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Hasenauer2,3,*, and Julio R. Banga1,*

1Bioprocess Engineering Group, IIM-CSIC, Vigo, 36208, Spain
2Institute of Computational Biology, Helmholtz Zentrum München

– German Research Center for Environmental Health, 85764
Neuherberg, Germany

3Center for Mathematics, Technische Universität München, 85748
Garching, Germany

*To whom correspondence should be addressed.

April 4, 2018

Abstract

Motivation: Mechanistic kinetic models usually contain unknown parameters,
which need to be estimated by optimizing the fit of the model to experimental
data. This task can be computationally challenging due to the presence of local
optima and ill-conditioning. While a variety of optimization methods have been
suggested to surmount these issues, it is not obvious how to choose the best one
for a given problem a priori, since many factors can influence their performance.
A systematic comparison of methods that are suited to parameter estimation
problems of sizes ranging from tens to hundreds of optimization variables is
currently missing, and smaller studies indeed provided contradictory findings.
Results: Here, we use a collection of benchmark problems to evaluate the
performance of two families of optimization methods: (i) a multi-start of de-
terministic local searches; and (ii) a hybrid metaheuristic combining stochastic
global search with deterministic local searches. A fair comparison is ensured
through a collaborative evaluation, involving researchers applying each method
on a daily basis, and a consideration of multiple performance metrics capturing
the trade-off between computational efficiency and robustness. Our results show
that, thanks to recent advances in the calculation of parametric sensitivities, a
multi-start of gradient-based local methods is often a successful strategy, but a
better performance can be obtained with a hybrid metaheuristic. The best per-
former is a combination of a global scatter search metaheuristic with an interior
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point local method, provided with gradients estimated with adjoint-based sensi-
tivities. We provide an implementation of this novel method in an open-source
software toolbox to render it available to the scientific community.
Availability and Implementation: The code to reproduce the results is
available at Zenodo https://doi.org/10.5281/zenodo.1160343

Contact: jan.hasenauer@helmholtz-muenchen.de, julio@iim.csic.es

1 Introduction

Mechanistic kinetic models provide a basis to answering biological questions
via mathematical analysis. Dynamical systems theory can be used to inter-
rogate these kinetic models, enabling a more systematic analysis, explanation
and understanding of complex biochemical pathways. Ultimately, the goal is
the model-based prediction of cellular functions under new experimental con-
ditions [1, 32, 34, 53]. During the last decade, many efforts have been devoted
to developing increasingly detailed and, therefore, larger systems biology mod-
els [29,49,51]. Such models are often formulated as nonlinear ordinary differen-
tial equations (ODEs) with unknown parameters. As it is impossible to measure
all parameters directly, parameter estimation (i.e. model calibration) is crucial
for the development of quantitative models. The unknown parameters are typ-
ically estimated by solving a mathematical optimization problem which mini-
mizes the mismatch between model predictions and measured data [2,5,28,46].

Parameter estimation for dynamical systems is an inverse problem [55] that
exhibits many possible challenges and pitfalls, mostly associated with ill-conditioning
and non-convexity [48]. These properties, which are in general only known a
posteriori, influence the performance of optimization methods. Even if we re-
strict our attention to a specific class of problems within the same field (e.g.,
parameter estimation in systems biology), there are often large differences in
performance between different applications [31]. Hence, methods need to be
benchmarked for a representative collection of problems of interest in order to
reach meaningful conclusions. In this study, we consider the class of medium to
large scale kinetic models. These models pose several challenges, such as com-
putational complexity, and an assessment of the performance of optimization
methods is particularly important [4, 13,58].

The calibration of large-scale kinetic models usually requires the optimiza-
tion of a multi-modal objective function [8,35,40], i.e. there will be several local
optima. Local optimization methods, such as Levenberg-Marquardt or Gauss-
Newton [48], which converge to local optima, will only find a global optimum
for appropriate starting points. Convergence to a suboptimal solution is an es-
timation artifact that can lead to wrong conclusions: we might think that the
mechanism considered is not suitable to explain the data, while the real reason
might be that the method failed to locate the global optimum [6].

