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RNA-binding proteins (RBPs) control and coordinate each stage in the life cycle of RNAs. 21 

Although in vivo binding sites of RBPs can now be determined genome-wide, most studies 22 

typically focused on individual RBPs. Here, we examined a large compendium of 114 high-23 

quality transcriptome-wide in vivo RBP-RNA cross-linking interaction datasets generated by the 24 

same protocol in the same cell line and representing 64 distinct RBPs. Comparative analysis of 25 

categories of target RNA binding preference, sequence preference, and transcript region 26 

specificity was performed, and identified potential posttranscriptional regulatory modules, i.e. 27 

specific combinations of RBPs that bind to specific sets of RNAs and targeted regions. These 28 

regulatory modules encoded functionally related proteins and exhibited distinct differences in 29 

RNA metabolism, expression variance, as well as subcellular localization. This integrative 30 

investigation of experimental RBP-RNA interaction evidence and RBP regulatory function in a 31 

human cell line will be a valuable resource for understanding the complexity of post-32 

transcriptional regulation. 33 

  34 
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Introduction 35 

Of the 20,345 annotated protein-coding genes in human, at least 1,542 are RNA-binding proteins 36 

(RBPs) (Gerstberger et al., 2014). RBPs interact with RNA regulatory elements within RNA 37 

targets to control splicing, nuclear export, localization, stability, and translation (Moore, 2005). 38 

RBPs have specificity to bind one or multiple RNA categories, including messenger RNA 39 

(mRNA) and diverse categories of non-coding RNA such as ribosomal RNA (rRNA), transfer 40 

RNA (tRNA), small nuclear and nucleolar RNA (snRNA/snoRNA), microRNA (miRNA), and 41 

long non-coding RNA (lncRNA). Mutations in RBPs or RNA regulatory elements can result in 42 

defects in RNA metabolism that cause human disease (Cooper et al., 2009; Fredericks et al., 43 

2015).  44 

 45 

A standard technique for in vivo global identification of RBP-RNA interaction sites consists of 46 

immunoprecipitating the ribonucleoprotein (RNP) complex, isolating the bound RNA, and 47 

quantifying the RNA targets by microarrays or deep sequencing (Tenenbaum et al., 2000; Zhao 48 

et al., 2010). The introduction of cross-linking prior to immunoprecipitation (CLIP) as well as 49 

RNase digestion enabled the biochemical mapping of individual interaction sites (Ule et al., 50 

2003). Subsequent modifications to CLIP increased the resolution of the interaction sites (Hafner 51 

et al., 2010; König et al., 2010). One of these methods, photoactivatable ribonucleoside-52 

enhanced cross-linking and immunoprecipitation (PAR-CLIP), utilizes 4-thiouridine or 6-53 

thioguanosine combined with 365 nm UV crosslinking to produce single-nucleotide RBP-RNA 54 

interaction evidence that is utilized to define binding sites (Corcoran et al., 2011; Garzia et al., 55 

2017; Hafner et al., 2010). 56 
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Experimentally-derived RBP binding sites provide valuable functional insights. First, they can 57 

reveal the rules for regulatory site recognition by the RBP, whether due to sequence and/or 58 

structural characteristics. Second, the region and position of the interaction sites of an RBP 59 

within transcripts provides insights into its role in RNA metabolism and its subcellular 60 

localization. For example, if most of the mapped interaction sites are intronic and adjacent to 61 

splice sites, the RBP is highly likely to be a nuclear splicing factor rather than a cytoplasmic 62 

translation factor. Finally, these data reveal the target transcripts and therefore the potential 63 

biological role for the RBP. 64 

 65 

Throughout the life of an RNA, interactions with many different RBPs determine the ultimate 66 

fate of the transcript. Even though profiling of the interaction sites of a single RBP is clearly 67 

powerful, it does not provide information on other RBPs potentially targeting the same RNA or 68 

on other regulatory elements within the RNA. Small comparative efforts focusing on the 69 

regulation of splicing, 3’ end processing, RNA stability by AU-rich elements, and miRNA-70 

mediated silencing have demonstrated the value of integrating interaction sites from multiple 71 

RBPs (Martin et al., 2012; Mukherjee et al., 2014; Pandit et al., 2013; Zhang et al., 2010). 72 

Therefore, a large-scale comparative examination of interaction sites for many RBPs will yield 73 

valuable knowledge regarding the architecture and determinants of RNA regulatory networks. 74 

 75 

At least 173 PAR-CLIP experiments have been performed in HEK293 cells to date, laying the 76 

groundwork for a large-scale integrative analysis and complementing efforts of ENCODE, which 77 

focused on other cell types and utilized other CLIP protocols (Van Nostrand et al., 2016). We 78 

describe a concerted effort to identify and uniformly process all high-quality PAR-CLIP data sets 79 
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by evaluating the characteristic T-to-C transitions induced by photocrosslinking. Using the 80 

resulting compendium of high-quality in vivo RBP interaction maps from the same cell line 81 

enabled us to determine the relationship between RBPs with respect to their preferred category of 82 

target RNA and any underlying sequence specificity. We uncovered regulatory modules reflected 83 

by combinatorial binding events, and assessed their role and functional implications on RNA 84 

metabolism. Finally, our results support the role of RBPs in buffering gene expression variance. 85 

