 10 mM Na-phosphocreatine,
0.1% w/v Biocytin; osmolarity 290–295 mOsm, pH 7.2 was used. Liquid
junction potentials were not corrected.

Whole-cell patch-clamp recordings were carried out at ∼34◦C using
Multiclamp 700B amplifiers (Axon Instruments) and custom-written
MATLAB software (MathWorks). Up to 6 cells, at least one of which
was a tdTomato-expressing PV neuron, were targeted simultaneously. All
tdTomato positive cells showed fast-spiking firing profiles during current
injection and evoked inhibitory post-synaptic potentials in connected
pyramidal cells. Pyramidal neurons were identified based on their regular
spiking firing profiles. During 9 out of 35 experiments, the experimenter
could target cells based on the correlation of their calcium traces in the in
vivo imaging dataset.

To reveal inhibitory inputs, pyramidal cells were depolarized to -55–
-50 mV by current injection. To test for the presence of synaptic connec-
tions, two or five presynaptic spikes were evoked by current injections at
30 Hz in each cell sequentially repeated 20–150 times, while searching
for corresponding postsynaptic responses. Recordings with postsynaptic
cell series resistances below 35 MOhm were included for analysis.

Data analysis: preprocessing Two-photon imaging frames were reg-
istered using a phase-correlation algorithm. ROIs were identified based
on the mean fluorescence image and their fluorescence time series were
extracted. To correct for bleaching and other sources of non-stationarity,
fluorescence traces were high-pass filtered at 0.0019 Hz. The neuropil
fluorescence was measured in ∼40 µm radius around the center of each
cell, excluding any detected ROIs.

Since the amount of neuropil signal within the ROI depends on window
quality, imaging depth and axial position of the imaging plane within
the cell, we used robust linear regression (MATLABs robustfit with the
default bisquare weight function) to estimate the coefficient of neuropil
contamination bneuropil for each cell. This procedure allowed us to es-
timate the amount of neuropil contamination for sparsely active ROIs.
However, for densely active cells, which were often highly correlated with
the neuropil signal, robust regression could overestimate the degree of
neuropil contamination and return correction coefficients exceeding 1. In
this case, to avoid overcorrecting we fixed bneuropil to 0.7. This procedure
was carried out separately for each imaging session segment, containing
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a single presentation of the stimulus set. The cell’s corrected fluorescence
signal was calculated as:

Fcorrected = Fsoma−bneuropil(Fneuropil−median(Fneuropil)) (1)

To calculate dF/F0, we fit a mixture of two Gaussians to the distribution
of neuropil-corrected fluorescence values and used the mean of the smaller
Gaussian as an estimate of baseline fluorescence F0.

Data analysis: responsiveness and selectivity To identify robustly
responsive neurons without making assumptions about the shape of the
neurons tuning curve or the time-courses of their responses, we computed
the fraction of variance explained by the visual stimulus:

R2 = 1−
Var( fi, j(t)− f̄i(t))

Var( fi, j(t))
(2)

where fi, j(t) is the dF/F of the neuron during frame t of the ith stimulus
type on the jth trial, and

f̄i(t) =
1
N

N

∑
j=1

fi, j(t) (3)

is the trial average response on frame t of the ith stimulus type, and N is
the number of trials.

We classified neurons as responsive, if the visual stimulus explained
> 15% of the variance of their dF/F responses. Note that while this
measure is related to the F-statistic used in ANOVA, our criterion is more
stringent than an F-test. While 198/250 ROIs studied in the in vivo/in
vitro experiments were significantly responsive by one-way ANOVA
(p < 0.05), only 151/250 of them passed our variance explained threshold.

To compute the cells selectivity we first computed the mean dF/F response
during the moving phase of the grating (ath to bth frame) for the each
stimulus type:

ri(t) =
1
N

N

∑
j=1

fi, j(t) , r̄i =
1

(b−a+1)

b

∑
t=a

ri(t) (4)

Cells’ selectivity was defined as the skewness of r̄i:

γ =
1
M ∑

M
i=1(r̄i− r̄)3( 1

M ∑
M
i=1(r̄i− r̄)2

)3/2 (5)

where r̄ = 1
M ∑

M
i=1 ri is the mean response across all stimulus types, and

M is the number of stimulus types.
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Parameter Description
b Response offset

rmax Response at preferred spatial, temporal frequency, and direc-
tion, 0 < rmax ≤ 2 ·max(ri, j)

SFpre f , T Fpre f Preferred spatial and temporal frequency in octaves, con-
strained to lie within 1 octave of the range probed in the experi-
ment

α Orientation of the SF/TF tuning Gaussian, 0◦ ≤ α ≤ 90◦

σx, σy Tuning width of SF/TF Gaussian, constrained between 0.25
and 4 octaves

σDir Width of direction tuning, 0◦ ≤ σDir ≤ 180◦

q Relative magnitude of the response to the null direction, 0≤
q≤ 1

θpre f Preferred direction, 0◦ ≤ θpre f ≤ 360◦

Table 1: Parameters of the direction, spatial and temporal frequency fit.