In order to avoid suboptimal solutions, many studies have recommended the
use of global optimization techniques [3,5,8,37]. One of the earliest and simplest
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global optimization methods is the multi-start, which consists of launching many
local searches from different initial points in parameter space, assuming that
one of them will be inside the basin of attraction of the global solution. It has
been shown that multi-starts of local optimization methods can be sufficient for
successful parameter estimation in kinetic models [20, 46], although the use of
other approaches, such as metaheuristics, has also been advocated [22,58].

In this study, we evaluate the state-of-the-art in parameter estimation method-
ologies and provide guidelines for their application to large kinetic models in
systems biology. To this end, we use seven previously published estimation
problems to benchmark a number of optimization methods. The selected prob-
lems are representative of the medium and large scale kinetic models used in
systems biology, with sizes ranging from dozens to hundreds of state variables
and parameters (see Table 2 for details). To the best of our knowledge, this is
the first time that a systematic evaluation of parameter estimation methods is
conducted on a set of problems of this size and characteristics. We compare sev-
eral variants of state-of-the-art optimization methods which have been recently
reported as competitive options for large problems, including multi-start [46]
and hybrid metaheuristics [58]. We perform systematic comparisons between
these different approaches using metrics capturing the performance/robustness
trade-offs. Finally, we discuss the implications of our results and provide guide-
lines for the successful application of optimization methods in computational
systems biology.

2 Methods and Benchmark Problems

2.1 Problem definition: Parameter optimization for ODE
models describing biological processes

We consider deterministic dynamic systems described by nonlinear ODEs of the
following form:

ẋ = f (x, p, t) , x(t0) = x0(p),

y = g(x, p, t),
(1)

in which x(t) is the vector of state variables at time t, x0 is the vector of initial
conditions, f is the vector field of the ODE, g is the observation function, and
p is the vector of unknown constant parameters with lower and upper bounds
pL ≤ p ≤ pU .

Parameter optimization for dynamical systems is a nonlinear dynamic op-
timization problem that aims to find the vector of parameter values p that
minimizes the distance between model simulation and measured data subject
to the dynamics of the system and (potentially) other possible constraints. The
distance is measured by a scalar objective function (or cost function), which can
be of several forms. One common choice is the weighted least squares objective
function given by:
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Jlsq =

nε∑
ε=1

nεo∑
o=1

nε,os∑
s=1

wε,os (ymε,o
s − yε,os (p))

2
(2)

in which nε is the number of experiments, nεo is the number of observables per
experiment, nε,os is the number of samples per observable per experiment, ymε,o

s

is the measured data, yε,os (p) is the corresponding simulated output, and wε,os
are constants that weight the observables in the objective function according to
their magnitudes and/or the confidence in the measurements.

Another common choice for the objective function is the log-likelihood. As-
suming independent, normally distributed additive measurement noise with
standard deviation σε,os , the likelihood of observing the data D given the pa-
rameters p is:

P(D|p) =

nε∏
ε=1

nεo∏
o=1

nε,os∏
s=1

1√
2πσε,os

exp

(
−1

2

(
ymε,o

s − yε,os (p)

σε,os

)2
)

(3)

Maximizing (3) is equivalent to minimizing the negative log-likelihood function:

Jnll =
1

2

nε∑
ε=1

nεo∑
o=1

nε,os∑
s=1

[
log
(
2π(σε,os )2

)
+

(
ymε,o

s − yε,os (p)

σε,os

)2
]

(4)

If the standard deviations σε,os are known, Jlsq and Jnll possess the same optimal
parameters. Furthermore, for wε,os = 1/(σε,os )2, the log-likelihood and least
squares functions are related by

Jnll =
1

2
Jlsq +

1

2

nε∑
ε=1

nεo∑
o=1

nε,os∑
s=1

log
(
2π(σε,os )2

)
(5)

We remark that a good agreement of model output and data does not imply
that the parameter estimates are correct or reliable. Practical and structural
non-identifiabilities can prevent a parameter from being precisely determined
[15]. Still, an accurate fit – and hence optimization – is the starting point
for many uncertainty analysis methods. State-of-the-art identifiability analysis
methods have been recently evaluated elsewhere [10,33,38,45,54].

