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Suppose we aim to use data obtained by studying a
biomolecular interaction system with a surface plasmon res-
onance (SPR) biosensor in quantifying some system feature.
We assume a parametric mathematical model for biosensor
response due to sources of mass such as analyte-ligand com-
plexes. Some parameters represent interaction features, such
as rate constants. Whenever we attempt to estimate parameters
from data, we may obtain multiple estimates, regardless of the
amount and quality of data. Inconveniently, we may be unable
to distinguish between alternatives. This is problematic when
alternative parameter values lead to very different predictions
of system behaviour for a situation where we lack data. Antic-
ipating this issue prior to data collection allows us to redesign
the combination of planned experiments and model, replacing a
certain failure to achieve our study’s aim with the possibility of
success. The literature on SPR biosensors (and computational
biology more generally) has paid little attention to this matter.
In order to remedy this, it is appropriate to begin with a consid-
eration of the assumed models. These are rarely specified com-
pletely, causing ambiguity that impedes scrutiny of their proper-
ties and comparison with other models. We demonstrate this by
reviewing some model types seen in the Biacore™ biosensor lit-
erature. We propose to eliminate model ambiguity by providing
a suitable framework for specifing models for biosensor data.
This framework will aid future efforts to compose models for
data arising from particular interaction mechanisms in a form
that is amenable to scrutiny. We expect that the issues raised
here will have relevance to the modelling of data obtained from
other apparatus employed in quantifying binding behaviour.
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1 Introduction
Biosensors are established as a standard means of monitoring
the interactions of biomolecular species. The Biacore™ mar-
que of “flow-cell optical biosensor”,1 released in 1990, was
the first commercial offering. Units in this line did not re-
quire labelled interactants, giving them certain advantages
over those apparatus which required labels ([2]). The rapid

1Due to their means of detecting biomolecular interactions, these are also
known as surface plasmon resonance (SPR) biosensors. For an introduction,
see [1].

uptake of various Biacore™ units has led to their widespread
and continuing use in published studies over a range of appli-
cations in molecular biology.2

One use of Biacore™ data is in the quantification of
features of some biomolecular interaction system, such as
through estimation of its rate constants. This process requires
a parametric model for the data. The problem of estimating
parameters from data is generally referred to as an ‘inverse
problem’.

The biosensor literature relating to inverse problems (and
the computational biology literature more generally) has
given much more consideration to data than models. Some
authors (for example, [3–5]) have provided guidance on ex-
perimental practice and suitable experimental conditions to
improve data quality. This advice may be aimed specifically
at increasing the accuracy of parameter estimates ([6]).

However, in any inverse problem, features of the assumed
model may ensure that parameter estimation cannot return a
unique estimate for each parameter. This can occur regardless
of the amount and quality of data. Non-uniqueness of param-
eter estimates is problematic when alternative estimates lead
to very different predictions of system behaviour for a situa-
tion where we lack data. If distinguishing between equally-
likely alternative estimates to ascertain the ‘true’ parame-
ter vector is impossible, the result is an inconclusive study.
Specifically, we cannot credibly use our model in predicting
system behaviour.

We may be able to anticipate this problematic outcome
prior to data collection through inspection of the assumed
model. Suppose we test a model for the property of (global a
priori) identifiability (see Section 2.8). If the result is nega-
tive, then it is almost certain that parameter estimation cannot
return a unique estimate for each parameter. Further, the test
can foresee the event where it is almost certain that there will
be a continuum of equally-valid estimates for at least one pa-
rameter. In this case we will be unable to discern the true
parameter value, and accordingly, a planned study will not
deliver the desired information.

To the best of our knowledge, there are few considera-
tions of identifiability as it pertains to models for data from
biosensor experiments. The earliest published efforts ([7–9])
focused on formulating testing methodologies suitable for a

2See the bibliography of [3] which has an extensive section for references
relating to Biacore™/GE Health biosensors.
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class of mathematical models appropriate for modelling cer-
tain experimental situations. Any such testing method was
hitherto absent from the systems theory literature. The partic-
ular focus of these works was on ‘kinetic’ experiments used
to collect data for the estimation of interaction rate constants.

The most developed version of the testing theory ap-
peared in [10]. This thesis also demonstrated that alterna-
tive forms of a model for data from kinetic experiments can
have different properties. In particular, the work considered
models for data obtained from the ‘simple bimolecular’ inter-
action mechanism.3 It showed that a four-parameter model
lacked the property of identifiability, yet a three-parameter
form derived from it was identifiable.

By its nature, the testing of models for identifiability is
a technical — often laborious — matter. However, we may
demonstrate a case where a particular model lacks the prop-
erty of identifiability with a web application [11]. In this
‘app’ the user can experiment with a four-parameter form of a
model for the simple bimolecular interaction which produces
simulated data. The app provides two sets of input fields for
parameter vectors, Inputs 1 and 2. These inputs are associ-
ated with simulated time courses of response, Outputs 1 and
2 respectively, plotted on the same axes. After Input 1 is en-
tered, the app provides a distinct vector that will reproduce
Output 1. The user can confirm this by setting Input 2 to the
supplied values, noting that it causes the superimposition of
Output 2 on Output 1. The user may repeat this process for
various values of Input 1. The wide range of distinct val-
ues produced by the app is a consequence of the existence
of infinitely-many parameter values that produce the same
model output.4

Whilst simulated data can suggest that a given model
lacks identifiability, it is not a formal test for the property.
However, in order to conduct an a priori identifiability anal-
ysis of a model for SPR biosensor data, we may first have to
expend some effort to understand the features of our assumed
model. Otherwise, the practical meaning of the results may
be unclear. This opacity follows from uncertainty over the in-
formation contained within an assumed model. Rarely does
the literature specify a model completely. Such underspeci-
fication makes it difficult to interpret a model in those cases
where a paper suggests (or omits) details of the dynamics
of the interaction, or features of experiments and associated
biosensor response, rather than making them explicit.

We can illustrate the variation in detail associated with
models through a survey of the literature. Frequently, pa-
pers only provide the name of the interaction mechanism fit
to data (such as [12, 13]). (We will cite more examples of
this tendency shortly.) Some papers also include the chemi-

3We show this mechanism in Section 2.2. This mechanism is commonly
chosen (at least initially) as a suitable model to fit to data when we assume
that certain conditions hold. A fundamental assumption is that the interaction
has a 1:1 stoichiometry.

4The test of a model for identifiability proceeds subject to certain assump-
tions. One of these is that we consider an infinite, error-free output trace.
The assumption is reasonable; if we find multiple parameter vectors which
can produce such an idealised trace, this non-uniqueness is also very likely
to occur when data is limited in extent and subject to error.

cal equations associated with interactions; see, for example,
[14, 15]. At times a work will show a model for the interac-
tion kinetics, and omit an expression for biosensor response.
The model may appear in the form seen in the BIAevalu-
ation software that accompanies Biacore™ units ([16]), or
some other form ([17]). Alternatively, a paper may present
a system of ordinary differential equations (ODEs) for re-
sponse. This system may relate to the association phase of a
kinetic experiment ([18]), and less commonly will also model
the dissociation phase response ([19]). (We will explain the
phases of kinetic experiments in Section 2.3.) Other papers
provide a response function that is an explicit function of time
([20]).

