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Abstract

Multi-subject functional magnetic resonance imaging (fMRI) analy-
sis is often concerned with determining whether there exists a significant
population-wide ’activation’ in a comparison between two or more condi-
tions. Typically this is assessed by testing the average value of a contrast
of parameter estimates (COPE) against zero in a general linear model
(GLM) analysis. In this work we investigate several aspects of this type
of analysis. First, we study the e↵ects of sample size on the sensitivity
and reliability of the group analysis, allowing us to evaluate the ability of
small sampled studies to e↵ectively capture population-level e↵ects of in-
terest. Second, we assess the di↵erence in sensitivity and reliability when
using volumetric or surface based data. Third, we investigate potential
biases in estimating e↵ect sizes as a function of sample size. To perform
this analysis we utilize the task-based fMRI data from the 500-subject
release from the Human Connectome Project (HCP). We treat the com-
plete collection of subjects (N = 491) as our population of interest, and
perform a single-subject analysis on each subject in the population. We
investigate the ability to recover population level e↵ects using a subset of
the population and standard analytical techniques. Our study shows that
sample sizes of 40 are generally able to detect regions with high e↵ect sizes
(Cohen’s d > 0.8), while sample sizes closer to 80 are required to reliably
recover regions with medium e↵ect sizes (0.5 < d < 0.8). We find little
di↵erence in results when using volumetric or surface based data with re-
spect to standard mass-univariate group analysis. Finally, we conclude
that special care is needed when estimating e↵ect sizes, particularly for
small sample sizes.
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1 Introduction

The analysis of multi-subject functional magnetic resonance imaging (fMRI)
data is a critical component to most human brain mapping studies (Geuter
et al., 2017). First, they provide an increase of the sensitivity of the overall
experiment, as more data is available. Second, they allow one to determine
whether the observed e↵ects are common and stable across, or between, groups.
Third, they allow for generalization of conclusions to the whole population of
subjects.

Standard group analyses in the neuroimaging community typically involve
utilizing two separate models. A first-level General Linear Model (GLM) analy-
sis is performed on each subject’s data, which provides within-subject contrasts
across parameter estimates (COPEs; e.g., activity magnitude estimates for [vi-
sual stimulation vs. rest]). A second-level analysis provides population inference
on whether COPEs are significantly di↵erent from zero and assesses the e↵ects
of second-level predictors (e.g., group status, behavioral performance; Lindquist
et al. (2012)). While, mixed-e↵ects implementations exist for popular software
packages (e.g., Woolrich et al. (2004); Friston et al. (2005)), researchers typi-
cally model first-level contrast data using an un-weighted, ordinary least squares
(OLS) analysis (Mumford and Nichols, 2009).

Most group fMRI studies are small and have traditionally consisted of be-
tween 10 � 30 subjects (Button et al., 2013). Because of the relatively small
number of subjects included, the sensitivity and reliability of these analyses are
questionable and hard to investigate. In recent years there has been a great
deal of discussion regarding how studies with small sample sizes undermine the
reliability of neuroscience research (Button et al., 2013; Munafò et al., 2014).
The argument is that small-sample studies have very low statistical power to
detect true e↵ects and a reduced likelihood for statistically significant results to
be true e↵ects. This has led to a situation where a large number of published
results are not replicable and very likely false. Hence, a critical evaluation of
the methods used to assess significance in small sample data is needed.

Traditional fMRI data consists of a time series of three-dimensional brain vol-
umes, each composed of hundreds of thousands of equally sized voxels. Recently,
cortical surface fMRI has experienced a rise in popularity (Fischl, 2012; Glasser
et al., 2013). Here the cortical gray matter is represented as a 2-dimensional
manifold surface in the format of a triangular mesh, which consists of vertices
rather than voxels. This o↵ers several potential advantages over volumetric
fMRI data, as (i) it may improve alignment of cortical areas across multiple
subjects, which is key for spatially accurate group-level analyses; and (ii) nearby
locations are close in terms of distance along the cortical surface, and therefore
tend to exhibit similar patterns of neuronal activity, while in volumetric fMRI
locations that are close in terms of Euclidean distance may be from di↵erent
areas of the cortex due to cortical folding or even from di↵erent tissue types.
It remains an outstanding question whether surface based data is preferable, in
terms of sensitivity and specificity, to volumetric data when performing standard
group analysis.
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After performing group analyses, it is often of interest to estimate and report
e↵ect sizes over certain key brain regions. Nearly a decade ago, a heated dis-
cussion about ‘circular’ or ‘nonindependent’ analysis in neuroimaging emerged
in the literature (Kriegeskorte et al., 2010; Vul et al., 2009). Here an analysis
is considered circular if it is based on data that were selected for showing the
e↵ect of interest or a related e↵ect. E↵ect sizes estimated in a circular fashion
tend to be significantly inflated compared to those estimated in a non-circular
fashion. However, the size of these biases and how they depend upon sample
size have not been further investigated to the best of our knowledge.