 86 

Results 87 

A high-quality map of in vivo RBP-RNA interactions across 64 proteins 88 

In order to generate a comprehensive quantitative resource of RBP-RNA interactions within a 89 

human cell line, we identified 166 published PAR-CLIP data sets performed predominantly in 90 

HEK293 cells, and added 7 new libraries generated in our laboratories (Sup Table 1). Typically, 91 

these datasets were generated using transgenic HEK293 cell lines in which each individual RBP 92 

was FLAG-tagged and recombined into the same chromosomal locus containing a strong 93 

promoter. In this way, the expression of each RBP as well as the strength of its 94 

immunoprecipitation were generally comparable. Furthermore, the availability of orthogonal 95 

transcriptome-wide datasets quantifying individual steps of RNA metabolism made HEK293 96 

cells ideal for examining the functional characteristics of RNA targets (Mukherjee et al., 2017). 97 

 98 

Each of the 173 PAR-CLIP libraries generated in HEK293 were subject to a stringent analysis 99 

strategy to retain high-quality datasets (Supplemental Table 1). First, each library was analyzed 100 

using the PAR-CLIP Suite v1.0 (https://rnaworld.rockefeller.edu/PARCLIP_suite) (Garzia et al., 101 
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2017) to discriminate significant target RNA categories from non-crosslinked background RNA 102 

categories populated by fragments of abundant cellular RNAs (see Methods, Supplemental Fig. 103 

1A). Next, we defined binding sites based on the local density of T-to-C transitions using 104 

PARpipe (https://github.com/ohlerlab/PARpipe) (Corcoran et al., 2011) and only retained those 105 

libraries with sufficiently high read counts and T-to-C transition specificity compared to a deeply 106 

sequenced background reference library (Supplemental Fig 1b) (Friedersdorf and Keene, 2014). 107 

Since the immunoprecipitation step was omitted in this reference library it served as an effective 108 

comparison point to score read count and T-to-C transition for all RBPs. Finally, for RBPs with 109 

more than 3 libraries available, outlier libraries exhibiting poor correlation of 6-mer frequencies 110 

were excluded (Supplemental Fig 1d, e). This resulted in 114 libraries corresponding to 64 RBPs 111 

that were the basis for downstream analysis. There were eight RBP families represented by two 112 

or more RBPs. 113 

 114 

Grouping RBPs by annotation category and positional binding site preferences 115 

As first step to describe RBP-RNA regulatory networks, we determined the relative binding 116 

preference of each RBP for specific target RNA annotation categories (Supplemental Table 2). 117 

For each library, we calculated an RNA annotation category preference value, defined as the 118 

difference in the fraction of T-to-C reads per annotation category between each RBP library and 119 

the reference library. We performed hierarchical clustering of RBPs by annotation category 120 

preference, using Ward’s method and Euclidean distances. This yielded eight clusters of binding 121 

preference (Figure 1a – orange line demarcates cluster definitions) with varying enrichment or 122 

depletion for individual or combinations of specific annotation categories. For each of these 123 

clusters, we compiled a detailed table summarizing the reported functions for each of the RBPs 124 
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(Table 1). Taken together, clustering by RNA annotation category separated RBPs into groups 125 

according to their known subcellular localization and functions. 126 

Three of the eight clusters (clusters 2, 4, and 5) contained nine RBPs that exhibited preference 127 

for categories of non-coding RNA (rRNA, snRNA, snoRNA, and tRNA), but not mRNA, 128 

precursor mRNA (pre-mRNA), or lncRNA. The remaining five clusters contained 55 RBPs 129 

exhibiting preference for binding to mRNA, pre-mRNA and long-noncoding RNA (lncRNA) 130 

annotation categories. The RBPs in clusters 1, 6, 7, and 8 exhibited strong preferences for 131 

various mRNA annotation categories. The RBPs in cluster 3 did not exhibiting strong preference 132 

for specific mRNA annotation categories. Additionally, for each of the RBPs in the cluster, we 133 

performed a positional meta-analysis of binding sites with respect to major transcript landmarks 134 

within target mRNAs. Many of the RBPs also showed strong preferences for binding to specific 135 

positions within mRNAs relating to their role in specific steps of mRNA processing (Table 1). 136 

We hypothesized that target annotation category preferences and positional binding preferences 137 

should reflect subcellular localization of the RBP and its role(s) in mRNA processing. Cluster 6 138 

contained twelve RBPs and exhibited strong preference for intronic regions and to a lesser 139 

degree 3’ UTRs of mRNAs and lncRNAs. The intronic preference was consistent with the 140 

predominantly nuclear localization of these RBPs and the pre-mRNA splicing process. ELAVL1, 141 

which is the sole member of the ELAVL1 family of RBPs that is predominantly localized in the 142 

nucleus but capable of shuttling to the cytoplasm, exhibited positional binding flanking the end 143 

of the 3’ UTR and for 5’ and 3’ splice sites. Cluster 8 contained fourteen RBPs and exhibited 144 