Data analysis: direction and SF/TF tuning To characterize the direc-
tion, spatial and temporal frequency tuning of individual cells, we fit their
single trial responses during the moving phase of the grating

ri, j =
1

(b−a+1)

b

∑
t=a

fi, j(t) (6)

as the product of a double Gaussian in direction space and a 2D Gaus-
sian in spatial and temporal frequency space with arbitrary orientation.
Parameters of the fit are described in Table 1. Let xi and yi be defined as:

[
xi

yi

]
=

[
cosα sinα

−sinα cosα

][
SFi−SFpre f

T Fi−T Fpre f

]
(7)

The response ri, j was then modeled as:

r̂i, j = rmax

(
exp
(
−

ω2(θi−θpre f )

2σ2
Dir

)
+qexp

(
−

ω2(θi +π−θpre f )

2σ2
Dir

))
· exp

(
−

(
x2

i
2σ2

x
+

y2
i

2σ2
y

))
+b (8)

where ω(θ) wraps angles onto the interval between 0 and π:

ω(θ) = min(|θ |, |θ +2π|, |θ −2π|) (9)

We determined the values of the fit parameters using lsqnonlin in MAT-
LAB by minimizing ∑

M
i=1 ∑

N
j=1(ri, j− r̂i, j)

2 with the constraints specified
in Table 1.

FWHMDir was calculated as 2.355 ·σDir. If FWHMDir exceeded 180
degrees, cells were classified as untuned for direction/orientation and
excluded from direction selectivity analysis Figure 1d. FWHMSF and
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FWHMT F were calculated from tuning curves derived by estimating r̂i, j
using Eq. 8 with the estimated fit parameters over a range of spatial
and temporal frequencies (0.0025 to 2.56 cycles per degree, and 0.125
to 16 Hz). If FWHMSF or FWHMT F exceeded 6 octaves, cells were
classified as untuned for spatial or temporal frequency, respectively.

Data analysis: population pooling Pooled population responses were
calculated by summing the activity of neurons within the imaging vol-
ume weighted by their proximity to the cell of interest. To facilitate
comparisons between predictions based on the cells’ own responses and
population activity, we first computed the mean response for each cell,
reserving one trial at a time:

ři, j =
1

N−1 ∑
k 6= j

ri,k (10)

The limit on the prediction of single cells’ tuning, imposed by trial-to-
trial variability of their responses, was estimated as the mean Pearson
correlation coefficient of single trial responses ri, j and r̃i, j:

RC−C =
1
N

N

∑
j=1

cov(ri, j, ři, j)

σri, jσři, j

(11)

To compute the population prediction p̌i, j, we summed the normalized
responses of each cell, scaled by a Gaussian function of their distance
to the cell of interest with a specified length scale and excluding cells
separated by < 10 µm in the same or adjacent imaging planes to avoid
fluorescence cross-talk:

wc =

{
exp(−d2

c/2l2) if dc ≥ 10 µm or ζc > 10 µm
0 if dc < 10 µm and ζc ≤ 10 µm

(12)

p̌i, j =
Z

∑
c=1

řcwc (13)

where řc = ři, j/max(ři, j) is the normalized response of cell c excluding
trial j, dc is cortical distance between cell c and the cell of interest and
ζc is the separation of their imaging planes, l is the spatial scale of pooling,
and Z is the number of cells in the imaging volume. Performance of the
population prediction was quantified as the Pearson correlation coefficient
of ri, j with p̌i, j and averaged across trials:

RC−P =
1
N

N

∑
j=1

cov(ri, j, p̌i, j)

σri, jσp̌i, j

(14)

To compute population selectivity, we first calculated the mean population
response across all trials:

pi =
Z

∑
c=1

rcwc (15)
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where rc = r̄i/max(r̄i) is the normalized trial-average response of cell c
(See Eq. 4). Population selectivity was then calculated as the skewness
of pi:

γp =
1
M ∑

M
i=1(pi− p̄)3( 1

M ∑
M
i=1(pi− p̄)2

)3/2 (16)

where p̄ = 1
M ∑

M
i=1 pi is the mean population response across all stimulus

types.