In this work, we first evaluate the e↵ects of sample size on the sensitiv-
ity and reliability of the OLS approach, allowing us to evaluate the ability of
small sampled studies to e↵ectively capture population-level e↵ects of interest.
Second, we assess the di↵erence between volumetric and surface based analysis
in terms of their performance in group analysis in the mass-univariate setting
where separate tests are performed at each brain location. Third, we investigate
e↵ect size distributions and potential biases in estimating e↵ect sizes from real
fMRI data (Kriegeskorte et al., 2010; Vul et al., 2009).

To explore these issues we utilize the task-based fMRI data from the 500-
subject release from the NIH-sponsored Human Connectome Project (HCP)
(Van Essen et al., 2013) for which processed volumetric and surface data are
both available. We treat the complete collection of subjects (N = 491) as our
population of interest, and perform single-subject analysis on each subject in the
population. In particular, we focus our attention on fMRI from four di↵erent
HCP tasks: emotion, gambling, motor, and working memory. This allows us
to evaluate the appropriateness of the population-level assumptions required to
perform valid second level analysis using a smaller sub-set of subjects from the
population. Using this population of interest, we investigate how well we can
estimate population-level e↵ects using a smaller sample from the population,
and common analytical techniques.

The proposed study shares similarities to previous work by Thirion et al.
(2007), who used a cohort of 80 subjects to investigate the role inter-subject
variability plays in sensitivity and reliability of studies with a smaller number
(e.g., 10� 16) of subjects. They showed, among other things, that 20 subjects
or more should be included in functional neuroimaging studies in order for
results to be replicable across samples (studies). Desmond and Glover (2002)
recommended similar sample sizes of 20�30 subjects. Here we focus our analysis
on a larger data set consisting of task-based fMRI data from N = 491 subjects.
This allows us to investigate larger sample sizes than those in Thirion et al.
(2007) and Desmond and Glover (2002), more variable tasks, and data sampled
at a higher spatial and temporal resolution.

The task HCP data set has been used in several recent papers to investigate
related topics. For example, Poldrack et al. (2017) used the data to obtain e↵ect-
size estimates for a number of common neuroimaging experimental paradigms
in certain regions of interest. More recently, Lohmann et al. (2017) used it to
investigate the false negative rates in studies with small sample sizes. Similar in
spirit to our approach, they used a large cohort of 400 subjects to approximate
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the true positive e↵ects. Thereafter, they computed the fraction of those e↵ects
that was detected reliably using standard software packages at various smaller
sample sizes. They found that for common sample sizes this value was below
25%. In this work, we validate and expand upon the results from these papers.

This paper is organized as follows. We begin by focusing on the character-
istics of the entire population of subjects. This allows us to perform a census
to assess complete information regarding activation and variability within the
population. We assess e↵ect sizes across the brain and use this to create whole-
brain maps of power and minimum sample sizes needed to detect certain e↵ects.
Next, we evaluate the e↵ects of sub-sampling from the population, and evalu-
ate how the reliability, power, and e↵ect size of an fMRI study depends upon
sample size. We conduct these analyzes on both the volumetric and surface
based (grayordinate) data formats to compare them in terms of the ability to
recover true e↵ects. We conclude by comparing e↵ect size estimates based on
significant clusters, as they may be collected in pilot studies for the purpose of
power analysis, against the population e↵ects sizes.

2 Data and methods

2.1 Data sets

The Human Connectome Project 500 (HCP 500) consists of both structural and
functional data from approximately 500 subjects. The functional data include
both resting state (rfMRI) and task-related (tfMRI) images of multiple tasks.
Our work here only uses the tfMRI GLM contrast images provided by the HCP.
The following contrasts are considered: 2-back versus 0-back for the working
memory (WM) task (N = 481), average motor action versus baseline for motor
(N = 479), faces versus shapes for emotion (N = 471), and reward versus
punishment for gambling (N = 479). The number of subjects for each task is
slightly di↵erent since some subjects are missing a subset of the tasks. We also
excluded subjects for which issues with either the segmentation or the surface
quality control are reported (Issue code B) by the HCP consortium1

All data were acquired on a Siemens Skyra 3T scanner housed at Washington
University in St. Louis. For each task, two runs were acquired, one with a
right-to-left and the other with a left-to-right phase encoding. Whole-brain EPI
acquisitions were acquired with a 32 channel head coil with TR= 720ms, TE=
33.1ms, flip angle= 52�, BW= 2290Hz/Px, in-plane FOV = 208⇥ 180mm, 72
slices, 2.0mm isotropic voxels, with a multi-band acceleration factor of 8. For a
full description of the fMRI Data Acquisition see Van Essen et al. (2012).