2.2 Overview of optimization methods

The ideal optimization method for the above class of problems would be able to
find the global optimum with guarantees and in a short computation time. Fur-
thermore, it should scale well with problem size and be able to handle arbitrary
non-linearities. Currently, no such method exists.

Local gradient-based methods [48] can be efficient but will converge to the lo-
cal optimum in the basin of attraction where they are initialized. Local gradient-
free (also called zero-order) methods, such as pattern search [59], are less efficient
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than gradient-based methods but more robust with respect to situations where
the gradient is unavailable or unreliable [11].

Global methods aim to locate the global solution by means of either de-
terministic [19] or stochastic [60] strategies. Deterministic methods include so-
called complete and rigorous approaches, both of which can ensure convergence
to the global solution under certain circumstances. In contrast, stochastic (also
known as probabilistic) methods can only guarantee global optimality asymptot-
ically in the best case [42], but can solve many problems that cannot be handled
using available deterministic methods. Both deterministic and stochastic global
optimization methods have been used to solve parameter estimation problems in
systems biology. The results show that deterministic methods suffer from lack
of scalability [39]. The computational cost of purely stochastic methods (such
as simulated annealing, or genetic algorithms) usually scales up better, but the
computation times can still be excessive for problems of realistic size [37,40].

Hybrid global-local methods attempt to exploit the benefits of global and
local methods. By combining diversification phases (global search) and inten-
sification phases (local search), hybrid methods facilitate reliable global explo-
ration and fast local convergence. As a result, hybrid methods can potentially
outperform the efficiency (convergence rate) of purely stochastic methods while
keeping their success rate. One such hybrid method is the so called multi-start
(MS) strategy [60], which solves the problem repeatedly with local methods ini-
tialized from different (e.g. random) initial points. Thus, MS can be regarded
as one of the earliest hybrid strategies, and there are different extensions avail-
able [25, 60]. An alternative family of hybrid methods are metaheuristics (i.e.
guided heuristics). An example is the enhanced scatter search (eSS) method [17],
an improvement of the method designed by [23]. The eSS method combines a
global stochastic search phase with local searches launched at selected times
during the optimization, in order to accelerate convergence to local optima.
Further accelerations can be achieved by parallelization [44,57].

In all hybrid methods the efficiency of local methods plays a major role. The
most efficient local methods are gradient-based, so their performance depends
crucially on the accuracy of the gradient calculations [43]. The simplest way
of approximating the gradient is by finite differences. However, more accurate
gradients are provided by forward sensitivity analysis [47] and adjoint sensitivity
analysis [20]. While the former provides information on individual residuals
which can be used in least squares algorithms, the latter is more scalable.

2.3 Choice of optimization methods for benchmarking

In this study, we consider several competitive hybrid methods based on the
recent results reported by [21] and [58]. These methods are summarized in
Table 1 and combine two global strategies:

• MS: multi-start local optimization.

• eSS: enhanced scatter search metaheuristic
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Table 1: Classification of the optimization methods considered in the bench-
marking. These methods result from the combination of two global strategies
with three local methods and two types of scaling for the search space.
Global Local method & gradient calculation Parameter
strategy FMINCON-ADJ NL2SOL-FWD DHC None scaling

MS
MS-FMINCON-ADJ-LOG MS-NL2SOL-FWD-LOG MS-DHC-LOG – LOG
MS-FMINCON-ADJ-LIN MS-NL2SOL-FWD-LIN MS-DHC-LIN – LIN

eSS
eSS-FMINCON-ADJ-LOG eSS-NL2SOL-FWD-LOG eSS-DHC-LOG eSS-NOLOC-LOG LOG
eSS-FMINCON-ADJ-LIN eSS-NL2SOL-FWD-LIN eSS-DHC-LIN eSS-NOLOC-LIN LIN

with three different local methods:

• NL2SOL-FWD: the nonlinear least-squares algorithm NL2SOL, using
forward sensitivity analysis for evaluating the gradients of the residuals.
The use of NL2SOL [14] has recently been advocated for parameter es-
timation by [22]. Additionally, [46] showed that least-squares algorithms
with residual sensitivities computed using forward sensitivity analysis out-
perform many alternative approaches.