Data analysis: synaptic connectivity Connected pairs were identified
by inspecting all of the acquired postsynaptic traces. However, as the
magnitude of postsynaptic responses often fluctuated following repeated
presynaptic stimulation, we limited our analysis of the magnitude of
postsynaptic responses to at most the first 20 trials. After subtracting the
baseline membrane potential (average Vm in 5 ms preceding presynap-
tic stimulation), postsynaptic responses were aligned to the time of the
presynaptic spike and averaged. Cell pairs where the presence or absence
of a connection could not be unambiguously determined were excluded
from further analysis. IPSP and EPSP magnitudes were estimated as
the minimum or maximum of the mean postsynaptic trace, respectively.
In 10/124 PV to pyramidal cell pairs and 5/120 pyramidal to PV cell
pairs, where presynaptic stimulation evoked multiple spikes and PSPs
overlapped, IPSP and EPSP magnitudes were estimated in the window
preceding the onset of the second PSP. Excluding these pairs from the
analysis did not affect our conclusions.

As IPSP and EPSP magnitudes roughly followed a log-normal distribution,
we used log-transformed PSP magnitudes to quantify their relationship
with each other, as well as response similarity and other stimulus features.

We used the following procedure to test whether the correlation between
IPSP and EPSP magnitudes for reciprocally connected Pyr-PV pairs
could be explained by variation in slice quality. We first selected PV cells,
for which we measured the strength of reciprocal connections with at
least 2 pyramidal cells. We then normalized the log-IPSP and log-EPSP
magnitudes by their mean for each such PV cell:

IPSPnorm
c =

log10 IPSPc

1/n∑
n
i=1 log10 IPSPi

(17)

EPSPnorm
c =

log10 EPSPc

1/n∑
n
i=1 log10 EPSPi

(18)

where IPSPc and EPSPc are the magnitudes of connections between
the PV cell and the cth pyramidal cell. We quantified the relationship
between normalized IPSP and EPSP magnitudes across all recordings as
the Pearson product moment correlation coefficient:

REI =
cov(IPSPnorm,EPSPnorm)

σIPSPnormσEPSPnorm
(19)
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To assess the statistical significance of this relationship, we randomly
permuted IPSP magnitudes for each PV cell, destroying any relationship
between IPSP and EPSP strength, and recalculated the correlation coeffi-
cient. The P-value was estimated as the proportion of reshuffled samples,
where the absolute value of the correlation exceeded the one observed
empirically.

Data analysis: relating synaptic connectivity and in vivo responses
Cell pairs profiled in vitro were only included in the analysis in Fig.
3 if both cells were located within the imaging volume and could be
reliably identified. Of the 157 PV cell to pyramidal cell connections
and 164 pyramidal cell to PV cell connections, 118 and 116 respectively
passed this criterion. Since fluorescence cross-talk between overlapping
ROIs would inflate our estimate of response similarity, we excluded cell
pairs separated by < 10 µm in the same or adjacent imaging planes.
Finally, we restricted our analysis to pairs where the pyramidal cell was
visually responsive and passed the signal variance threshold of 15%. This
dataset included 56 PV cell to pyramidal cell pairs (from 21 mice) and
55 pyramidal cell to PV cell pairs (from 20 mice), of which 46 (from
18 mice) and 37 (from 19 mice) respectively were connected.

To compute total response similarity between pairs of ROIs, we computed
the dot product of their dF/F0 traces normalized by the product of their
norms for each imaging segment, and used the mean of these values:

sim( fi, j(t), f
′
i, j(t)) =

1
N

N

∑
j=1

∑i ∑t fi, j(t) f
′
i, j(t)(

∑i ∑t f 2
i, j(t)∑i ∑t f ′2i, j(t)

)1/2 (20)

where fi, j(t) and f
′
i, j(t) are dF/F0 traces of the two cells for the ith

stimulus type on the jth trial. To compute signal response similarity, we
used the trial-average responses ri(t) and r′i(t), as defined in Eq. 4:

sim(ri(t),r′i(t)) =
∑i ∑t ri(t)r′i(t)(

∑i ∑t r2
i (t)∑i ∑t r′2i (t)

)1/2 (21)

Tuning similarity metrics for individual visual features were computed as
follows:

∆TF = |T Fpre f −T F ′pre f | (22)

∆SF = |SFpre f −SF ′pre f | (23)

∆Speed = |(T Fpre f −SFpre f )− (T F ′pre f −SF ′pre f )| (24)

∆Ori = 90◦−||φ −φ
′|−90◦| (25)

where φ and φ ′ are the preferred orientations of each cell, θpre f mod 180◦.