Many of the alternative model forms are not easy to in-
terpret. To appreciate this, consider consider the nature of
the biosensor response. It has multiple components due to
various sources of mass in an experiment. Some ‘uninforma-
tive’ components do not relate to the progress of interactions.
However, when models in the literature include some expres-
sion for response, they often do not articulate which com-
ponents are included, or how they are composed. This lack
of detail may obscure which species make a contribution to
modelled response, and the manner in which they do this. It
is advantageous to have a model that we can clearly relate to
our data, as we will demonstrate shortly.

It may appear that certain situations do not require a com-
pletely specified model. Consider the case where one in-
tends to use BIAevaluation software in fitting a model to
Biacore™ data. The user may select an interaction mech-
anism from a menu. Various recent protocols ([21–23]) or
research papers ([24, 25]) consider this approach to model
fitting. These works restrict their attention to two relatively
simple and commonly used interaction models (outlined in
Section 2.2), presenting only their names. However, each of
these references provides direction on how to address a pre-
liminary question:

(Q1) How should we process response to obtain a time
course of data that is appropriate for our assumed model?

so that parameter estimation can follow.5

The approach to data processing outlined in the works
cited above is not appropriate for every situation. For exam-
ple, it is inappropriate for a case where immobilised ligand
dissociates from the sensor surface.6

We see that the literature, by focussing on the more com-
mon interaction models, does not address Q1 in a general
manner that can inform the use of other models. While a suit-
ably experienced experimentalist will employ expert knowl-
edge to answer Q1, the less-experienced user might not reach
an answer so readily. Further, the manner in which models
are presented in the literature often does not assist us in an-

5We propose that the easy-to-use nature of BIAevaluation software cou-
pled with an algorithmic approach to data processing that is appropriate for
some — but not all — models has concealed the benefits of the model anal-
ysis we advocate for here.

6One situation where this occurs is where ligand immobilisation is
achieved by an ‘antibody affinity capture approach’, see, for example, [21].
In such a case, quantifying kinetics with the (surface) ‘decay model’, dis-
cussed in [26], may be appropriate.
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swering Q1. This is especially the case when we consider
an interaction model that is more complex than the standard
models. Later we will show that a fully specified model can
guide the user towards appropriately answering the question.

A theoretician may find that an incompletely specified
model raises a variety of other questions. The answers to
these questions may be of considerable practical importance.
Such questions include:
(Q2) What do the model terms and parameters represent,
and what units do they have?
(Q3) Is this model related to another model that employs
a different set of mathematical relationships, or which uses
alternative terminology?
(Q4) Can we simplify the model to one of fewer terms or
parameters, making it possible to fit the model more quickly
to suitably processed data?
(Q5) In the interests of evaluating our experimental design,
how should we test the model for particular properties, such
as global a priori identifiability?
(Q6) To which experimental situations are our theoretical
insights from Q5 applicable?
(Q7) Do alternative forms of the model have differing prop-
erties, in particular, as these properties pertain to parameter
estimation?
We show the usefulness of these questions in a simple case in
Figure 1. There may be additional connections between the
questions. For example, the answer to Q5 may encourage us
to reconsider Q4.

increasing model
understanding

increasing potential ease
of application

to data

Q2

Q3

Q4

Q5

Q6

Q7

Q1

Fig. 1. Graphical depiction of how the answers to questions Q1–Q7 may improve
our ability to understand and appropriately use a model for biosensor response. In
practice, if the answer to a question causes us to modify a model, this information
may encourage reconsideration of other questions.

A completely specified model will make the answers to
Q1 and Q2 obvious, and aid us in considering Q3–Q7. Such
a model is also necessary should one not have dedicated soft-
ware for fitting models to data. Even if such software is avail-
able, suppose that it does not include a model for some novel
interaction mechanism or experimental situation. In such a
case we must supply a model in sufficient detail to enable
its addition to the software.7 One example of where this is

7Wang et al. [17] considered fitting a model for an interaction they termed

necessary arises in the study of multivalent interactions:

“Unfortunately, most models provided for SPR
data analysis assume 1:1 or at most 2:1 (lig-
and:analyte) binding.” ([19]).

At present, completely specifying certain models is chal-
lenging. The literature does not provide specific instruction
on how to specify a model. In the absence of such guidance,
the literature employs a variety of alternative formalisms and
terminologies. (This observation prompted Q3.) Further, to
the best of our knowledge, no previous work has attempted to
reconcile these alternatives. Here we provide a framework for
resolving this matter. We propose a general method for spec-
ifying models of biosensor response in a transparent manner.
By combining this template with the particulars of some spe-
cific interaction mechanism, one will produce a fully spec-
ified interaction model. One may then proceed to address
Q1–Q7.

This paper is organised as follows. In Section 2 we
present features of Biacore™ biosensors, matters relating to
data collection, and models for data in more detail. Through
this we formalise certain assertions regarding biosensor re-
sponse and show when they are equivalent.8 We have partic-
ular use for a not-so-commonly cited relationship between
response due to a species and molar concentration of that
species from the literature.9 We employ this relationship in
Section 3 where we propose a general means of relating re-
sponse to the dynamics of some assumed interaction mecha-
nism. We will see later that our approach is more transparent
than others. Further, we demonstrate the usefulness of this
representation with an example that shows how we may prof-
itably simplify an initial model. We discuss the value of our
approach and comment on future uses in Section 4.

We expect that the general thrust of our arguments will
also have relevance to other biosensors for which models of
response are not clearly specified. This is particularly likely
when the biosensor has multi-component response (as we
will see in Section 2.4) as this presents a particular oppor-
tunity for model ambiguity.

We conclude this section by introducing notation we will
employ in defining models subsequently.

1.1 Notation

Let R represent the set of real numbers and R+ (R̄+) be
the subset of R containing only positive (non-negative) re-
als. Let N , {1,2, . . .} represent the natural numbers. For

the “1:1 binding model” (likely equivalent to Eq. (2.1)) to data. They noted
that: “Comments on more complex binding models can be input through
Biacore or other evaluation software.”

8We appreciate that the experienced biosensor practitioner will be familiar
with the background information we present. However, we note that these
preliminary details are distributed through the literature. We consider that
collecting the necessary information together in one place and formalising
it where necessary will assist the reader in appreciating this paper’s novel
contribution.

9Much more widely cited is a relationship between response and mass
concentration of a species.
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some m ∈ N, let R̄m+ represent the set of vectors of m com-
ponents, where each component belongs to R̄+. For some
r,c ∈N, let Rr×c represent the set of matrices having r rows
and c columns where each element belongs to R. We will use
a bold symbol in lower case (such as x) or upper case (such
as A) to denote a vector or matrix respectively. We use Aᵀ
to denote the transpose of matrix A. If x is a column (row)
vector, then xᵀ represents x written as a row (column) vector.

As we will make general arguments about types of chem-
ical species later, here we define notation for their proper-
ties. Let us consider some species X, having molar massMX

(g ·mol−1). When the total mass of X is mX (g), we write
the number of moles of X as NX (mol), where

NX = mX

MX
. (1.1)

If we have NX moles of X in some volume V (dm3), we
represent the molar concentration of X by [X] (mol ·dm−3),
defined by

[X] = NX
V

. (1.2)

We define a volume mass concentration cX (g ·dm−3) for the
mass of X in volume V by

cX = mX

V
. (1.3)

2 Features of Biacore™ biosensors
and modelling biosensor response

We begin this section with an overview of Biacore™ biosen-
sors and present two relatively simple and widely cited de-
scriptions of biomolecular interactions to give the flavour of
the area. We proceed to outline kinetic experiments, cata-
logue the components of biosensor response, and formulate
a general response equation. These preliminaries inform a
discussion of how we may process response data to remove
uninformative components.