distinct preference for 3’ UTR regions. This included the unpublished and predominantly 145 

cytoplasmic ELAVL1 family members, ELAVL2, ELAVL3, and ELAVL4, which exhibited a 146 

strong positional preference for binding in the distal region of the 3’ UTR and acting 147 
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predominantly on mature mRNA (Mansfield and Keene, 2012). In summary, the annotation 148 

category preferences and positional binding preferences implicated the specific steps of mRNA 149 

processing the RBPs potentially regulate. 150 

 151 

The spectrum of RNA sequence specificity 152 

RBPs exist on a spectrum of specificity depending on a variety of primary and secondary 153 

structure features (Jankowsky and Harris, 2015). Here, our goal was to identify the RBPs with 154 

substantial primary sequence specificity and then examine their sequence preference. For each of 155 

the 55 RBPs, we counted all possible 6-mers using Jellyfish (Marçais and Kingsford, 2011) for 156 

the reads contributing to PARalyzer-defined binding sites. We observed 6-mer frequencies 157 

ranging as high as 512-fold to as low as 5-fold over a uniform distribution of 6-mers 158 

(Supplemental figure 2a). In contrast, our reference background library exhibited 16-fold 159 

enrichment of at least one 6-mer compared to uniform. AGO1-4 libraries were excluded from 6-160 

mer analysis due to the overwhelming sequence contribution from crosslinked miRNAs. Twenty-161 

seven RBPs did not have a single 6-mer found at higher frequency than present in the reference 162 

sample. Amongst these RBPs established or expected to display low sequence-specificity were 163 

the RNA helicase MOV10, the nuclear exosome component DIS3, and the EIF3 complex 164 

translation initiation factors. 165 

 166 

For each of the 24 RBPs with stronger sequence enrichment than the reference library, we 167 

clustered the top 5 sequences enriched over the reference library (Figure 2). Our results 168 

recapitulated the sequence preference for the RBPs in this group with well-characterized 169 

sequence motifs (detailed in Table 2). The ELAVL1 family proteins, which bound to different 170 
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regions and positions of mRNA, showed similar preference for U- and AU-rich 6-mers, while 171 

ZFP36 only enriched a subset of the AU-rich 6-mers (Mukherjee et al., 2014). Complementing 172 

the 6-mer enrichment analysis, we performed motif analysis for each RBP library with the motif 173 

finding algorithm SSMART (sequence-structure motif identification for RNA-binding 174 

proteins, (Munteanu et al., 2018)) (Supplemental Fig 2b). For most RBPs, we observed strong 175 

concordance between the two analyses. RBM20 was a clear exception, for which we observed 176 

the established UCUU-containing motifs (Maatz et al., 2014) with SSMART, but a GA-rich 177 

sequence in the 6-mer enrichment analysis. However, we do observe UCUU-containing motifs in 178 

the top 15, but not top5 6-mers for RBM20. Altogether, our analysis was remarkably consistent 179 

with previously reported motifs in spite of differences in data processing and analysis (detailed 180 

Table 2). 181 

 182 

Identification of RNA regulatory modules 183 

To understand the functional impact of co-regulation by multiple RBPs, we analyzed the co-184 

variation in binding patterns of all 55 RBPs across 13,299 target RNA encoding genes to probe 185 

for the existence of regulatory modules, i.e., specific subsets of RNAs implicated in similar 186 

function bound by subsets of RBPs. To this end, we employed Factor Analysis (FA), which 187 

reduces a large number of observed variables to a smaller number of latent factors. Here, our 188 

observed variables represented the normalized RBP binding (see methods) for each of the 55 189 

RBPs across all target RNA encoding genes (n=13,299). The latent factors represented similar 190 

binding patterns to RNA targets by one or more of the 55 RBPs. RBPs exhibiting high loadings 191 

for the same factor would have very similar binding patterns to RNA targets.  Importantly in this 192 
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framework, a single RBP could be assigned to multiple factors, just as a single RBP can 193 

participate in multiple RNPs and regulate different aspects of RNA metabolism.  194 

 195 

The FA model decomposed the 55 x 13,299 normalized RBP binding matrix into a 55 x 10 factor 196 

loading matrix (representing the strength of the dependence of each of the 55 RBP target RNA 197 

binding pattern on each of the 10 factors), a 13,299 x 10 factor score coefficient matrix 198 

(representing the dependence between the binding of the 13,299 target RNA encoding gene and 199 

each of the 10 factors), and residual error (Supplemental Fig 3a and methods). Cumulatively, the 200 

FA model explained ~60% of the variance in the observed data. The remaining unexplained 201 

variance was expected due to the challenges of integrating data sets of varying depth and quality, 202 

in spite of our efforts to control these aspects. The communality, which is the amount of variance 203 

explained by the model for each RBP-binding variable, varied drastically for all 55 RBPs; the 204 

model explained at least 80% of the variance in enrichment scores for 12 RBPs, and at least 50% 205 

of the variance in enrichment scores for 30 RBPs (Supplemental Figure 3b). RBPs with lower 206 

communality often coincided with shallow depth of their PAR-CLIP libraries. 207 

 208 

The FA model also uncovered interesting parallels between the similarity in the binding of target 209 