Volumetric imaging data was preprocessed according to the HCP ‘fMRIVol-
ume’ pipeline (Glasser et al., 2013), which includes gradient unwarping, motion
correction, fieldmap-based EPI distortion correction, brain-boundary-based reg-
istration of EPI to structural T1-weighted scan, non-linear registration into

1
https://wiki.humanconnectome.org/pages/viewpage.action?pageId=88901591
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MNI152 space, grand-mean intensity normalization, and spatial smoothing us-
ing a Gaussian kernel with a FWHM of 4mm. Volumetric data were masked
with a graymatter mask including cortical and subcortical graymatter to ensure
that analyses for both data formats were conducted on comparable tissues.

Surface, or grayordinate, data was preprocessed according to the HCP ‘fM-
RISurface‘ pipeline (Glasser et al., 2013). Here, functional volume data from
cortical gray matter voxels are mapped onto the standard 32k Conte69 sur-
face mesh. The projection onto the standard surface mesh is accomplished via
intermediate projections to each subject’s individual cortical surface and a high-
resolution standard surface mesh (Glasser et al., 2013). Subcortical gray matter
voxels are mapped onto the volumetric portion of the Conte69 space. The gray-
ordinate data thus include data from cortical and subcortical graymatter in a
standard space. Data were spatially smoothed using a Gaussian kernel with a
FWHM of 4mm. For a full description of the pre-processing see (Glasser et al.,
2013).

Analysis was performed using a general linear model (GLM) on the COPEs
provided by the HCP in the S500 releasese. For each task, predictors (described
below for each task) were convolved with a canonical hemodynamic response
function to generate regressors. To compensate for slice-timing di↵erences and
variability in the HRF delay across regions, temporal derivatives were included
and treated as variables of no interest. Both the data and the design matrix
were temporally filtered using a linear high-pass filter (cuto↵ 200s). Finally, the
time series was pre-whitened to correct for autocorrelation in the fMRI data.

Each of the datasets used in this paper are described in greater detail in
Barch et al. (2013). Below follows a brief description.

2.1.1 Working Memory

This task consisted of a version of the N-back task to assess working memory.
Within each run, four di↵erent stimulus types (faces, places, tools and body
parts) are presented in separate blocks. Half of the blocks use a 2-back task and
the other half a 0-back task. A short (2.5s) cue indicates the task type at the
start of the block. Each of the two runs contains 8 blocks consisting of 10 trials
(2s stimulus presentation, 500ms ITI) and 4 fixation blocks (15s each). Each
block contains 2 targets, and 2–3 non-target lures.

Eight task-related predictors were included in the GLM design matrix, one
for each stimulus type in each of the N-back conditions. Each covered the
period from the onset of the cue to the o↵set of the final trial. A linear COPE
comparing 2-back versus 0-back was used for further analysis.

2.1.2 Motor

In this task participants were presented with visual cues that ask them to tap
their left or right fingers, squeeze their left or right toes, or move their tongue.
Each block corresponds to one of the five movements and lasted 12s, and was
preceded by a 3s cue. In each of the two runs, there are 13 blocks, with 2 tongue
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movements, 2 of each hand movement, 2 of each foot movement, and three 15s
fixation blocks.

Five task-related predictors were included in the design matrix for each
movement, each covering the duration of the 10 movements trials (12s). The cue
was modeled separately. A linear COPE comparing the average of the di↵erent
movements vs baseline was used for further analysis.

2.1.3 Emotion Processing

In this task participants were presented with blocks of trials that either asked
them to decide which of two faces shown at the bottom of the screen matched
the face at the top, or which of two shapes presented at the bottom matched
the shape at the top. The faces had either angry or fearful expressions. Trials
are presented in blocks of 6 trials (2s stimulus presentation, 1s ITI) of the same
task (‘face’ or ‘shape’). Each block was preceded by a 3s task cue (‘shape’ or
‘face’). Each of the two runs includes 3 face blocks and 3 shape blocks.

Two di↵erent task-related predictors were included in the design matrix, one
corresponding to emotional faces and the other to the shape control condition.
Each predictor covered a 21s duration composed of a cue and six trials. A linear
COPE comparing emotional faces vs control was used for further analysis.

2.1.4 Gambling

In this task participants were asked to guess the number on a mystery card in
order to win or lose money. They are told that the number ranged from 1–9,
and to guess whether the number on the mystery card number is greater or less
than 5 by pressing one of two buttons. Feedback is the number on the card
and either a green up arrow with $1 for reward trials; a red down arrow with
$0.50 for loss trials; or the number 5 and a gray double headed arrow for neutral
trials. The task is presented in blocks of 8 trials with mostly reward (6 reward
trials —interleaved with either 1 neutral and 1 loss trial, 2 neutral trials, or 2
loss trials) or mostly loss (6 loss trials interleaved with either 1 neutral and 1
reward trial, 2 neutral trials, or 2 reward trials). In each of the two runs, there
are 2 mostly reward and 2 mostly loss blocks, interleaved with 4 fixation blocks
(15s each).

Two task-related predictors were included in the design matrix to model
mostly reward and mostly punishment or loss blocks, each covering the duration
of 8 trials (28s). A linear COPE comparing reward vs punishment blocks for
gambling was used for further analysis.