To demonstrate the diversity of aspects of the literature,
we present some relationships between response due to a
species and the amount of that species, and show how these
are related. We draw on these relationships in reviewing
types of models for response from the literature in order to
demonstrate their variability and limitations. We conclude
the section with an overview of the testing of models of Bia-
core™ data for the property of global a priori identifiability.
This task was the primary motivation for this investigation of
model representations, and such testing will be aided by the
results of this study.

2.1 An overview of the apparatus
Biacore™ biosensors monitor the interactions of at least one
species bound to a sensor surface (‘immobilised ligand’) with
some species present in a solution made to flow over the sur-
face (‘analyte’). Contact between a sensor chip and an inte-
grated fluidics cartridge (IFC) that delivers injected solutions

to the chip surface creates ‘flow cells’. These are distinct
volumes, each containing an individually monitored sensor
surface. The experimentalist determines which flow cells re-
ceive solutions by selecting cells to define a ‘flow path’.

The surface within a flow cell is either a ‘reaction sur-
face’, having some amount of functional immobilised ligand,
or a ‘reference surface’, which has none. A flow path in-
cludes a reference surface and at least one reaction surface.

The simplest sensor chip is a glass slide with a thin gold
film. Early sensor chips had a carboxymethyldextran (dex-
tran) matrix bound to this sensor surface.10 Dextran is de-
scribed in [5] (and in similar terms in [28]) as providing “. . . a
flexible anchor for ligand immobilisation, allowing interac-
tions to occur as in solution.” (For further details, see [29].)

More particularly, “The binding events [such as bind-
ing of analyte to immobilised ligand] occur in a three-
dimensional dextran matrix that extends approximately
100nm out from the sensor surface.” ([30]). We will call
this region the ‘reaction volume’.

The monitoring of a flow cell results in a reported re-
sponse that is updated in real time. This response may be
influenced by changes in the mass present in a reaction vol-
ume. For example, the binding of analyte to immobilised
ligand increases the mass in the probed volume. A corre-
sponding increase in reported response indirectly shows the
progress of the binding interaction.11 A graph of biosensor
response against time is a ‘sensorgram’.

2.2 Interaction mechanisms

An experimentalist may expect that biomolecular interactions
occurring within a reaction cell are described by some as-
sumed system of chemical equations or ‘interaction mech-
anism’. For clarity, the mechanism should indicate details
such as the valency of the immobilised ligand, and whether
or not this ligand presents a homogeneous population of ana-
lyte binding sites.

One commonly used mechanism is the ‘simple bimolec-
ular interaction’ (known by a variety of terms, such as the
‘one to one reaction’ [30]). This mechanism describes the
reversible binding of analyte A and immobilised ligand B to
form complex (AB), summarised by

A + B
 (AB). (2.1)

Another well known mechanism is the ‘two-state conforma-
tional change model’, also known as the ‘two-state model’
([30]). Using the notation above, we may present this mech-
anism as

A + B
 (AB)
 (AB)∗, (2.2)

where (AB) and (AB)∗ are isomers.

10There are a variety of sensor surfaces to facilitate specific applications;
see [27] for a review, or the summary [21, Table 1].

11Assuming that the mass increase is above the instrument’s lower detec-
tion limit; see [5].
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2.3 Features of kinetic experiments
There are various types of assay — and types of experiments
within these — designed for particular applications. We will
consider data collected through a series of kinetic experi-
ments in a ‘direct binding assay’ (DBA). The DBA is a fun-
damental form of assay as it uses an homogeneous analyte
solution. The relative simplicity of a DBA allows us to de-
fine our experimental system in a relatively straightforward
manner.12

A kinetic experiment has multiple phases, defined by the
solution injected into the flow path. Prior to commencement
of an experiment, a flow path is exposed to a running buffer
solution that does not contain analyte. The experiment be-
gins with an ‘association phase’. In a DBA this phase in-
volves injection of a solution of known analyte concentration
into the flow path for a specified period of time. The associa-
tion phase is followed by a period known as the ‘dissociation
phase’ in which buffer is returned to the flow path. An exper-
iment may conclude with the injection of solutions through
the flow path designed to dissociate complexes or clean the
flow cells, followed by buffer. Only the part of the sensor-
gram relating to the association and dissociation phases pro-
vides data on the system kinetics.

Proceeding in this manner, the experimentalist injects so-
lutions having a range of analyte concentrations, including a
‘blank’ having no analyte, obtaining a sensorgram for each.
Ideally an experimentalist replicates the entire set of these
experiments. Figure 2 presents a schematic version of a sen-
sorgram obtained for a kinetic experiment as described that
shows typical features of response.13
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Fig. 2. A simulated sensorgram for data subject to additive noise from a kinetic
experiment in which the simple biomolecular interaction (Eq. (2.1)) applies. The time
course of analyte concentration is superimposed on the graph to show changes in
experimental conditions.

12We direct the reader interested in a description of assay types to [31]. We
note that both the simple biomolecular interaction and the two-state confor-
mational change interaction may be appropriate descriptions of biomolecular
interactions occurring in a DBA.

13We note that real data may be subject to experimental effects, such as
spikes in response caused by a change from one injected solution to another.
We consider these further in Section 2.4.

2.4 Components of experimental response

Recall that biosensor response (such as that having the gen-
eral nature shown in Figure 2) has various components due
to the multiple sources of mass in a reaction volume. Often
the literature presents response expressions without making
explicit mention of which components contribute to the mod-
elled response.

Karlsson [30] provided a notable exception to this trend.
There, “detector response” R was presented in terms of com-
ponents due to “binding events and changes in buffer compo-
sition” and “baseline level” R0 via

R=R0 +Rbinding +Rbuffer . (2.3)

Later we will draw on Eq. (2.3) in forming a type of ex-
pression that is appropriate for our interest in specific con-
tributors to biosensor response. For example, Rbinding and
R0 may be complicated due to the dissociation of immo-
bilised ligand from the sensor surface, or being composed of
multiple sub-components. We may make such dependencies
explicit by employing a more general and more informative
type of response expression. We will present this expression
in Section 3.2.

The particular interest of Karlsson [30] was in the use of
biosensor response expressions rather than their composition,
as we are here. It suits our purposes to modify Eq. (2.3) to
partition sources of response into a different set of compo-
nents. This approach will allow us to more naturally define
response components that we wish to remove from total ex-
perimental response when possible. If we can achieve this,
we can readily determine whether we can simplify the re-
sponse expression, addressing Q4.

In order to produce suitable terminology and notation
for our discussion of response expressions, we will classify
sources of experimental response and catalogue contributions
to them. We consider four major components, each of which
may be a sum of sub-components. Many of these contributors
to response are described in detail in [5].