RNA encoding genes and the target annotation category preferences (from Figure 1a). We 210 

observed that individual factors contained RBPs that preferred binding to either mature (Factors 211 

1, 3, 4, 5, 8) or precursor transcripts (Factors 2, 6), reflecting involvement in different stages of 212 

RNA metabolism (Figure 3a). Furthermore, individual factors contained RBPs exhibiting similar 213 

patterns of binding to specific regions of the mRNA (i.e., intron, coding, 3’ UTR). Indeed, RBPs 214 

from the same family, or known to regulate a specific aspect of RNA processing, had high 215 
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loadings for the same factors. For example, the ELAVL1 family members were associated with 216 

Factor 1; the AGO1 family were associated with Factor 3; the IGF2BP1 family were associated 217 

with Factor 4; the FMR1 family had were associated with Factor 5 and Factor 8; LINE-1 218 

encoded proteins were associated with Factor 7. One of the unanticipated associations was that 219 

of HNRNPC with Factor 2, which contained man cleavage and polyadenylation factors. 220 

Interestingly, HNRNPC was shown to interact with U-rich sequences downstream of a viral 221 

poly-adenylation signal nearly three decades ago (Wilusz et al., 1988), and more recently, to 222 

repress cleavage and poly-adenylation in humans (Gruber et al., 2016). These examples highlight 223 

the specific testable hypotheses generated by an integrative analysis that are not necessarily 224 

obvious when examining a single RBP in isolation.  225 

 226 

By clustering the factor score coefficients, i.e. the specific linear combination of RBP binding for 227 

that target RNA, we identified target RNA encoding genes constituting putative regulatory 228 

modules associated with a given factor. Therefore, each regulatory module was associated with 229 

an RBP component (the subset of RBPs exhibiting similar binding pattern) and a RNA 230 

component (the subsets of target RNA encoding genes bound by those RBPs). These regulatory 231 

modules did not imply physical interactions between RBPs; rather, it identified RBPs that may 232 

cooperate in controlling RNA metabolism for specific subsets of RNA targets, possibly across 233 

cellular compartments. Almost a quarter of the target RNA encoding genes (3,180/13,299) were 234 

assigned to regulatory modules by exhibiting high factor score coefficients for a single factor 235 

(Supplemental figure 3c).  We did not identify target RNA encoding genes with high factor score 236 

coefficients for Factor 9 or 10. The remaining target RNA encoding genes did not exhibit high 237 

factor score coefficients for any specific factor in our analysis, suggesting that the targets were 238 
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either not bound by specific combinations of these RBPs, bound broadly by all RBPs, or not 239 

bound by the subset of RBPs in the analysis. As such, we labeled this target RNA encoding gene 240 

category as “non-specific”. The RNA regulatory modules encoding genes were enriched for 241 

different GO categories. Factor 1 RNA regulatory modules were enriched for ‘AU-rich element 242 

binding’ and Factor 3 RNA regulatory modules were enriched for ‘gene silencing by miRNA’; 243 

AU-rich RBPs and AGO proteins were strongly associated with Factor 1 and Factor 3, 244 

respectively. This was consistent with the recurrent observation that RBPs target the mRNAs 245 

encoding themselves (Pullmann et al., 2007; Tenenbaum et al., 2000). In turn, the RNAs 246 

encoding “non-specific” genes contained ribosomal proteins and mitochondrial electron-247 

transport proteins.  248 

 249 

RNA regulatory modules underlie distinct patterns of RNA metabolism 250 

In order to test the functional relevance of these RNA regulatory modules, we reasoned that 251 

perturbation (change of protein abundance or activity) of an RBP will lead to pronounced effects 252 

only for the RNA regulatory modules assigned to the specific factor(s) that RBP is associated 253 

with. We examined mature and precursor RNA expression changes induced by siRNA 254 

knockdown of ELAVL1 (Kishore et al., 2011). ELAVL1 was strongly associated with both 255 

Factor 1 and Factor 2, which exhibited RNA targeting patterns for mature or precursor RNAs, 256 

respectively. Concordantly, Factor 1 associated RNA regulatory modules, but not Factor 2 RNA 257 

regulatory modules, exhibited ELAVL1-dependent stabilization of mature RNA (Figure 4a). 258 

Likewise, Factor 2 RNA regulatory modules exhibited a more pronounced ELAVL1-dependent 259 

stabilization of precursor RNA than Factor 1 RNA regulatory modules (Figure 4b). Each human 260 

ELAV1 family protein contains three RRM domains (>90% sequence identity), but the hinge 261 
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region between the second and third RRM of ELAVL1 contains a shuttling sequence responsible 262 

for its nuclear localization (Fan and Steitz, 1998). Due to the lack of this shuttling sequence, 263 

ELAVL2/3/4 are predominantly cytoplasmic and were strongly associated with Factor 1, but not 264 