Additional response similarity metrics in Supplemental Figures 4-6 were
computed as follows:

Signal resp. similarity time-averaged =
∑i r̄ir̄′i(

∑i r̄2
i ∑i r̄′2i

)1/2 (26)
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Parameter Description
N Number of neurons in the network (N = 5000 for partitioned model;

N = 1000 for feature tuning model)
NS Number of subnetwork partitions in partitioned model (NS = 2)

wE ,wI Total output synaptic weight made by single excitatory and inhibitory
neurons, respectively (wE ,wI > 0)

fE , fI Proportion of excitatory and inhibitory neurons in the network ( fE +
fI = 1; fI = 20%)

dIE Factor defining how much stronger E→ I synaptic connections are
compared with E→ E (dIE ≥ 1; dIE = 2)

sE Proportion of recurrent excitatory synapses that are restricted to be
made within the same subnetwork partition (0≤ sE ≤ 1)

sI Proportion of synapses between excitatory and inhibitory neurons,
and recurrent inhibitory synapses, that are restricted to be made
within the same subnetwork partition (0≤ sI ≤ 1)

κ Concentration parameter controlling synaptic specificity over feature
parameter in feature tuning model, for neurons of class A targetting
neurons of class B (κEE = 16; κEI,κIE ,κII = 4)

Table 2: Parameters used in the network models. Other parameters as described in
the methods text.

Total correlation =
1
N

N

∑
j=1

cov( fi, j(t), f
′
i, j(t))

σ fi, j(t)σ f ′i, j(t)
(27)

Signal correlation =
cov(ri(t),r′i(t))

σri(t)σr′i(t)
(28)

SF, TF, and direction tuning correlations were each computed in a similar
manner, after first averaging r̄i across the other two stimulus dimensions.

The relationship between response similarity and connection probabil-
ity was quantified using logistic regression. The relationship between
response similarity or other response metrics and PSP magnitude was
quantified as the Pearson product moment correlation coefficient of the
functional similarity metric and log-transformed PSP magnitude.

Partial correlations controlling for distance were calculated using par-
tialcorr in MATLAB, computing the Pearson correlation coefficient of
residuals of linear regression of similarity metrics and log-PSP magnitude
against distance.

Models of specific inhibitory and excitatory connectivity

Code to generate, simulate and analyse all models described in this paper
is available online29.
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Partitioned network model Partitioned networks were generated and
analysed as described previously23. Parameters used to build the network
models are defined in Table 2. Briefly, a network of N neurons was
defined to contain N · fE and N · fI excitatory and inhibitory neurons. In
this paper, dense connections were made between all potential partners
(i.e. synaptic fill factors hE ,hI = 1). Networks were partitioned into equal
sized subnetworks, with both excitatory and inhibitory neurons assigned
a subnetwork identity. The strength of synaptic connections between
neurons was modulated by whether pairs of neurons were members of the
same or different subnetworks.

To generate connections between neurons we defined specificity parame-
ters sE and sI , which determined what proportion of output synapses from
single neurons were made according to specific connection rules. A pro-
portion sE of total recurrent excitatory synaptic weight was reserved to be
made with partners in the same subnetwork. The remainder of recurrent
excitatory weight was distributed uniformly over the network. Similarly, a
proportion sI of total recurrent inhibitory weight was reserved to be made
within the same subnetwork. The same parameter sI modulated specific
connectivity between excitatory and inhibitory neurons. In these models
we assumed that E→ E and E→ I synaptic specificity was equal.

Output weights for all neurons were normalized such that the total output
weights were equal to wE and wI for excitatory and inhibitory neurons
respectively, distributed proportionally across excitatory and inhibitory
targets according to fE and fI .