• FMINCON-ADJ: the interior point algorithm included in FMINCON
(MATLAB and Optimization Toolbox Release 2015a, The MathWorks,
Inc., Natick, Massachusetts, United States), using adjoint sensitivities for
evaluating the gradient of the objective function. This method has been
shown to outperform the least-squares method using forward sensitivities
for large-scale models [20,21], due to the accelerated gradient evaluation.

• DHC: a gradient-free dynamic hill climbing algorithm. This algorithm has
been proposed by [12] and outperformed several alternative approaches in
a recent study [58]. In our experience, this method is competitive when
the gradient is numerically difficult to evaluate, e.g., if objective function
values are corrupted by numerical integration errors.

The considered global strategies and local methods are a representative subset
that covers distinct approaches, which have been shown in the past to exhibit
competitive performances on a number of problems.

2.4 Choice of scaling for the optimization variables

In addition to the optimization methods, we consider two different choices for
the scaling of the optimization variables:

• LIN: linear scale

• LOG: logarithmic scale

While it is possible to consider the model parameters, p, directly as optimiza-
tion variables, several studies suggest that using the logarithms of the model
parameters, q = log(p), improves the performance of local optimization meth-
ods [31,46].
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2.5 Comparison of optimization methods

The performance of optimization methods can be compared using several eval-
uation criteria. Ideally, a criterion should be:

1. single, interpretable quantity

2. comparable across models and methods (to enable an integrated
analysis)

3. account for computation time and objective function value

A number of evaluation criteria have been used in the literature to compare
the performance of optimization methods, e.g., dispersion plots of objective
function value versus computation time and waterfall plots showing the ordered
objective function values found by the different searches. These and other plots
are reported in the Supplementary Information, Figs. S1–S14. Alternative
criteria are performance profiles [16] which report for a given set of optimization
problems how often one algorithm was faster than all others. The required
assumption that all algorithms converge is relaxed in for data profiles [41] by
considering the decrease in objective function value and reporting the fraction
of solved problems as a function of the budget per variable. While all these
plots are useful tools, they do not provide a single, interpretable quantity and
fail in other ways.

Upon consideration of a variety of different evaluation criteria, we decided
to adopt a workflow consisting of several steps, which lead to a newly proposed
metric that is a distillation of the information obtained in previous steps. The
workflow considers the following criteria:

1. Convergence curves

2. Fixed-budget scenario and fixed-target scenario

3. Dispersion plots of the success rate versus average computation time

4. Overall efficiency (OE)

The first step is to evaluate convergence curves, which show the objective func-
tion value as a function of computation time (Fig. 1A). For eSS, the convergence
curves are constructed from single searches as they reach the predefined maxi-
mum CPU time. For MS optimization, each convergence curve corresponds to
a sequence of local searches and continues until the predefined maximum CPU
time was reached.

The information encoded in the convergence curves is in the second step
summarized by considering a fixed-budget scenario and a fixed-target scenario,
as proposed by [24]. In the fixed-budget scenario, the distribution of the objec-
tive function for a given computation time is considered, meaning that a vertical
line is drawn. In the fixed-target scenario the distribution of time points is con-
sidered at which a desired objective function value or value to reach (VTR) is
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Figure 1: Illustration of performance criteria. A) Convergence curves
for three different methods. Shaded areas show the range of all runs, while
solid lines represent their median. The dashed horizontal line is the value to
reach (VTR), that is the maximum objective function value that can be consid-
ered a successful result. The dashed vertical line is the maximum time allowed
(MAXT). B) Dispersion plot of objective value after the maximum time al-
lowed and the derived success rates (SR). The SR is the area under the curve
where objective ≤ VTR. C) Success rate and computation time. Points indi-
cate individual methods. The Pareto front is the set of non-dominated methods.
Methods to the right or above the Pareto front are dominated by other methods
with either shorter computation time or higher success rate. Filled areas show
the average computation time 〈t〉succ required to obtain a successful run for the
respective method.