2.2 Population E↵ect Size and Power

Throughout we assume that the population of interest consists of the full collec-
tion of roughly 500 subjects. For each task this allows us to compute population
e↵ect sizes at each voxel (or vertex for surface based results), based on all of the
subjects in the population. This can subsequently be used for power analysis
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and for direct comparison with results obtained using data from a smaller subset
of the population. This will allow for the evaluation of the influence of sample
size on the results of group analysis.

There are multiple ways to compute e↵ect size. Here we use a variant of
Cohen’s d that can be computed at voxel v as the mean COPE (across subjects)
divided by the standard deviation, i.e. ✓v = µv/�v. Using these values, we group
voxels into four di↵erent e↵ect size categories. Voxels are placed in the ‘low’
group if 0.2  |✓v| < 0.5, the ‘medium’ group if 0.5  |✓v| < 0.8, and the ‘high’
group if 0.8  |✓v|. These groupings are based on guidelines from Cohen (1988).
All remaining voxel are placed in a ‘no e↵ect’ group.

The population e↵ect sizes are used to construct ‘e↵ect-size maps’ for each
task, which are the e↵ect sizes mapped onto their corresponding voxel or surface
location. In addition, ‘power maps’ can be constructed, which are spatial maps
of the estimated sample size needed to obtain p% power where p = 50, 80, 90, 95.
Here power is computed based on a one-sided one-sample t-test with ↵ = 0.001
and e↵ect size ✓v. These maps will allow us to identify the sample size required
to detect an e↵ect in a specific region with high power.

2.3 E↵ect of Sample Size on Group Analysis

In the continuation, we consider the 500 subject release population-level results
as our ‘gold standard’, and use these results as a stand in for the ground truth
e↵ect size at di↵erent voxels for the various tasks. To evaluate the reproducibil-
ity of small sample fMRI studies, we draw K = 100 di↵erent samples from the
population of each of the following sizes: N = 10, 20, 40, 60, 80 and 100. This al-
lows us to mimic the typical sample sizes used in studies performed by individual
labs. Note that throughout we are sampling with replacement as is performed in
the Bootstrap procedure (Efron and Tibshirani, 1993). Hence, certain subjects
may appear multiple times in any given sample. For each sample we perform
a group analysis using the standard OLS approach. A voxel-wise threshold of
p < 0.001 uncorrected is applied to the resulting t-maps to assess significance.

For each sample size we compute the proportion of studies in which a partic-
ular voxel or surface vertex is deemed active. To illustrate, begin by averaging
all K binary activation maps (post threshold) obtained using a given sample
size N . Next, denote the p-value of voxel v from the k

th sample of size N by
pv,k,N . Then, the proportion of studies in which voxel v is deemed activate for
sample size N is given by

Hv,N =
1

K

KX

k=1

I{pv,k,N < ↵}, (1)

where ↵ is the threshold and I{·} is the indicator function.
Next, we study how a voxel e↵ect size corresponds to its likelihood to be

deemed active. Using the population e↵ect sizes groups defined in the previ-
ous section, we measured the proportion of voxels in the K samples that were
deemed significant, as well as the proportion of voxels in each group that were
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active in more than 80% of samples. This allowed us to assess the false negative
rate (under the assumption that voxels with this e↵ect size should be deemed
active) associated with each sample size and e↵ect size, as well as the power to
detect activation of a certain e↵ect size.

2.4 E↵ects of Circular Analysis on E↵ect Size Estimation

In order to estimate the necessary sample size for an fMRI experiment when
designing a study or writing a grant proposal, it is often recommended to carry
out a small pilot study. Based on this pilot study one can then estimate the
expected fMRI e↵ect sizes for this specific task and setting. This might be
done based on the significant activations or peak COPEs in the pilot study.
Although many researchers are aware of the problems of a circular analysis that
estimates an e↵ect size based on a biased selection criterion (Kriegeskorte et al.,
2010; Vul et al., 2009), it is unknown how much a circular analysis will actually
bias the obtained estimates. Here, we compute e↵ect sizes estimated averaged
within significant clusters of each of the K samples of size N . We compare these
estimates against the population e↵ect sizes to estimate the bias introduced by
the circularity.

3 Results

3.1 Population E↵ect Size and Power

We first characterized the distributions of COPEs and e↵ect sizes (Cohen’s d)
using the 500 subject population. Figure 1A shows the standard deviation of
the COPEs across the approximately 500 subjects plotted against the mean
COPE for each individual voxel. For all tasks, the standard deviation increases
with the mean COPE, resulting in funnel shaped plots. The whole brain means
of the COPEs are all positive (M = 2.13 for WM, M = 3.42 for motor, M =
5.12 for emotion, and M = 3.28 for gambling) as might be expected for an
activation-hypothesis-based COPE. The gray and black lines in Figure 1A mark
the significance thresholds for a one-sample t-test at ↵ = 0.001 for sample
sizes N = 20 (gray lines) and N = 100 (black lines). Mirroring the positive
whole brain means, more voxels with positive COPE means pass the significance
threshold for all tasks. The gambling task COPE values are smaller than those
observed in the other three tasks while their standard deviation is almost as
large. This results in less significant voxels for the gambling task compared to
the other tasks.