Response due to functional immobilised free ligand
(RFIL): If we know that the ligand is heterogeneous, then
it is appropriate to allow a sub-component for each form of
ligand. Heterogeneity may be due to chemically or struc-
turally distinct forms of immobilised ligand. It is also caused
when the immobilisation step produces multiple orientations
of analyte binding sites which have varying accessibility to
analyte.

Response due to complex (RC): Our experimental sys-
tem may have multiple forms of complex. Single complexes
of these different forms may make unequal contributions to
response.14 Further, the forms of complex may not have the
same values for each of the rate constants that characterise
the dynamics of the associated association and dissociation
processes. Hence, it is appropriate to model the amounts of

14Response due to a species depends on its effect on refractive index near
the sensor surface. Thus, the contribution due to a form of complex depends
on its refractive index increment and molecular weight; see [30] for details.
We will use these properties in Section 2.6.2.
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distinct complex forms separately. Accordingly, each distinct
form of complex has its own sub-component in RC. Recall-
ing Section 2.2, the model for the simple bimolecular inter-
action Eq. (2.1) has a single sub-component in RC due to its
one form of complex. The model for the two-state conforma-
tional change interaction Eq. (2.2) has two sub-components
in RC due to the two forms of complex.

Response due to non-interaction components (RNI):
This may be the sum of a variety of terms which include re-
sponse due to:

• the sensor surface and matrix.
• injected solutions: contributions of analyte solutions

and buffer to response may differ.
• sensor artefacts: examples include instrument drift and

air bubbles following solution injection.
• non-specific binding: resulting from the binding of an-

alyte to a site in the reaction volume other than the ex-
pected binding site(s) on the immobilised ligand, such
as the matrix.

Response due to non-functional immobilised free lig-
and (RNIL): Ligand immobilisation typically results in
some amount of ligand that is unable to bind analyte. We
model RNIL by allowing one sub-component for each dis-
tinct form of ligand. It is appropriate to distinguish RNIL

from RFIL as we expect the latter to change over time due to
the interaction kinetics.

Informed by this discussion, we extend Eq. (2.3) and
model biosensor response due to mass in a flow cell at time t
as

R(t) =RNI(t) +RNIL(t) +RFIL(t) +RC(t) + ε(t) , (2.4)

where ε represents random noise.
Remark 2.1: It is reasonable to expect that the form of

ε(t) in Eq. (2.4) will depend somewhat on the particular
biosensor unit in use. It is not common for the literature to
discuss experimental noise alongside a response model.

In simulation studies, authors may experiment with nor-
mally distributed additive noise in order to gauge its effect on
parameter estimation from simulated data (see, for example,
[32]). The Biacore™ Assay Handbook [33] provides guid-
ance on expected features of residuals when a model appro-
priately captures the systematic features of data:

Ideally, the residuals will scatter randomly
around zero over a range that corresponds to
the short-term noise in the detection system
(approximately ± 1 to 2 RU). ([33, Appendix
A1.4])

In deciding upon the form of noise for a simulation study,
[34, page 178] performed an empirical study of BIAcore
biosensor baseline response to inform their choice: “. . . an
error with a normal distribution and a standard deviation of
0.584 RU . . . ”, presumably with mean zero. �

Eq. (2.4) is a flexible representation of response that is ap-
propriate for various types of assays, interaction mechanisms,
and experimental conditions. We will see in Section 3 that
our approach makes model features explicit. This removes a

barrier to investigating questions concerning model proper-
ties and appropriate data processing, as outlined in Q1–Q7.

2.5 Processing of biosensor response

Suppose we assume that biomolecular interactions occurring
in a certain experimental series are suitably modelled by a
particular interaction mechanism. We may use this mecha-
nism to inform an expression for total experimental response
based on Eq. (2.4) and our knowledge of the biosensor ap-
paratus. We note that expressions for response in the litera-
ture generally do not include all of the components seen in
Eq. (2.4). This may be because some components are con-
stant, or otherwise do not provide useful information on the
progress of interactions. As such, these ‘non-informative’
components may seem to be unwanted complications for any
response expression, which may explain their frequent omis-
sion in the literature. However, actual biosensor data may
contain such non-informative components. Hence, a model
may not appropriately represent the data we collect. To rem-
edy this issue, we need to appropriately process the data to
remove non-informative components so that the result is suit-
able for parameter estimation using our assumed model (as
we noted in Q1).

A typical means of processing data is by ‘reference sub-
traction’ (see, for example, [4]). This process is applied to all
sensorgrams obtained from a reaction surface. One subtracts
the sensorgram obtained from the reference surface under a
given set of experimental conditions from the corresponding
sensorgram obtained from a reaction surface.15 This subtrac-
tion is intended to remove RNI from sensorgrams, which al-
lows us to omit this component from a response expression.
Such a model simplification may reduce the complexity of
addressing Q4 subsequently. We note that appropriate data
processing steps depend on features of the experimental sys-
tem.16

In discussing the processing of response, we have only
partially considered the practicalities of fitting a model to
data. We still need to consider how to specify an explicit
model. In order to achieve this, we must consider RFIL,
RNIL, and RC of Eq. (2.4) in more detail. Modelling these
components requires an understanding of the relationship be-
tween mass near a sensor surface and the associated response.

We consider this matter as part of a review of response
expressions in the literature. We undertake this review to
demonstrate the diversity of models employed, and how they
tend to have implicit features. These features complicate the
understanding of relationships between interactions and re-
sponse, and are also responsible for Q1–Q7. We intend that
our review will demonstrate the value of developing an un-
ambiguous system for representing biosensor response.

15Relevant experimental conditions include the injected analyte concen-
tration, response due to immobilised ligand on the reaction surface, and so-
lution flow rate.

16Recall our mention in Section 1 of experiments where immobilised lig-
and dissociates from the sensor surface. We intend to address this case when
it is appropriately modelled as in [26] in a separate study.
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We begin our discussion of response expressions by
presenting relationships between biosensor response and
amounts of interactants seen in the literature. This aids a
comparison of the properties of these alternative expressions,
and informs the response modelling framework we propose
subsequently.

2.6 Relationships between biosensor response
and experimental quantities

2.6.1 Response due to surface mass concentration of a
species

The biosensor response due to a particular source of mass
near a sensor surface is directly proportional to its surface
mass concentration ([1]). Let us illustrate this relationship by
considering some immobilised species X, and the response
due to this, say RX in response units (RU). To draw on the
notation of [1], we relate RX to the surface mass concentra-
tion of X, say ΓX , having units of g·m−2, by

RX = kpΓX , (2.5)

where kp is a constant of proportionality with imputed units
of RU·m2·g−1.

2.6.2 Response relating to molar concentration of a
species

Statements relating surface mass concentration to response
(as in Eq. (2.5)) are pervasive in the literature. By compari-
son, relationships between molar concentration and response
are seen relatively rarely. From these we note two key proper-
ties (P1 and P2 below) that we will find useful subsequently.

(P1) O’Shannessy and Winzor [35] asserted that the re-
sponse component due to complex is directly proportional to
the molar concentration of that complex.