reached, meaning that a horizontal line is drawn. Once an optimization has
reached the desired VTR (horizontal view), it is considered successful. The suc-
cess rate (SR) of an algorithm is the fraction of searches that reached the VTR
within this maximum computation time, MAXT (Fig. 1B). Complementary, we
evaluate the average computation time required by an algorithm, 〈t〉, which is
the minimum of the time required to reach VRT and MAXT. In the third step,
we consider dispersion plots of the success rate versus average computation time
to study the relation of the two quantities (Fig. 1C). Note that this dispersion
plot may reveal in some cases a Pareto set structure, consisting of algorithms
which provide an optimal trade-off between conflicting goals (in this case, high
success rate and low computation time): it is not possible to improve one of its
objectives without worsening the other. We are interested in methods that are
located towards the bottom (i.e. high success rate) and left (i.e. low computa-
tion time) of this plot. Therefore, in the fourth step, we quantify the trade-off
between success rate and average computation time using a novel metric called
overall efficiency (OE). The OE for method i on a given problem is defined as:

OEi =
minj{〈t〉succj}
〈t〉succi

(6)

where 〈t〉succi is the average computation time we need to run method i to
obtain one successful run. It is calculated as 〈t〉succi = 〈t〉i /SRi, where 〈t〉i and
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SRi are the average computation time and the success rate of method i for that
problem. The computation time 〈t〉succi is directly related to the area in the
dispersion plot (Fig. 1C); accordingly, the OE is the ratio of the minimal area
and the area for a given algorithm. The inverse of the overall efficiency, 1/OEi,
quantifies how much longer one has to run method i – compared to the best
method – in order to find a good solution. The OE ranges between 0 and 1;
for each particular problem the best performing method achieves the maximum
score, OE = 1. To evaluate methods on a set of optimization problems, we
compute a method’s cumulative overall efficiency as the sum of its OEs for the
individual problems. The method with highest cumulative OE will be the one
exhibiting the best trade-off between success rate and computation time for the
set of problems.

In summary, our workflow considers multiple criteria and summarizes the
trade-off between computational complexity and success with the OE. This novel
metric fulfils all the afore-defined criteria.

2.6 Benchmark problems

In this study, we consider seven benchmark problems based on previously pub-
lished kinetic models [7, 9, 30, 36, 40, 50, 56] which describe metabolic and sig-
nalling pathways of different organisms (from bacteria to human). These prob-
lems possess 36 to 383 parameters and 8 to 104 state variables. The data
points are collected under up to 16 experimental conditions, corresponding to
the number of required numerical simulations. The features of all problems are
summarized in Table 2. The benchmarks B2–B5 had been previously included
in the BioPreDyn-bench collection [58], and BM1 & BM3 were used in [21].

Table 2: Main features of the benchmarks.The model IDs follow the nomencla-
ture in [58] and [21].

ID B2 B3 B4 B5 BM1 BM3 TSP

Original ref. [7] [30] [56] [36] [50] [9] [40]
Organism E. coli E. coli Chinese hamster Generic Mouse Human Generic
Description Metabolic Metabolic Metabolic Signaling Signaling Signaling Metabolic
level & transcrip.
Parameters 116 178 117 86 383 219 36
Dynamic states 18 47 34 26 104 500 8
Observed states 9 47 13 6 12 5 8
Experiments 1 1 1 10 1 4 16
Data points 110 7567 169 960 120 105 336
Data type measured simulated simulated simulated measured measured simulated
Noise level realN no noise variable� σ = 5%F realN realN σ = 5%F

NNoise levels are unknown as real measurement data are used.
� Noise levels differ for readouts.
FNoise levels are proportional to the signal intensity.
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2.7 Implementation

The benchmark problems have been implemented in MATLAB (MathWorks,
Natick, MA, USA) using the AMICI toolbox [20], a free MATLAB interface for
SUNDIALS solvers [26]. The optimization methods have been implemented as
MATLAB scripts calling solvers from the MATLAB Optimization Toolbox and
from the MEIGO toolbox [18], and making use of the efficient gradient compu-
tation provided by the the AMICI toolbox. The code necessary for reproducing
the results reported here is available at Zenodo https://doi.org/10.5281/

zenodo.1160343.