Factor 2. Taken together, the model was able to correctly identify and distinguish ELAVL1-265 

dependent stabilization of both precursor and mature RNA (Lebedeva et al., 2011; Mukherjee et 266 

al., 2011). 267 

 268 

We hypothesized that the subsets of RNAs assigned to the different regulatory module would 269 

exhibit differences in RNA metabolism driven by the RBPs in the factor associated with the 270 

regulatory module. Therefore, we compared six aspects of RNA metabolism previously 271 

quantified in HEK293 cells (Mukherjee et al., 2017), for each of the RNA regulatory modules 272 

associated with each of the factors. The factor-associated RNA regulatory modules exhibited 273 

very distinct RNA metabolic profiles compared to each other and to non-specific category 274 

(Figure 4c, Supplemental Figure 4a). Factor 2 RNA regulatory modules, which was the only 275 

factor associated with RBPs binding to precursor mRNA and lncRNA, had low processing rates, 276 

high degradation rates and their encoded RNAs were preferentially localized in the nucleus 277 

versus the cytoplasm. Factor 2 RNA regulatory modules were strongly enriched for lncRNAs 278 

(Figure 4d). Indeed, these genes strongly overlapped with a set of lncRNAs likely to be 279 

functional (Supplemental figure 4b) (Mukherjee et al., 2017). 280 

 281 

We also examined regulatory differences in RNA metabolism for genes associated with 282 

cytoplasm-enriched factors. For example, factor 1 RNA regulatory modules were more stable 283 

than Factor 3 RNA regulatory modules (Figure 4c). Factor 1 was strongly associated with 284 
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ELAVL1 family proteins, which stabilize target mRNAs. Factor 3 was strongly associated with 285 

for AGO1 family proteins, which execute miRNA-mediated degradation of target mRNAs. 286 

Additionally, Factor 4 RNA regulatory modules, which are bound by IGF2BP1 family proteins, 287 

were highly synthesized, processed, stabilized, and translated (Figure 4c). The RNA targets of 288 

IGF2BP1 family RBPs were strongly localized to the ER (Supplemental Figure 4c) (Jønson et 289 

al., 2007), which is also consistent with the proposed role of IGF2BP1 family proteins for RNA 290 

localization and translation (Farina et al., 2003; Nielsen et al., 2001). Although correlative, these 291 

results indicate that different RBP binding patterns beget different consequences for RNA 292 

metabolism. 293 

 294 

Specific RNA regulatory modules also exhibited preferential localization to processing bodies 295 

(P-bodies), which are cytoplasmic granules associated with translational repression (Sheth and 296 

Parker, 2003). Namely, Factor 3 RNA regulatory modules, which were strongly associated with 297 

the AGO1 family, were the most strongly enriched for localizing to P-bodies according to a 298 

recent study characterizing the transcriptome and proteome of P-bodies, and the AGO2 protein 299 

itself was 90-fold enriched (Hubstenberger et al., 2017). Similarly, Factor 5 RNA regulatory 300 

modules, which were strongly associated with the FMR1 family, were also enriched for 301 

localizing in P-bodies, along with the FMR1 protein (16-fold enriched). In contrast, the non-302 

specific category was depleted from P-bodies. 303 

 304 

Fine-tuning of gene expression has been postulated to be an important function of post-305 

transcriptional regulation by RBP and miRNAs. Therefore, we examined the cell-to-cell 306 

variability in gene expression across 25 individual HEK293 cells with respect to the RNA 307 
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regulatory modules. The single-cell RNA-seq data was very deeply sequenced and generated 308 

using the massively parallel single-cell RNA-sequencing (MARS-Seq) protocol (Guillaumet-309 

Adkins et al., 2017). Most RNA regulatory modules exhibited lower expression variability than 310 

the non-specific category (Figure 4e). In particular, Factor 4 RNA regulatory modules exhibited 311 

the lowest variation and highest median expression across the 25 cells (Supplemental Figure 4d). 312 

These results supported the broad notion that post-transcriptional gene regulation generally 313 

confers robustness and fine-tuning of gene expression.  314 

 315 

Conclusion 316 

Our study presents a curation of existing datasets, followed by systematic analysis of high-317 

quality and high-resolution RBP-RNA interaction data. We focused on the RBPs that 318 

preferentially bound to mRNA and lncRNA and examined their sequence specificity and 319 

sequence motif preferences. Our survey of the RBP regulatory landscape identified the most 320 

prevalent subsets of RNAs targeted by a specific subset of RBPs, which we refer to as RNA 321 

regulatory modules.  322 

 323 

We utilized high quality PAR-CLIP datasets for which the immunoprecipitation was generally 324 

comparable due to fact most RBPs were FLAG-tagged. Nevertheless, several caveats associated 325 

with the interpretation of this analysis need to be pointed out. Despite several measures of quality 326 

control to decide which datasets to include in our analysis, the libraries varied greatly in depth, 327 

quality, digestion biases and potentially other confounding variables with respect to the protocol. 328 

The FA model quantitatively assessed the degree to which we could explain the full complement 329 

of RBP-RNA target binding patterns. These confounders undoubtedly contributed to the ~40% 330 
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of variance not explained by the FA model. In comparison, the ENCODE eCLIP datasets (Van 331 