Karlsson [30] considered molar concentration of analyte
explicitly in his consideration of Surface Competition Assays
(SCAs).17 As the two analytes present had unequal molecular
masses, Karlsson’s model had to account for their differential
effect on response. To explain this, consider some analyte X,
and following Karlsson’s notation, let n denote the refractive
index of a reaction volume. Changes to n due to binding of
analyte to immobilised ligand depend on the analyte concen-
tration, cX (g·ml−1, a mass in a volume, defined in Eq. (1.3))
and the refractive index increment, dn/dcX , through

∆n= dn

dcX
cX . (2.6)

This expression led to the description of the response due
to binding of analyte, Rbinding of Eq. (2.3). Karlsson also
asserted:

17A SCA employs a heterogeneous analyte solution in the association
phase of an experiment. The analyte species are assumed to bind immo-
bilised ligand but not each other. See [31] for further details and assay types.

(P2) “When analytes with similar refractive index incre-
ments are considered, and when the concentration of the an-
alyte is expressed in molar terms, this means that ∆n and
therefore also Rbinding will be proportional to the molecular
weight of the analyte.” ([30])

We will now demonstrate when P1 and P2 are compat-
ible. Let us consider some species X for which Eq. (2.6)
holds, and recall the notation of Section 1.1. We may use
Eq. (2.6) to relate the response component attributable to X
(RX ) to MX and the molar concentration of X, [X].

Rearranging Eq. (1.1) into mX = NXMX , we rewrite
Eq. (2.6) as

∆n= dn

dcX

MX ·NX
V

= dn

dcX
MX [X], (2.7)

for [X] as defined in Eq. (1.2).
Following P2, RX is proportional to ∆n. We use

Eq. (2.7) to convert this into an equality with constant of pro-
portionality η:

RX = η∆n= η
dn

dcX
MX [X], (2.8)

which is consistent with P1.
Remark 2.2: Suppose we use Eq. (2.8) to compare the

individual responses due to two species that have the same
molar concentration and refractive index increment but have
differing molar masses. This situation makes it apparent that
response due to a species is proportional to the molecular
mass of that species. �

We will now rewrite Eq. (2.8) to create a simplified rela-
tionship that we will employ subsequently.

Assumption 2.1 (Response due to a bound species)
Suppose species X is either free immobilised ligand or
analyte-immobilised ligand complex. Further suppose MX

exceeds the biosensor’s detection limit. In this case, [X]
(units M) and RX (RU) are related by

RX = ρX [X], (2.9)

where ρX has units RU ·M−1. Comparison of Eq. (2.9) and
Eq. (2.8) shows that ρX depends on two properties of X: its
refractive index increment, and its molecular mass. �

We will see in Section 3 that Eq. (2.9) contributes to the
transparency of our modelling framework.

To the best of our knowledge, the literature has not com-
pared the relationship between the molar concentration of a
surface-bound species and resultant response (as in Eq. (2.9))
with the relationship between surface mass concentration and
response (as in Eq. (2.5)). Below we establish conditions un-
der which the two expressions are equivalent. This may assist
the reader in comparing some model forms seen in the litera-
ture.

2.6.3 Reconciling relationships between bound species
and associated response

For some immobilised (or bound) species X, let us consider
the relationship between [X] and ΓX .
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Consider a reaction volume of V (dm3). For s (m2) rep-
resenting the sensor surface area,

ΓX = mX

s
. (2.10)

Employing Eq. (1.1) and Eq. (1.2) we derive

mX =MX ·V ·
NX
V

=MXV [X] . (2.11)

Substituting Eq. (2.11) into Eq. (2.10) yields

ΓX = MXV [X]
s

,

and hence from Eq. (2.5)

RX = kpMXV

s
· [X] . (2.12)

As MX is constant, if (kp · V )/s is also constant, then so
is the coefficient of [X] in Eq. (2.12). Thus, Eq. (2.12) has
the same form as Eq. (2.9). This shows when Eq. (2.5) and
Eq. (2.9) are consistent. Further, Eq. (2.12) demonstrates that
the component of response due to species X in the reaction
volume is directly proportional to both MX and [X], as seen
in Eq. (2.8). These observations support the claims made in
P2 and P1 respectively.

Relationships such as those presented in this section have
found use in the various representations of biosensor re-
sponse seen in the literature. We now proceed to give an
overview of the major types of these. This summary will
demonstrate some limitations that we will seek to avoid in
our formulation of models for response data in Section 3.

2.7 Representations of biosensor response in
the literature

Some papers present an explicit expression for response as a
function of time ([36, 37]). The complexity of such expres-
sions, alongside their tendency to have unexplained features,
tends to make answering Q1 and Q3 unnecessarily difficult.
This lack of detail also complicates attempts to address ques-
tions amongst Q4–Q7.

Other forms of models for response components may be
easier to compare with each other. However, prior to such
comparisons, we may need to understand the meaning of cer-
tain terms (an instance of Q2). We may not readily gain this
understanding due to the manner in which response models
are presented. In order to demonstrate this matter, we will
consider examples of two broad types of response expres-
sions.

2.7.1 Models relating rate equations to response

A paper may provide an ODE, or a system of these, describ-
ing the rates of change of variables. Each of these variables
represents some amount of a chemical species. We may find
the meaning of these variables unclear when terms are not
defined (examples include [34, 38, 39]). At other times,

such as when a variable is described as a ‘concentration’,
the reader can infer the meaning of the term. For example,
[40] presented a rate equation for “the concentration of com-
plex [AB]” assuming that the simple biomolecular interaction
(Eq. (2.1)) was appropriate. The equation featured terms for
[AB], and also free analyte A and immobilised ligand B, rep-
resented by [A] and [B], respectively. For [A] given units M
and the forward rate constant given units of M s−1, we infer
that the rate equation describes a reaction occurring in a vol-
ume (as cited in Section 2.1). The combined effect of these
cues is to suggest that [A] and [B] each represent a molar
concentration.

Karlsson et al. [40] proceeded to relate [AB] to the re-
sponse due to bound analyte by citing a relationship akin to
Eq. (2.5). This type of relationship is often cited when papers
convert a rate equation system into a response ODE system.18

However, we may have some reservations about the use of
the relationship in [40] given that the original equation was
in terms of molar concentration variables, rather than mass
concentration variables as employed in Eq. (2.5). Follow-
ing our discussion in Section 2.6.3, we see that we can ex-
press a response component as proportional to either mass
concentration or molar concentration. However, the constant
of proportionality used in response simulation (or sought in
parameter estimation) will depend on which of the two rela-
tionships we employ.

Some papers provide little information on how they con-
vert a rate equation to a response equation. A paper may
justify the conversion via a statement such as

The signal observed, R, is proportional to
the formation of AB complexes at the sur-
face. . . ([39] describing response resulting from
the simple biomolecular interaction, Eq. (2.1))

There are various instances in which some unspecified re-
lationship is used to translate rate equations into ODEs for re-
sponse components.19 In such cases it appears that the latter
is obtained from the former by directly replacing each vari-
able representing an amount of immobilised or bound species
by some corresponding response variable.

We see a variant of this issue when a paper that begins
with an ODE system in concentrations of free binding sites
proceeds to present an expression in RU. This expression may
be a solution of the original ODE system transformed into
response through the use of coefficients having units of RU
(see, for example, [42]). This may conceal how we may de-
rive a response equation from the rate equations.

A similar matter arose in [26]. There, rate equations were
given for two immobilised species: AB, a ligand which is an
antigen-antibody complex, and CAB, a complex between the
ligand and chemical species Fab. These species contributed
to (seemingly processed) response at time t, Rt, which had

18See, for example, [41], in which we interpret “surface concentration” as
mass concentration.