Figure 1B shows probability density distributions of the the population e↵ect
sizes for each of the four tasks for both volumetric (dotted lines) and grayordi-
nate data (solid lines). Both data types are in good agreement. The grayordi-
nate data are slightly shifted to the right for the motor task and slightly shifted
to the left for the emotion task.

Table 1 shows the proportion of voxels (or vertices) that fall in each e↵ect size
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category. Small e↵ects are present in about 16% of the voxels for the gambling
task, and about 30� 38% for the other three tasks. Medium e↵ects are present
in about 6� 13% of the voxels for WM, motor, and emotion tasks, while large
e↵ects are only present in about 4� 8% of the voxels. These numbers are much
lower for the gambling task (< 1% large e↵ects). Interestingly, the grayordinate
data have higher proportions of large e↵ects for all tasks but the improvement
is particularly large for the motor task. Di↵erences between volumetric and
grayordinate data are small for the medium and small e↵ect size categories.

Figure 2 maps e↵ect size results onto the brain. Results for the cortical
surfaces are shown in (A) and volumetric results are shown in (B). Please note
that grayordinate (A) and volumetric (B) results may di↵er for the cortex but
not for subcortical regions. Overall, WM and emotion are relatively even in
positive and negative e↵ects. Motor and gambling have predominantly positive
regions and a few regions that show negative e↵ects.

Large positive e↵ects for the WM task are located in the dorsal lateral pre-
frontal cortex (dlPFC), intraparietal sulcus (IPS), medial superior frontal gyrus
(mSFG), and also in the cerebellum (Figure 2). Medium and small positive
e↵ects include most of the dorsal and lateral prefrontal cortex, parietal cortex,
anterior insula, and anterior midcingulate cortex (aMCC). Negative e↵ects are
overall smaller and were observed in the regions often referred to as ’task neg-
ative’. Negative e↵ects are most pronounced in the retrosplenial cortex (RSC),
ventrolateral prefrontal cortex (vlPFC), medial temporal lobe (MTL), and pari-
etal operculum.

For the motor task, the largest e↵ects are located in the motor cortex in
the prefrontal sulcus (M1), supplementary motor area (SMA), and cerebellum.
Other large positive e↵ects were observed in sensory regions in the postcentral
sulcus (S1), the parietal operculum, and the supramarginal gyrus. Negative
e↵ects are more sparse with the strongest negative e↵ects located in the occipital
cortex.

The strongest positive e↵ects for the emotion task are located in the occipital
cortex, the fusiform gyrus, amygdala, and the right lateral PFC. Negative e↵ects
are located in the dorsal parietal cortex and in multiple smaller regions on the
medial walls.

E↵ects in the gambling task are smaller than in the other tasks. Positive
e↵ects are located in the lateral PFC, cerebellum, occipital and parietal cortices.
Positive but small e↵ects were also observed in the ventral striatum and basal
ganglia.

Figure 3 shows the sample size required to achieve a certain level of power.
As the sample size increases, the power of the t�test increases assuming a fixed
e↵ect size. This is visualized by the inverse relationship between e↵ect size in
Figure 2 and the sample size needed in Figure 3. In most cases, the biggest
jump in power occurs between N = 20 and N = 40, with a steady increase
when N > 40. This suggests that N = 40 may be a good sample size for
individual fMRI studies when taking into consideration both reliability and cost.
For the robust tasks analyzed here, even sample sizes of N < 10 theoretically
o↵er 50% power for the WM, motor, and emotion tasks. For example, M1 and
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SMA in the motor task and IPS in the WM task achieve 50% power with such
small samples, which can help explain the enormous success of small sample
fMRI studies in the early 1990’s relying primarily on such robust tasks. Sample
sizes of N = 20 to N = 40 achieve 80% power in primary sensory and motor
areas for the main e↵ects of motor activity or working memory load. Again,
the gambling task stands out in that much larger sample sizes are needed to
obtain reasonable statistical power. Some occipital regions achieve 80% power
with samples of N > 20 while samples of N > 40 achieve 50% power in the
ventral striatum. Since the ventral striatum is a key region for value learning
that has been consistently associated with the processing of unexpected rewards
(Knutson et al., 2001; Gläscher et al., 2010; Haber and Knutson, 2010), the low
power observed here is likely related to choice of a block design for the subject-
level models. Power maps for the volumetric data are shown in Supplementary
Figures 8-11. Results for both data types are again very similar.