Nostrand et al., 2016) are likely to suffer from different confounders: they were generated using 332 

one consistent experimental protocol but used antibodies against endogenous proteins expressed 333 

at varying levels, and for which IP efficiency can vary greatly in spite of the quality control 334 

performed (Sundararaman et al., 2016). Essentially, this represents the trade-offs in experimental 335 

design between analyzing the endogenous protein compared to an epitope-tagged protein. 336 

Modifying the genomic loci of the protein to engineer an endogenous epitope tagged RBP is 337 

a very promising strategy. 338 

 339 

Assuming the RBPs investigated here are a representative sample of the ~1,542 RBPs encoded in 340 

the human genome, there may be an astounding number of RBPs with substantial primary 341 

sequence specificity. However, the degree of sequence specificity is determined by the nature of 342 

the RBP-RNA interaction, which can be quite extensive and specific, as in the case of Pumilio, 343 

or minimal and non-sequence specific, as in the case of an RNA-helicase. An interesting 344 

exception were the A-rich sequences enriched by UPF1, which is an RNA helicase and therefore 345 

unlikely to exhibit strong sequence specificity. One possible explanation is that such sequences 346 

may represent pre-mature polyA tail recognition involved in aspects of ribosome quality control 347 

demonstrated in yeast (Koutmou et al., 2015) and human cells (Garzia et al., 2017). Likewise, 348 

more examples of unanticipated sequence enrichments may shed light on novel RNA regulatory 349 

mechanisms.  350 

 351 

Our FA model was able to identify distinct RBP-RNA target regulatory modules. At the very 352 

minimum, 25% of target RNA encoding genes were assigned to RNA regulatory modules. This 353 
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is very likely an underestimation due to noisy data and a biased, far from complete sampling of 354 

RBPs. However, there is likely to be a subset of genes for which post-transcriptional gene 355 

regulation indeed plays a negligible role, at least in HEK293 cells. Furthermore, a small number 356 

of RBPs in our analysis are not endogenously expressed in HEK293 and their natural expression 357 

is tissue-specific and/or context-dependent. The approach presented here can scale to binding 358 

data for all ~700 RBPs experimentally shown to be associated with poly-adenylated RNA in 359 

HEK293 cells or even ~1,542 known RBPs (Baltz et al., 2012). 360 

 361 

The RNA regulatory modules exhibited different patterns of RNA processing, degradation, 362 

localization, and translation. We speculate that these differences in RNA metabolism were driven 363 

by individual RBPs or the combination of RBPs associated with that regulatory module. This 364 

was supported by the response of specific RNA regulatory modules to ELAVL1 knockdown 365 

(Figure 4A, B). Additionally, the RNA regulatory modules encoded functionally related proteins 366 

and similarly localized proteins. The enrichments were for proteins with similar molecular 367 

functions or multi-component complexes rather than signaling pathways (Supplemental Fig 3b). 368 

Altogether, these lines of evidence provide support for the coordinate regulation of ‘functionally 369 

coherent’ RNA regulatory modules as proposed by the post-transcriptional operon/regulon model 370 

(Keene, 2007). The ultimate test of this model would involve manipulating specific combinations 371 

of binding sites and RBPs. Our study provides the rationale for such experiments, which 372 

unfortunately remain technically challenging.  373 

 374 

Our observations have important implications for RBP-RNA regulatory networks and their 375 

importance in gene expression. The mRNA targets within specific regulatory modules encoded 376 
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the RBP themselves, a generalization of a commonly made observation that RBPs bind to the 377 

mRNAs encoding them (Mesarovic et al., 2004). Our analysis lends support for this frequently 378 

observed potential auto-regulatory feedback. These feedback loops may in fact buffer the 379 

expression range of the targeted mRNAs, including those of the RBP. In this context, the 380 

observation that the RNA regulatory modules exhibited lower cell-to-cell gene expression 381 

variance, provides more evidence for the importance of post-transcriptional regulation in 382 

buffering transcriptional noise (Bahar Halpern et al., 2015; Battich et al., 2015). Systematic 383 

perturbation of individual and combinations of RBPs will be quite powerful in revealing 384 

fundamental properties of RNA regulatory networks such as auto-regulatory feedback and 385 

buffering. 386 

 387 

The binding preference and targets of the vast majority of human RBPs remains unknown. The 388 

insights gained from this study demonstrate the value of large-scale efforts by ENCODE and 389 

others in the community to globally identify RBP binding sites. Of the 64 RBPs in this study, 44 390 

were not represented in the ENCODE cell lines. Cumulatively these efforts interrogate ~10% of 391 

human RBPs with known RNA-binding domains. Thus, these two large scale efforts offer the 392 

potential to complement one another in our continuing attempts to understanding RBP-RNA 393 

regulatory networks, for which we have only glimpsed the tip of the iceberg. 394 

 395 

Methods 396 

Processing, filtering, and quality control of PAR-CLIP libraries 397 

Each PAR-CLIP library was subject to two rounds of quality control. First, all PAR-CLIP 398 

libraries generated in HEK293 cells were subject to the quality control pipeline PAR-CLIP Suite 399 
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v1.0 (https://rnaworld.rockefeller.edu/PARCLIP_suite/). Using raw Illumina sequencing data, 400 

this pipeline identified the predominant target RNA category or categories for each RBP and 401 

provided the T-to-C conversion frequency resolved by read length and RNA category 402 