19See, for example, [38] which considered the “1:1 Langmuirian interac-
tion model”, likely equivalent to the simple bimolecular interaction model.

8 | bioRχiv Whyte | The practical value of an explicit response model in quantitative uses of Biacore™ biosensors

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2018. ; https://doi.org/10.1101/294843doi: bioRxiv preprint 

https://doi.org/10.1101/294843
http://creativecommons.org/licenses/by-nd/4.0/


the form20

Rt = κA[AB]t+κCA[CAB]t . (2.13)

As noted for other models, the variables (here [AB]t and
[CAB]t) were not defined.

The paper advised that terms such as κA and κCA

. . . are used to account for the difference in mass
between the antigen alone and the Fab-antigen
complex.

This description indicates that [AB]t and [CAB]t themselves
are not mass terms. Instead, Eq. (2.13) used the counterparts
of κA and κCA to associate the effect of molar mass with
[AB] and [CAB], producing a response component for each
species. Comparing Eq. (2.13) and Eq. (2.9), we may reason
that [AB]t and [CAB]t are molar concentration terms.

We note that [26], by differentiating between chemical
species that make different contributions to response (via an
expression like Eq. (2.13)), employed a more general mod-
elling approach than others reviewed in this section. Sig-
nificantly, [26] demonstrated the importance of taking ac-
count of the differing contributions to response when replac-
ing each distinct concentration term with a corresponding re-
sponse term, in order to ensure that we arrive at a correct
response expression. From this we surmise that it is certainly
not appropriate to automatically replace the symbols repre-
senting concentration variables in rate equations by others for
response variables in all situations. We note that the frequent
application of this practice to simpler models in the literature
conceals the importance of the modelling approach of [26]
for more complex models.

Remark 2.3: The parameters κA and κCA in Eq. (2.13)
are effectively constants of proportionality between some
(molar) concentration and the response due to it, but they are
not formally defined. This creates some uncertainly over the
meaning of the modelled response in Eq. (2.13).

We cannot be certain if the intent of Eq. (2.13) is to
present an expression forRFIL +RC (as occurs in Eq. (2.4)),
or something else. From the notation, we may surmise that
κA and κCA only model the response due to bound ligand,
and do not include contributions from the mass of immo-
bilised ligand. In this case, we may expect that the model
represents response processed to yield RC only.

Understanding the modelled response is important as it
has implications for the meaning of parameters. Suppose that
Eq. (2.13) does represent RC. Then, we must take care over
how we use a relationship such as Eq. (2.9) to relate a molar
concentration to a response component. We must modify it
appropriately so that it depends on the molar mass of A or
CA, rather than AB or CAB, respectively.

Aside from the matters above, there is another benefit to
clearly defining model terms. The accompanying certainty
allows us to relate parameters such as κA and κCA to physi-
cal quantities. This will assist us in parameter estimation by

20The original notation of [26] had RA and RCA as coefficients of [AB]t
and [CAB]t respectively. We replaced this by the notation in Eq. (2.13) to
prevent possibly confusion with response components in Section 2.4.

guiding us towards reasonable initial guesses for the value of
these parameters. Having these starting values may result in
a parameter estimation algorithm converging to an estimate
of the parameter vector in fewer iterations than otherwise. �

Certain authors have provided specific guidance to assist
model interpretation. For example, Haake et al. [41] indi-
cated that their response equation modelled response due to
bound analyte (there, “ligate”). However, other works are
unclear as to whether response is due to bound analyte or
analyte-immobilised ligand complex ([34, 38, 39]).

2.7.2 Models for response only

Models for response components are often presented as a
first-order ODE (systems of these are much less common) for
the response due to a particular chemical species. Such an
equation may have the appearance of a chemical rate equa-
tion due to the notation employed. At times, variables are
described, such as in [43]:

The amount of free receptor sites on the sur-
face ([B]) and the response attributed to the IL-
2–receptor complex ([AB]) were modeled in re-
sponse units (RU).

Also, we can infer that analyte concentration [A] in [43] rep-
resents a molar concentration from the description of exper-
iments. In describing the simulations which used their ODE
model for the two-state conformational change interaction
Eq. (2.2), [44] indicated that injected analyte (there, “ligate”)
and “total matrix site concentration” (related to the amount
of immobilised ligand) had units appropriate for molar con-
centrations.

At other times terminology is less clear or units are not
specified (recall Q2). In [14] “concentration” was used to de-
scribe both analyte concentration [A] and the concentration
of free receptor sites [B]. Further, there may not be any indi-
cation of which variables contribute to response, or the man-
ner in which they do this. (See, for example, [14, 30, 44].)
In other works, an ODE system for response components due
to forms of complex may introduce a term to account for dif-
ferences between them. However, the authors may not relate
this term to anything concrete that would guide the compo-
sition of a response model for a similar interaction mecha-
nism. (For example, see the “normalising factor” employed
in [45].)

Such instances of incomplete model description are an
obstacle to model interpretation. The uncertainty to arise
from this outcome may lead to questions from amongst those
in Q1–Q7 listed in Section 1. Uncertainty around the mean-
ing of models is exacerbated by the general aversion of the
literature to modelling the multi-component nature of experi-
mental response. Model interpretation is assisted when com-
ponents are made explicit, as occurred in [40], which we
summarised in Section 2.7.1. We will draw on and extend
this example in Section 3.2. This extension will lead to a
means of specifying models for biosensor response more pre-
cisely. Further, it will enable the testing of models for certain
properties. We will consider this task next when we review
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the state of the art of methods for testing models of biosensor
response for global a priori identifiability.

2.8 Testing models of biosensor response for
global a priori identifiability

Testing mathematical models of biological systems for the
property of global a priori identifiability began with [46].21

The authors considered a (linear, time-invariant) model for
the movement of radioactive tracers between compartments
of an organism.22 Since that time, researchers have devel-
oped methods for analysing a wide range of model classes,
and applied these methods to models from various fields.

Testing models of biosensor data for global a priori iden-
tifiability poses certain challenges. The abrupt change in ex-
perimental conditions that delineates the phases of a kinetic
experiment (as shown in Figure 2) led to the classification
of some models as a type of linear switching system (LSS).
These systems are not suited to the standard methods of anal-
ysis designed for linear time-invariant or nonlinear models.
However, [7–9] proposed methods that were sufficient to
test a form of model for the simple bimolecular interaction
(Eq. (2.1)) and the two-state conformational change interac-
tion (Eq. (2.2)). Recent developments suggest that there is
scope for further progress in this area ([10]). These develop-
ments will assist the analysis of those models which can be
presented as an LSS. Such a model form follows readily from
the modelling framework we propose here.

Due to the variety of representations of models for
biosensor data, the early efforts to test linear switching sys-
tems representing biosensor data for global a priori identifi-
ability in [7–9] sought to make the task as simple as possi-
ble. This was achieved by considering simplified forms of
the models, and omitting model derivations. As a result, [7–
9] addressed Q5, but not Q4 and Q7. A consideration of the
simple bimolecular model in [10] showed that the answer to
Q7 is ‘yes’. We strongly suspect that asking this question of
other models will yield useful insights into their properties.

We place ourselves in a position where we may begin to
address Q1–Q7 by formalising aspects of biosensor response
models. We propose a means of achieving this in the next
section.