3.2 E↵ect of Sample Size on Group Analysis

Figure 4 shows the proportion of times each voxel is significant in the K repeti-
tions for each sample size and task. The empirically determined power maps are
in agreement with the theoretically derived minimum sample size maps shown in
Figure 3 and the population e↵ect size maps in Figure 2. Furthermore, volumet-
ric (Supplementary Figures 12-15) and grayordinate results largely converged.
For larger e↵ect sizes in the WM, motor, and emotion tasks, empirical power
quickly jumps from 50 to 95% and more. This sharp increase in empirical power
is particularly prominent in samples of N = 60 and larger in the lower half of
Figure 4. Even for extremely small samples of N = 10, a number of voxels in the
motor and emotion tasks achieve 80% power while a few voxels in the WM task
reach at least 50% power. The voxels with the largest e↵ects in the WM, motor,
and emotion tasks already achieve 95% power with sample sizes of N = 20-40.
Even a few occipital voxels in the gambling task reach 95% power at N = 40.
These empirical power estimates show that with very robust tasks at least some
significant results are almost guaranteed with sample sizes of N = 20. However,
the qualitative di↵erences between in power maps for 20 and 80 subjects show
that smaller studies may miss many of the wide-spread medium-sized e↵ects,
for example lateral prefrontal, temporal-parietal, and retro-splenial cortex in
the motor task.

Next, we computed summary statistics for the each e↵ect size category (i.e.,
small, medium, and large e↵ects). For each category, we computed the pro-
portion of voxels that are deemed significant in at least 80% of samples when
thresholding at p < 0.001 (Figure 5). The highest proportion of active voxels
in at least 80% of samples was observed in the emotion task. Here, 6.8% of the
large e↵ect voxels were active in 80% of the samples with N = 10, or in other
words, achieved 80% empirical power. This indicates that the vast majority of
large e↵ects will be missed with 10 subjects, although the empirical power maps
in Figure 4 suggest that a few voxels will pass the significance threshold. The
proportion of active voxels increases steeply for larger sample sizes in all tasks
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for the large e↵ect sizes. For the medium sized e↵ects, the curves are shifted
to the right, indicating the necessity of larger samples, as expected. With 40-
60 subjects per sample, the proportion of voxels with at least 80% empirical
power exceeds 70% of the voxels in the large and medium categories (except for
the grayordinate gambling task data). Samples of 80 subjects are su�cient to
detect almost all large and medium e↵ects. By contrast, even sample sizes of
N = 100 are very unlikely to detect any small e↵ects reliably as indicated by
the low proportions active for all tasks. The volumetric and grayordinate data
formats di↵er little in this analysis. The volumetric format fares slightly better
at detecting medium e↵ect sizes at small to medium sample sizes.

The previous analyses asked which e↵ects can be recovered at di↵erent sam-
ple sizes. The next analyses investigated which e↵ects might be missed at di↵er-
ent sample sizes. Figure 6 shows the average proportion of voxels in each e↵ect
size group that are not deemed active (i.e., are considered false negatives under
the assumption that voxels in that category should be active) when thresholding
at p < 0.001. For the high e↵ect-size voxels, a sample consisting of 40 subjects
is su�cient to reliably detect each voxel. For the medium e↵ect-size voxels, a
sample consisting of 80 subjects is su�cient to reliably detect each voxel. To
reliably detect voxels in the low e↵ect-sizes group, samples of well over 100 sub-
jects are required. Interestingly, for N = 20 there are between 20 � 40% false
negatives for the high e↵ect size group depending on the task. For the medium
e↵ect sizes, samples of 40 subjects achieve less than 40% false negatives and
samples of 80 � 100 subjects result in almost no false negatives. Again, dif-
ferences between volumetric and surface base data formats are small, with the
volumetric data o↵ering slight improvements over the grayordinate data.

3.3 E↵ects of Circular Analysis on E↵ect Size Estimation

To estimate how much e↵ect size estimates from small samples overestimate the
true e↵ect size in non-independent analyses, we compute the absolute di↵erence
between sample size e↵ect sizes and the population e↵ect size for the same
cluster. For each significant cluster at threshold p < 0.001, we compute the
average e↵ect size and plot the di↵erence between this value and the population
e↵ect size; see Figure 7 for results for grayordinate data. The volumetric results
are highly similar and shown in Supplementary Figure 16. For small samples
of 10 subjects e↵ect sizes are inflated by �d̄ = 0.994 for the motor task to
�d̄ = 1.36 for the gambling task. The e↵ect size bias decreases for larger
samples but the mean bias still �d̄ > 0.12 for samples with 100 subjects. Using
an completely independent region-of-interest definition, for example based on an
atlas (Glasser et al., 2016; Shen et al., 2013), mitigates this e↵ect size inflation
(maximum mean bias �d̄ = 0.07 for N = 10 and less for larger samples).
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4 Discussion

In this work, we study the e↵ects of sample size on the sensitivity and reliability
of group-level OLS analysis. Treating the complete collection of subjects (n =
491) from the 500-subject release from the Human Connectome Project (HCP)
as our population of interest, we evaluated the ability of small sampled studies
to e↵ectively capture population-level e↵ects of interest. Our study shows that
sample sizes of 40 are generally able to detect regions with high e↵ect sizes
(Cohen’s d > 0.8), while sample sizes closer to 80 are required to reliably recover
regions with medium e↵ect sizes (0.5 < d < 0.8). In general, we show there is
low sensitivity to detect small e↵ects (d < 0.5) for any reasonable fMRI sample
size.