(Supplemental Fig 1). The mapped reads of each RNA category were resolved by error distance 403 

0 (d0), error distance 1 (d1; split in T-to-C and d1 other than T-to-C), and error distance 2 (d2). 404 

This process discriminated for each library true target RNA categories from non-crosslinked 405 

background RNA categories populated by fragments of abundant cellular RNAs. In order to 406 

disqualify experiments comprising too many non-crosslinked RBP-specifically bound RNAs or 407 

co-purified non-crosslinked background RNAs, we pursued only datasets which collect at least 408 

10,000 redundant d1 reads ≥ 20 nt in at least one of major RNA annotation categories with d1(T-409 

to-C)/(d0 + d1) ≥ 30%, and d1(T-to-C)/(d1-total) ≥ 65%. 410 

For the libraries passing the first threshold, we defined and annotated binding sites using 411 

PARpipe, which is a pipeline wrapper for PARalyzer (Corcoran et al., 2011; Mukherjee et al., 412 

2014). The threshold for additional filtering were determined by comparisons with the reference 413 

library (Friedersdorf and Keene, 2014). This reference library was generated using a modified 414 

PAR-CLIP protocol in which there was no immunoprecipitation and the addition of an rRNA 415 

depletion step after proteinase K digestion, followed by a partial digestion using RNase T1. We 416 

required libraries had to have an average fraction T-to-C over remaining reads greater than 0.32 417 

(the average fraction T-to-C over remaining reads greater of the reference library), an average 418 

conversion specificity greater than 0, more than 20000 aligned reads, not be digested only with 419 

micrococcal nuclease, a redundant read copy fraction less than .98 (Supplemental Fig 1b,c and 420 

Sup Table 1). For RBPs with three or more libraries, we removed outlier based on correlation of 421 

6-mer frequency calculated from PARalyzer-utilized reads.  422 
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  423 

Annotation category preference and positional analysis of binding density 424 

For calculating the annotation category preference, we calculated the difference in the fraction of 425 

T-to-C reads per annotation category between each RBP library and the reference library. For 426 

example, if the fraction of miRNA annotated reads with T-to-C transitions in a specific RBP 427 

library was 0.20 compared to 0.05 in the reference library, the miRNA preference value for this 428 

specific RBP is 0.15. For the positional binding analysis, we selected genes (n=15120) using 429 

GENCODE v19 as annotation based on our earlier work on HEK293 RNA processing and 430 

turnover dynamics (Mukherjee et al., 2017). Isoform expression was calculated using RSEM (Li 431 

and Dewey, 2011). For each gene, we selected the transcript isoform with the highest isoform 432 

percentage or chose one randomly in case of ties (n=8298). The list of selected transcript 433 

isoforms was used to calculate the median 5' UTR, CDS and 3' UTR length proportions (5' 434 

UTR=0.06, CDS=0.53, 3' UTR=0.41) using R Bioconductor packages GenomicFeatures and 435 

GenomicRanges. For regions downstream annotated transcription ends (TES) and adjacent to 436 

splice sites, we chose windows of fixed sizes (TES 500nt, 5’ and 3’ splice sites 250nt each). We 437 

generated coverage tracks from the PARalyzer output alignment files and intersected those with 438 

the filtered transcripts. Each annotation category was binned according to its relative coverage 439 

averaged according to each bin. For intronic coverage, we averaged across all introns per gene, 440 

given a minimal intron length of 500nt. All bins were stitched to one continuous track per 441 

transcript. Altogether 6632 intron containing transcripts showed coverage in at least one 442 

PARCLIP library. For each library, we required transcripts to have a minimal coverage 443 

maximum of > 2. For each transcript, we scaled the binned coverage dividing by its maximal 444 

coverage (min-to-1 scaling) to emphasize spatial patterns independent from transcript expression 445 
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levels. Replicate RBP PARCLIP libraries were combined at this point. Transcripts targeted in 446 

more than one replicate library were aggregated using the average of their binned coverage. 447 

RBPs with less than 50 filtered target transcripts (after aggregation) were not considered. Next, 448 

we split transcript coverage in two parts, separating 5' UTR to TES regions and intronic regions. 449 

To generate the scaled meta coverage across all targeted transcripts per RBP, we used the 450 

heatMeta function from the Genomation package. For the 5'UTR to TES, we scaled each RBP 451 

meta-coverage track independent of other RBPs. For each RBP, we subtracted the scaled meta 452 

coverage of PARCLIP reference library (Friedersdorf and Keene, 2014). For intronic sequences, 453 

we scaled each RBP relative to all other RBPs to highlight RBPs with more substantial intronic 454 

binding patterns. Finally, we visualized the density using pheatmap. 455 

 456 

Sequence analysis 457 

We calculated 6-mer frequencies with Jellyfish from all reads that generated a PARalyzer 458 

binding site for each library. For each RBP, we selected the library with the lowest percent of 459 

duplicated sequences (see supplemental table 1) to serve as a representative library for the 460 

sequence analysis and factor analysis. For each RBP, we counted the number of 6-mers with a 461 

frequency of x or higher, where x was from 1/4096 to 1/4. To evaluate the 6-mers enriched by a 462 

given RBP relative to the reference library, we regressed the RBP 6-mer frequency against the 463 

the reference library 6-mer frequency and collected the residuals (the unexplained variance). 464 