3 Towards an unambiguous descrip-
tion of biosensor data

Recall from Section 2.7.1 the notion of a parametric mathe-
matical model that relates biosensor response to amounts of
chemical species. We propose that this idea points towards an
effective way to clearly present a model. More particularly,

21The authors termed the property “structural identifiability”. There are
other terms in the systems theory literature, which are not always equivalent.

22Although the organism was not specified, models from this broad class
have found use in the study of tracer movement in various species, including
human subjects.

we propose that clarity is served by using some assumed in-
teraction mechanism and the experimental conditions to in-
form a model of two parts.

The first, a ‘kinetic model’, is a description of the
amounts of biochemical species over time. Recall that
species interactions occur in a three-dimensional volume. As
such, it is natural for a kinetic model to employ rate equations
(ODEs) for molar concentrations of interacting species. The
second, a ‘response model’, is an expression for biosensor
response that has components due to various sources of mass
in a flow cell. It is based on the general model presented in
Eq. (2.4). In order to relate the response model to the ki-
netic model, we require a relationship between response due
to an interacting species and its molar concentration, as in
Eq. (2.9).

Henceforth we shall term the combination of a kinetic
model and a response model a ‘kinetic-response model’. In
mathematical terms we classify this as a state-space system.
This classification is advantageous as there are various tech-
niques available for the analysis of such systems, including
methods of testing them for global a priori identifiability.
More generally, in earlier studies ([7–10]) we found that ex-
pressing biosensor response as a kinetic-response model as-
sisted us in addressing aspects of Q1–Q7 subsequently.

We will not consider a particular interaction in detail here
as the variety of models seen for even the least complex in-
teractions warrants a separate, detailed review.23 Instead, we
present a general form for each of a kinetic model and a re-
sponse model. We then show how these two models are re-
lated. We illustrate the form of a kinetic-response model with
an example. We conclude the section by demonstrating how
to reduce this initial model to a simpler model when data is
collected under suitable experimental conditions.

3.1 A general kinetic model
A kinetic model concisely presents the rate equations for cer-
tain species. We limit our interest to forms of free immo-
bilised ligand and complex.

Let θ ∈ Rp+ (p ∈ N) denote the vector of all parame-
ters that will appear in a kinetic-response model. This vec-
tor includes rate constants, unknown initial molar concentra-
tions of interacting species, and other parameters that relate
interactant concentrations to components of response. Mo-
lar concentrations of interacting species in the reaction vol-
ume at time t are represented by the state vector at time t,
x(t,θ) ∈ R̄m+ (m ∈ N). We may write the rate equations for
all species in x as a first-order ODE system of the form

dx(t,θ)
dt = A(t,θ)x(t,θ), x(0,θ) = x0(θ) , (3.1)

where elements of A(t,θ) ∈Rm×m are functions of the rate
constants in θ and the time course of analyte concentration.
Matrix A in Eq. (3.1) is “compartmental" (see, for example,
[49]) which ensures that mass is conserved in the model. This

23These are in progress for the simple bimolecular interaction Eq. (2.1)
([47]) and the two-state conformational change interaction Eq. (2.2) ([48]).
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feature prevents the model from displaying unphysical be-
haviour, such as by predicting negative concentrations. The
size and elements of A are determined by the particular in-
teraction mechanism assumed.

3.2 A general response model

Recall the response components as described in Section 2.4,
and combined in the general response equation Eq. (2.4). We
modify the latter to show parameter dependence:

R(t,θ) =RNI(t) +RNIL(t,θ) +RFIL(t,θ)
+RC(t,θ) + ε(t) . (3.2)

When considering a particular interaction mechanism, we
would produce a suitable kinetic model having the form
Eq. (3.1). The particularities of this kinetic model would
direct us in adding detail to the general response model
Eq. (3.2), resulting in an appropriately informative response
model.

When there are multiple forms of functional immobilised
free ligand or complex, we will gain further clarity by repre-
senting those (meaningful) components of response, RFIL or
RC in Eq. (3.2), by a sum of sub-components as is appropri-
ate.

We may use Eq. (2.9) to represent that part of response
Eq. (3.2) due to forms of complex and immobilised ligand as
a function of x by

C(θ)x(t,θ),RNIL(t,θ) +RFIL(t,θ) +RC(t,θ), (3.3)

where C(θ) ∈ R1×m
+ . We omit RNIL from Eq. (3.3) if the

amount of non-functional ligand is constant, and regard it as
a non-informative component of Eq. (3.2) instead.

Next we shall illustrate the clarity afforded by a kinetic-
response model. In the interests of presenting a simple exam-
ple, we will consider a case in which we can neglect compli-
cations due to non-ideal experimental conditions.

3.3 A kinetic-response model example

3.3.1 Assumptions

Suppose we consider a kinetic experiment in a DBA where
total response is described by Eq. (3.2), and:

• the simple bimolecular interaction mechanism
Eq. (2.1) is appropriate,

• reference subtraction allows us to process any sensor-
gram to remove RNI(t,θ),

• the immobilised ligand:
– is completely functional, that is, RNIL(t,θ)≡ 0,
– is homogeneous, hence RFIL(t,θ) has one com-

ponent,
– cannot dissociate from the surface, and
– does not have any analyte bound at the start of an

experiment.

Under these assumptions, we arrive at an expression for
processed response at time t:

y(t,θ),RFIL(t,θ) +RC(t,θ) + ε(t) . (3.4)

In Eq. (3.4), RFIL(t,θ) +RC(t,θ) is that part of Eq. (3.2)
that relates to the progress of the interactions. All terms in
Eq. (3.4) are time-varying. (For example, we expect RFIL

to decrease as the association phase proceeds whilst RC in-
creases.)

3.3.2 The kinetic model

We assume that the molar concentration of free analyte A is
constant in the association phase of an experiment. Following
Eq. (3.1), the kinetic model (relating the concentrations of
immobilised interacting species) has the form

dx(t,θ)
dt = A(t,θ)x(t,θ), (3.5)

where

x(t,θ) =
[

[B](t,θ)
[(AB)](t,θ)

]
∈ R2

+ , x(0,θ) =
[
B0
0

]
,

and parameter B0 > 0 has units of M.

3.3.3 The response model

Following Eq. (3.4), we use Eq. (3.3) withRNIL ≡ 0 to relate
the response model to x from Eq. (3.5), yielding

y(t,θ) =RFIL(t,θ) +RC(t,θ) + ε(t)
=
[
ρB ρ(AB)

]
x(t,θ) + ε(t) , (3.6)

where ρB , ρ(AB) ∈ R+ draw on the convention of Eq. (2.9).

3.3.4 The kinetic-response model

By consolidating Eq. (3.5) and Eq. (3.6) into one state-space
system we obtain the kinetic-response model

dx(t,θ)
dt = A(t,θ)x(t,θ), x(0,θ) =

[
B0
0

]
,

y(t,θ) =RFIL(t,θ) +RC(t,θ) + ε(t)
= C(θ)x(t,θ) + ε(t) ,

where
x(t,θ) =

[
[B](t,θ) , [(AB)](t,θ)

]ᵀ ∈ R2
+,

C(θ) =
[
ρB ρ(AB)

]
∈ R1×2 .