3 Results and Discussion

3.1 Comprehensive evaluation of the considered optimiza-
tion methods on the benchmark problems

To assess the performance of the different optimization methods, we solved the
7 benchmark problems using the 14 optimization methods listed in Table 1. The
optimization methods were run 10 times, each time until the predefined, max-
imum problem-specific CPU time (Supplementary Information, Tab. S1) was
reached, resulting in an overall computational effort of ∼ 400 CPU days. The
convergence curves for all optimization methods on all problems were evalu-
ated (see Fig. 2A for a representative example and Supplementary Information,
Figs. S15–S28 for the complete set). Numerical values of the horizontal and
vertical views of said curves are provided in Tables S1–S4, and graphically in
Figs. S37–S40. As expected, the optimization results indicate that the perfor-
mance of the optimization methods varies substantially among the benchmark
problems. This is in agreement with previous studies [31,58].

For the quantitative evaluation, we selected a VTR for each benchmark
which provides a solution with a good visual agreement between model output
and data. Since the choice of a specific VTR is problematic, we repeated the
analyses for four different values, finding that the relative ranking of the meth-
ods in terms of performance was robust to changes in the VTR. Hence, in the
following subsections, we report results for a reference VTR; results for other
choices of VTR including larger and smaller values are shown in the Supple-
mentary Information, Figs. S29–S40.

In the following, we present the key findings of our analysis and address,
amongst others, the question of which is the most efficient method for perform-
ing parameter optimization. The detailed evaluation results are presented in
the Supplementary Information.

3.2 Gradient-based local searches outperform gradient-
free local searches

Our comprehensive evaluation clearly shows that high-quality sensitivity calcu-
lation methods provide a competitive advantage to local methods that exploit
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them. Optimization using adjoint and forward sensitivity analysis (FMINCON-
ADJ and NL2SOL-FWD) usually outperform the gradient-free alternative (DHC).
This is reflected in the dispersion plots (see, e.g., Fig. 2B) and in a higher cu-
mulative OE (Fig. 2C) and holds for MS and eSS settings. Notably, successful
optimization of BM3 for the given computational budget required adjoint sen-
sitivity analysis in combination with optimization in the log-scale (Fig. 2D).

Figure 2: Results of performance evaluation. A) Convergence curves of the
different methods for benchmark TSP. Results for the remaining benchmarks are
reported in the Supplementary Information. B) Average computation time of
each method versus the inverse of its success rate for benchmark TSP. Methods
with zero success rate are not shown. Results for the remaining benchmarks are
reported in the Supplementary Information. C) Cumulative overall efficiency:
Each method is represented by a stack of the OEs observed for the individual
benchmark problems. The maximum possible score is the same as the number of
benchmarks, i.e. seven. D) Successful methods for each benchmark are shown
in colour; methods which never succeeded for a given problem are shown in
white.

3.3 Enhanced scatter search outperforms multi-start local
optimization

Our results show that MS is usually sufficient to find a good solution, given the
same computation time as eSS (Fig. 2D). However, eSS were generally more effi-

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2018. ; https://doi.org/10.1101/295006doi: bioRxiv preprint 

https://doi.org/10.1101/295006
http://creativecommons.org/licenses/by-nc-nd/4.0/


cient than MS (Fig. 2C). On average a 2-fold improvement of the OE is observed,
almost independent of the local method. The reasons for the efficiency improve-
ment is probably that eSS starts the local searches from promising points found
through advanced exploration and recombination strategies. In this regard, it
can be considered as an “advanced multi-start” [52].