The analysis was repeated both for volumetric data and surface based data.
The results were not noticeably di↵erent between the two data types, indicating
that working on the surface does not provide improvements in terms of sensi-
tivity when performing a massive univariate GLM analysis. The surface based
data had a higher proportion of large e↵ects but di↵ered less with respect to
medium e↵ect sizes. This would suggest that surface based analyses might be
more sensitive for smaller samples. However, this was not observed for the pro-
portion of voxels deemed active or false negative rates. It remains possible that
surface based analysis will be preferable if a spatial model is used instead; see,
for example Mejia et al. (2017). However, this topic is outside the scope of the
current manuscript.

This work can be seen as an expansion of the work by Thirion et al. (2007),
who used a cohort of 80 subjects to investigate the role inter-subject variability
plays in sensitivity and reliability of studies with a smaller number (e.g., 10 �
16) of subjects. They showed, among other things, that 20 subjects or more
should be included in functional neuroimaging studies in order to have su�cient
reliability. Since our analysis was based on a larger data set, this allowed us
to investigate larger sample sizes, more variable tasks, and data sampled at a
higher spatial and temporal resolution than possible in Thirion et al. (2007).
Our findings suggest a recommend sample size of 40 or more subjects. A notable
exception are areas such as M1 and SMA in the motor task and IPS in the WM
task, which achieve 50% power with samples around 10. This no doubt explains
the success of early small sample fMRI studies that relied primarily on such
robust tasks.

The HCP task fMRI data set we used has appeared in several recent papers
to investigate related topics. For example, in Poldrack et al. (2017) the data
was used to obtain e↵ect-size estimates for a number of common neuroimaging
experimental paradigms in certain regions of interest. Using a smaller cohort of
subjects (N = 186) they showed that e↵ect sizes in fMRI are surprisingly small,
even for powerful tasks such as the motor task. They conclude that the average
fMRI study is poorly powered for capturing realistic e↵ects. In Lohmann et al.
(2017) the data was used to investigate the false negative rates in studies with
small sample sizes. Similar to our approach, they used a larger cohort of subjects
(N = 400) to approximate the true positive e↵ects. Thereafter, they computed
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the fraction of those e↵ects that was detected reliably using standard software
packages at various smaller sample sizes. They found that for common sample
sizes this value was generally below 25%. In this work, we validate and expand
upon the results from these papers.

It is interesting to note that samples well exceeding 100 subjects are needed
to reliably detect voxels with e↵ect sizes ranging between 0.2 and 0.5. Thus,
using sample sizes available to most individual labs we appear far from the situa-
tion warned about in Friston (2012) that large sample sizes produce statistically
significant e↵ects of no practical importance (i.e. ‘trivial e↵ects’); see Lindquist
et al. (2013) for a rebuttal of this point. Friston (2012) presented an analysis
of e↵ect size in classical inference that suggested the optimal sample size for
a study is between 16 and 32 subjects. For larger studies even the smallest
treatment e↵ect will appear significant. In this study we show that this does
not appear to be a realistic concern, particularly given that the HCP data are
of unusually high quality and e↵ect size estimates are likely higher than those
that would be found in most standard fMRI studies.

In order to estimate e↵ect sizes for a planned study or grant, researchers often
conduct a small pilot study. Even though the inflation of e↵ect size estimates in
circular analyses, i.e., computing e↵ect sizes in significant clusters of the same
or other non-independent COPEs (Kriegeskorte et al., 2010; Vul et al., 2009),
is widely acknowledged, it is unclear how large this bias is in real data. Here,
we show that non-independent analyses drastically overestimated e↵ect sizes on
average by �d̄ = 0.99� 1.36, depending on the task when N = 10. Thus there
is a risk that in computing e↵ect sizes from pilot studies, researchers may be
vastly overestimating their values and thus vastly underestimating the number
of subjects required in the study. In general, we recommend that researchers use
masks defined by the intersection between functional activation and anatomical
masks, as discussed in Poldrack et al. (2017), to perform e↵ect size estimation.

Results for the gambling task stood out from the other tasks. Overall, e↵ect
sizes in the gambling task COPE were much lower than for the other tasks,
leading to less statistical power and requiring larger samples to reliably detect
brain activation, even in the ventral striatum, a key brain region for reward
learning (Knutson et al., 2001; Gläscher et al., 2010; Haber and Knutson, 2010).
The relatively small e↵ect sizes for the gambling COPE may be caused by
modeling multiple reward and loss events as blocks at the subject level instead
of using event-related regressors (Barch et al., 2013). While a more detailed
evaluation of this particular COPE is beyond the scope of this study, future
studies may consider investigating the e↵ects of the short task duration, or the
low regional SNR (Barch et al., 2013) for this task in more detail.