(3.7)

We will see in Section 3.4 that our approach to defining a
kinetic-response model may allow subsequent simplification.
We will demonstrate this simplification by using Eq. (3.7) as
an example.
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3.4 Further simplification of models and asso-
ciated processing of data

Consider the kinetic-response model Eq. (3.7). We can use
our knowledge of the biosensor to express certain model fea-
tures in more fundamental terms. We will see shortly that this
approach enables us to simplify our kinetic-response model.

To begin the process of model simplification, we consider
the parameters ρB and ρ(AB). By not merely regarding these
as constants of proportionality, ultimately we can show a re-
lationship between them.

Remark 3.1: In the interests of simplicity, let us assume
that both B and (AB) have the same constant refractive in-
dex increment, say k. As a result, following Eq. (2.8) and
Eq. (2.9) and employing a constant δ , η ·k we note that

ρB = δMB, (3.8)
ρ(AB) = δMAB. (3.9)

That is, due to its greater molecular mass, the contribution of
one (AB) to response is greater than that made by one B. �

Our model simplification is also assisted by considering
the initial response predicted by Eq. (3.7).

Remark 3.2: Let us define the time immediately before
the injection of analyte in an experiment as t = 0. From the
response expression in Eq. (3.7),

y(0,θ) =RFIL(0,θ) + ε(0), (3.10)

and from Eq. (3.5) and Eq. (3.6),

RFIL(0,θ) = ρB ·B0, (3.11)

showing that we can express this response component purely
as a product of parameters. �

We may use Eq. (3.9) and Eq. (3.8) to write

ρ(AB) = δMAB = δ (MA +MB), ρA+ρB . (3.12)

Hence, we can rewrite the response in Eq. (3.7) as

y(t,θ) = ρB [B](t,θ) +ρB [AB](t,θ) +ρA[AB](t,θ) + ε(t).
(3.13)

We note that ρB [B](t,θ) + ρB [AB](t,θ) in Eq. (3.13)
is the total contribution to response by B from its free and
bound forms, that is,RFIL(0,θ) as in Remark 3.2, Eq. (3.11).
Under our modelling assumptions, this is a constant, positive
value. Hence, by subtracting Eq. (3.11) from Eq. (3.13) we
obtain a processed form of response:

ỹ(t,θ) = ρA[AB](t,θ) + ε(t). (3.14)

We interpret Eq. (3.14) as the response due to bound analyte
subject to noise.

This derivation produces a response model Eq. (3.14)
that has one fewer parameter than Eq. (3.6). Further, we
have demonstrated a benefit of our formulation of a kinetic-
response model. We can see how to reduce our original re-
sponse model Eq. (3.6) to an expression that is consistent

with the form employed by [30], as illustrated by Eq. (2.3).
That is, we have shown how our kinetic-response model for-
mulation assists us with addressing Q1, Q3 and Q4. From
this point we can proceed to consider questions such as Q7.

A process of simplification that is similar to that shown
above may apply to other cases where the response model has
a greater number of components. For example, we could ap-
ply very similar arguments in simplifying the response model
Eq. (3.3) for the simple biomolecular interaction Eq. (2.1)
having constant and positive RNIL(t,θ).

4 Discussion and Conclusions
The literature shows a variety of approaches to writing re-
sponse models, as we saw in Section 2.7. These approaches
tend to omit important features that would make their mean-
ing clear. This lack of clarity inhibits scientific communica-
tion, and makes it unnecessarily difficult to test alternative
model forms for equivalence.

An incompletely specified model also impedes our ability
to inspect model properties. Of these, it is particularly useful
to test an assumed model for the property of global a priori
identifiability. Such a test can foresee the maximum amount
of information we can expect to obtain from a planned se-
ries of experiments. For example, the test may allow us to
anticipate which experiments cannot lead to a unique esti-
mate for each parameter. Further, the result of a test can
highlight specific deficiencies in the combination of the as-
sumed model and experimental design, and suggest remedies
for these. This knowledge can guide us towards a reformula-
tion of our model or an alternative experimental design. As a
result, we can arrive at a planned study that has at least the po-
tential to provide useful information on our system, whereas
the original study almost certainly could not.

In this paper we have outlined a framework for specify-
ing response models in an unambiguous manner. Towards
this, we have formulated a general biosensor response model
Eq. (3.2). We may use this to write an appropriate response
model for a biomolecular interaction system regardless of the
assumed interaction mechanism.

Our framework employed a model of two parts. The ‘ki-
netic model’ is a system of first-order ODEs for the rates
of change of the molar concentrations of the immobilised
species that participate in interactions. We connected this
to a ‘response model’ that showed unambiguously how the
species in the kinetic model contributed to biosensor re-
sponse. We termed the combination of the kinetic model
and the response model a ‘kinetic-response model’, and noted
that it had the form of a state-space system.

Our previous investigations of the kinetic-response mod-
els associated with particular interaction mechanisms have
demonstrated the benefits of this model form ([10]). Signif-
icantly, the form is amenable to testing for global a priori
identifiability. Also, compared to other types of models, it
is much easier to survey the features of a kinetic-response
model. This can lead to model simplifications in certain ex-
perimental situations. This is useful as preliminary studies
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have shown that some original kinetic-response model may
lack the property of global a priori identifiability, whereas a
simplified model derived from it has the property ([10, Chap-
ter 5]). That is, it may be at least possible to uniquely es-
timate all rate constants of a reformulated kinetic-response
model when this is almost certainly impossible for the origi-
nal model.

Our formalism for specifying response in terms of com-
ponents is general enough to suit a diversity of experimen-
tally observed situations. These include the cases where im-
mobilised ligand is heterogeneous, or has a portion that is
non-functional, or dissociates from the sensor surface over
time. Our template is not only appropriate for modelling the
response obtained from a DBA. It is also suited to modelling
response from those assays that employ a heterogeneous an-
alyte solution, such as the SCA. When relating a response
model as in Eq. (3.2) to the kinetic model (having general
form Eq. (3.1)), we expect that having a relationship between
parameters and physical quantities will assist parameter esti-
mation (see Remark 2.3).

Progress towards defining a kinetic-response model for
a particular interaction mechanism will require a suitable ki-
netic model. The diversity of representations we noted for re-
sponse models in Section 2.7 is also seen in the description of
biomolecular interaction dynamics associated with interac-
tion mechanisms. Through work in progress, we aim to rec-
oncile alternative models associated with the simple bimolec-
ular model ([47]) and the two-state conformational change
model ([48]). This will enable us to completely specify an
appropriate kinetic-response model for each.

There are a number of flow-cell optical biosensor interac-
tion models which are more complex than the two referenced
in Section 2.2. (See, for example, [14, 15, 30, 42, 45]). Our
scrutiny of simpler interactions here will provide a template
to guide the complete specification of models for more so-
phisticated interactions. Having achieved this, we may also
be able to test these models for global a priori identifiability
using the approaches of [9, 10].

We note that ‘equilibrium experiments’ are performed
to provide data for use in estimating equilibrium constants.
Adapting the terminology introduced earlier, we may pro-
pose that such data is modelled by an ‘equilibrium-response’
model. The analysis of such models is simpler than that for
kinetic-response models associated with kinetic experiments.
Accordingly, our discussion here will readily translate to a
means of specifying equilibrium-response models that is suit-
ably informative.
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