3.4 Optimization in logarithmic scale outperforms opti-
mization in linear scale

Previous studies reported that the transformation of the optimization variable to
log-scale improves the reliability and computational efficiency of local methods
[31, 46]. Our findings corroborate these results and show for the first time
that also global optimization methods are more efficient when using log-scale
(LOG) than linear-scale (LIN). Overall, we observe an average improvement
of the cumulative OE by a factor of 2 (Fig. 2C). Indeed, for some problems
(BM3, TSP), reasonable fits could only be obtained using the log-transformed
parameters (Fig. 2D).

3.5 Best performing method

The comparison of all methods reveals that eSS-NL2SOL-FWD-LOG possesses
the best overall efficiency on the considered benchmark problems and settings,
closely followed by eSS-FMINCON-ADJ-LOG (Fig. 2C). The difference in per-
formance between both methods is small; indeed, if different VTRs are chosen
eSS-FMINCON-ADJ-LOG can become the best performer (Figs. S33, S34,
S36). Complementary, eSS-FMINCON-ADJ-LOG is the only method that suc-
cessfully solves all problems (Fig. 2D), while the method with the best performer
(eSS-NL2SOL-FWD-LOG) fails for BM3, possibly due to the very large num-
ber of states and parameters of this problem. In summary, our performance
evaluation hence suggests the use of eSS-FMINCON-ADJ-LOG.

4 Conclusion

In this paper we have presented a comparative evaluation of state-of-the-art
optimization methods for parameter estimation in systems biology. We have
applied these methods to a benchmark problems of different sizes (medium to
large) and complexities. To compare the different methodologies in detail, we
have used a multi-criteria workflow, exploring several possible ways of assessing
the performance of optimization methods for this task. We have reported results
using a number of selected indicators and evaluation tools. Furthermore, we
have introduced the concept of overall efficiency (OE), which quantifies the
trade-off between success rate and computation time, providing a numerical
indication of the most efficient method. We have found that this metric is a
convenient summary of the comparative performance of a method on a set of
problems.
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A central goal of our work was to re-examine past results regarding the
performance of multi-start and metaheuristics (i.e. enhanced scatter search).
Firstly, we have confirmed that multi-start local optimization is a powerful ap-
proach [27,46] as it solved most considered benchmark problems in a reasonable
time. The only exception is B3, a problem for which numerical simulation fails
for many parameter points. Secondly, we verified that the enhanced scatter
search metaheuristic often possesses higher success rates and efficiency com-
pared to plain multi-start optimization methods [22]. However, the difference of
a factor of two was smaller than suggested by several previous studies and will
likely depend on the set of benchmark problems. Furthermore, the average im-
provement by a factor of two is smaller than the variability across benchmarks,
implying that for many problems the use of multi-start methods is still benefi-
cial (e.g., BM3). Thirdly, our results confirm that a purely global optimization
strategy (i.e. not combined with a local method) is less efficient than a hy-
brid one. Finally, we have assessed the influence of parameter transformations,
concluding that optimizations in logarithmic scale clearly outperform those in
linear scale.

We considered two sophisticated gradient-based methods, FMINCON with
adjoint sensitivities and NL2SOL with forward sensitivities, whose use was
mostly beneficial. A gradient-free local method, DHC, was found to be less
precise than the gradient-based counterparts, although its use may still be ad-
vantageous in problems with numerical issues that limit the efficacy of gradient-
based techniques.

Overall, the best performing method in our tests was eSS-FMINCON-ADJ-
LOG, that is, a hybrid approach combining the global metaheuristic eSS with
the local method FMINCON, provided with gradients estimated with adjoint-
based sensitivities. This was the only method that succeeded in calibrating all
the benchmarks and it also achieved a good overall efficiency. To facilitate the
application of this and other methods, we provide their implementations in the
Supplementary Material. In the case of the best performing method, our solver
is – to the best of our knowledge – the first publicly available implementation.
Accordingly, our study provides access to a novel optimizer applicable to a broad
range of application problems in systems biology.
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