The synaptic weights wBA between two neurons in the same subnetwork
from class A to class B were therefore given by

wEE = wE [(1− sE)+ sE ·NS]/N
wIE = wE [(1− sE)+ sE ·NS]/N
wEI =−wI[(1− sI)+ sI ·NS]/N
wII =−wI[(1− sI)+ sI ·NS]/N

and between neurons in different subnetworks given by

wEE = wE(1− sE)/N
wIE = wE(1− sE)/N
wEI =−wI(1− sI)/N
wII =−wI(1− sI)/N

Visual feature tuning model To examine the effect of smooth func-
tional relationships between neurons on connectivity and network compu-
tation, we defined a richer model where connections between excitatory
and inhibitory neurons were governed by similarity of tuning to visual fea-
tures. Since no single visual feature was found to explain the entirety of
synaptic connection specificity in mouse V1, we defined connectivity over
an arbitrary visual feature tuning parameter. Excitatory and inhibitory
neurons comprised 80% and 20% of the neuronal population respectively,
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as for the partitioned networks above. Neurons were assigned a preferred
tuning value γ , uniformly distributed over (0,1]. Synaptic connection
strength between two neurons i and j was modulated by similarity mea-
sured over this tuning parameter. The connection probability from a
neuron i of class A to a neuron j of class B was given by the circular
function

s ji =
〈
exp
{

κBA cos
[
2π(γi− γ j)

]}
− exp(−κBA)

〉
, (29)

where κBA is a concentration parameter modulating connections from
class A to class B. The notation 〈·〉 indicates the expression within the
brackets has been normalised to define a probability density function over
target synaptic partners. The values s ji were composed into the N×N
matrix

S =

[
SEE SEI
SIE SII

]
, (30)

with the blocks SBA defining the connections from class A to class B. The
synaptic weights connecting neurons were also modulated by specificity
parameters, defining a proportion of synapses that were made under the
function in Eq.29. The remainder of synapses were distributed uniformly
over the network. The weight matrix for the network was then given in
block form by

W =

[
WEE −WEI
WIE −WII

]
, where

WEE = wE [ fE (sE ·SEE)+(1− sE)/N]

WIE = wE ·dIE [ fI (sI ·SIE)+(1− sI)/N]

WEI = wI [ fE (sI ·SEI)+(1− sI)/N]

WII = wI [ fI (sI ·SII)+(1− sI)/N] .

Network input Each neuron in the network received a barrage of in-
dependent Poisson input spikes at 2400 Hz, designed to mimic ongoing
spontaneous activity in cortex. External input was provided by injecting
currents into the excitatory population alone, since input provided directly
to the inhibitory population can give rise to suppression of excitatory
activity through feed-forward inhibition. Since our goal was to examine
recurrent computations, we wished to exclude this feed-forward effect
from our analysis.

For the partitioned network models, white noise input currents were
generated with standard deviation σ = 1 over 1 ms, then smoothed with a
box-car filter of width 50 ms. The currents were subsequently normalized
to have a peak to peak amplitude of 10 pA, and shifted to have a mean
of 15 pA. A single white noise current was generated for each partition;
this procedure was repeated in a brute-force approach until a set of input
currents was found with a desired correlation coefficient R. Each resulting
white noise current was subsequently injected into a subset of 12.5% of
the excitatory population of each subnetwork.
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For the feature tuning model, perturbation of small cohorts of neurons
(Fig. 4g–k) was performed by first increasing background activity to
3500 Hz per neuron. 21 excitatory neurons with similar feature tuning γ

were then stimulated by injecting currents of 100 pA (corresponding
to 2.7% of the excitatory network). Perturbation of a single excitatory
neuron was performed by injecting a current of 0.2 µA (insets in Fig.
4j,k).

Linear stability analysis To estimate the stability of the networks de-
scribed above, we examined a non-spiking network model with dynamics
governed by

τ ẋ+x =W [x]++ ι (t) , (31)

where x = [x1x2 . . .xN ]
T is a vector of neuron activations, I(t) is an exter-

nal input provided to the network, τ is a lumped neuron time constant and
[·]+ is the linear-threshold activation function [x]+ = max(x,0). Under
this formulation, the eigenspectrum of the weight matrix W provides
information about the stability of various network activity patterns, as
a function of the network connectivity parameters23. We examined the
stability of the networks in the state where all neurons were active (i.e.
∀xi : xi > 0).

For the two-partition network, the eigenvalues related to subnetwork
partitioning in the presence of excitatory and inhibitory specificity are
given by the closed-form equation

λQ = wE · fE · sE −wI · fI · sI . (32)

For the feature tuning model, the eigenspectra of the weight matrices
were estimated numerically.

Spiking simulations Simulations of integrate and fire spiking neurons
with alpha-function conductance-based synapses were performed using
Nest 2.1228 and Matlab (Mathworks). Networks were connected fol-
lowing the weight matrices defined above. Weights were scaled such
that recurrent spiking dynamics matched those of a linear network as
closely as possible. That is, a recurrent excitatory weight of ‘1’ placed a
self-connected neuron in a critical regime on the edge of stability.
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