Overall, our results support the current movement towards conducting larger
fMRI studies. Acquiring at least 40 subjects for within-group hypothesis about
regional activations or deactivations allows for reasonable power to detect large
e↵ects. Acquiring even larger and more costly samples, will enable researchers
to investigate the functions of brain regions with medium sized e↵ects, which
may cover about 30% of the graymatter voxels.
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Munafò, M. R., Nichols, T. E., Poline, J.-B., Vul, E., and Yarkoni, T.
(2017). Scanning the horizon: towards transparent and reproducible neu-
roimaging research. Nature Reviews Neuroscience.

Shen, X., Tokoglu, F., Papademetris, X., and Constable, R. (2013). Groupwise
whole-brain parcellation from resting-state fmri data for network node iden-
tification. NeuroImage, 82:403 – 415.

Thirion, B., Pinel, P., Mériaux, S., Roche, A., Dehaene, S., and Poline, J.-B.
(2007). Analysis of a large fmri cohort: Statistical and methodological
issues for group analyses. Neuroimage, 35(1):105–120.

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E.,
Ugurbil, K., Consortium, W.-M. H., et al. (2013). The wu-minn human
connectome project: an overview. Neuroimage, 80:62–79.

17

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 6, 2018. ; https://doi.org/10.1101/295048doi: bioRxiv preprint 

https://doi.org/10.1101/295048
http://creativecommons.org/licenses/by-nc/4.0/


Van Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T., Bucholz,
R., Chang, A., Chen, L., Corbetta, M., Curtiss, S. W., et al. (2012). The
human connectome project: a data acquisition perspective. Neuroimage,
62(4):2222–2231.

Vul, E., Harris, C., Winkielman, P., and Pashler, H. (2009). Puzzlingly high
correlations in fmri studies of emotion, personality, and social cognition.
Perspect Psychol Sci, 4(3):274–90.

Woolrich, M. W., Behrens, T. E., Beckmann, C. F., Jenkinson, M., and Smith,
S. M. (2004). Multilevel linear modelling for fmri group analysis using
bayesian inference. Neuroimage, 21(4):1732–1747.

18

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 6, 2018. ; https://doi.org/10.1101/295048doi: bioRxiv preprint 

https://doi.org/10.1101/295048
http://creativecommons.org/licenses/by-nc/4.0/


Tables

Table 1: Proportions of voxels (vertices) in percent for each e↵ect size category
organized by task and data format. Here ‘Vol’ represents volumetric and ‘Gray’
grayordinate.

WM Motor Emotion Gambling
Vol Gray Vol Gray Vol Gray Vol Gray

Small d 35.02 37.90 33.01 32.10 30.85 33.15 16.87 16.15
Medium d 11.31 12.88 11.08 12.66 6.75 8.08 0.49 0.53
Large d 2.06 4.78 4.70 7.61 3.26 3.54 0.02 0.07
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Figures

Figure 1: (A) The voxel-wise standard deviation vs. mean of the contrast es-
timates for working memory (WM), motor, emotion and gambling tasks. Vox-
els with positive and negative � means are depicted using di↵erent brightness.
Voxels under ”V”-shaped lines are significant for sample size N = 20 (gray) or
N = 100 (black) and using a threshold of p < 0.001. (B) Probability density
functions for e↵ect sizes (Cohen’s d) for all tasks comparing volumetric (dotted
lines) against grayordinate (solid lines) formats.
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Figure 2: (A) Surface e↵ect size maps for all tasks using the grayordinate data.
(B) E↵ect size maps from the volumetric data. Please note that the data formats
di↵er for the cortex but subcortical structures will be highly similar.

Figure 3: Power maps for surface data for all tasks. The minimum sample sizes
required to achieve 50, 80, 90, and 95% power are indicated by di↵erent colors.
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Figure 4: Empirical power maps for the surface data. Empirical power is es-
timated as the fraction of K = 100 repetitions of sample size N in which any
given voxel was significant at p < 0.001.

Figure 5: Proportion of active voxels. The proportion of voxels in each e↵ect
size category (indicated by colors and symbols; see legend) that are deemed
significant in at least 80% of samples using a per-voxel threshold of p < 0.001
for each of the four tasks. Results are shown for grayordinate (solid lines) and
volumetric (dotted lines) data.
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Figure 6: False negative rates. The average proportion of voxels in each ef-
fect size category that were not deemed active (i.e. are considered false nega-
tives under the assumption that voxels in that category should be active) when
thresholding at p < 0.001. Results are shown for grayordinate (solid lines) and
volumetric (dotted lines) data.

Figure 7: E↵ect size bias. (A) For each sample of size N the empirical e↵ect size
d was computed based on its average within each significant cluster. The popu-
lation e↵ect size for that cluster was then subtracted from this value. Boxplots
show the distributions across all clusters from all 100 samples for each task and
sample size. (B) same plot showing the di↵erences between the average sample
e↵ect sizes and the population e↵ect sizes, now for each parcel from the atlas of
Glasser et al. (2016).
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