Next, identified all 6-mers that were found as the top 5 enriched over the reference library for 465 

any of the analyzed RBPs. We clustered the enrichment scores for the 6-mers across all RBPs 466 

and generated a heatmap using the ‘aheatmap’ function in NMF R package. We ran SSMART 467 
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using all binding sites found in mRNA-derived annotation categories ranked by the library size 468 

normalized enrichment over the reference library. 469 

Factor analysis 470 

For each site identified we calculated a library size normalized enrichment compared to the the 471 

reference library library. We calculated the sum of all enrichment scores for all sites annotated as 472 

mRNA and lncRNA. Next, we normalized for expression levels (collected the residuals) to 473 

create the final matrix of values. The number of factors, 10, was determined using the majority 474 

result of numerous methods to estimate the number of factors. Clustering of the score matrix was 475 

performed using the most stable results from numerous iterations of k-means clustering. 476 

 477 

Gene ontology analysis 478 

Multiple-test corrected gene ontology enrichment values were calculated using the TOPGO R 479 

package. For each set of genes, we used all 13,299 genes in the factor analysis as the background 480 

or gene universe. Enrichment was calculated using the ‘parent-child’ approach on the top 100 481 

enriched terms. This metric accounts for the hierarchical organization of gene ontology terms to 482 

minimize false-positive enrichments. We performed a Bonferonni multiple test correction on the 483 

enrichment p-values. 484 

 485 

Premature and mature RNA quantification 486 

Mature- and premature-transcript expression, transcripts per million (TPM), was quantified with 487 

RSEMv1.2.11 (http://deweylab.biostat.wisc.edu/rsem/src/rsem-1.2.11.tar.gz) as described 488 

previously (Mukherjee et al., 2017). Briefly, for each gene we included an additional isoform 489 
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corresponding to the sequence of the full gene locus. Specifically, we modified the 490 

GENCODEv19 gtf and used this as the input for the ‘rsem-prepare-reference’ function to 491 

generate a modified index used for quantification. For each gene, we calculated the expression of 492 

‘mature’ RNA as the sum of all isoforms for that gene excluding the ‘primary’ transcript. For 493 

intronless genes, premature and mature expression values were summed. We performed this 494 

analysis on the ELAVL1 knockdown RNA-seq experiments (Kishore et al., 2011). 495 

 496 

Cell-to-cell expression variability 497 

RNA-seq gene expression data for 25 individual HEK293 cells were downloaded from 498 

(Guillaumet-Adkins et al., 2017). We calculated the coefficient of variation (100*standard 499 

deviation/mean) for each gene across all 25 cells.  500 
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Figure Legends 501 

Figure 1. RBP analyzed and binding preferences by RNA category. A) Heatmap of reference 502 

normalized annotation category preference for each RBP clustered into 8 branches by color 503 

(left). The heatmap represents the difference in the proportion of sites for a given annotation 504 

category in the RBP library versus the reference library. Heatmap of the reference library 505 

normalized relative positional binding preference of the 55 RBPs with enriched binding in at 506 

least one mRNA-relevant annotation category per branch (right). RBP-specific binding 507 

preferences were averaged across selected transcripts (see methods). The relative spatial 508 

proportion of 5’UTR, coding regions and 3’UTR were averaged across all selected transcript 509 

isoforms. For TES (regions beyond transcription end site), 5’ splice site, and 3’ splice site, we 510 

chose fixed windows (250nt for TES and 500nt for splice sites). For each RBP, meta-coverage 511 

was scaled between 5’UTR to TES. The 5’ and 3’ intronic splice site coverage was scaled 512 

separately from other regions but relative to each other. 513 

 514 

Figure 2. RBP binding sequence specificity and elements. A) Heatmap of reference 515 

normalized 6-mer enrichment for top 5 enriched 6-mers for each RBP in the set of RBPs 516 

exhibiting more sequence specificity than the reference. 517 

 518 

Figure 3. RNA regulatory modules. A) Factor analysis of target RNA encoding genes binding 519 

normalized by the reference library and expression for the 55 RBPs binding to mRNAs and 520 

lncRNAs for 13,299 genes (see ‘factor analysis’ section in methods for details). Spring-521 

embedded graph of the factor loading matrix, indicating the association between each of the 55 522 

RBPs and one of the 10 factors. Nodes color-coded by RNA annotation category preference 523 
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cluster membership from figure 1. Edge width scales with factor loadings (thicker edge = higher 524 

factor loading = stronger association). Only edges with a factor loading > 0.2 (positive values in 525 

black) or < -.2 (negative values in green) depicted.  526 

 527 

Figure 4. Functional characterization of RNA regulatory modules. A) The difference in 528 

either A) primary or B) mature RNA expression (transcripts per million) upon ELAVL1 529 

knockdown by siRNA treatment (y-axis), specifically the log2[siRNA EGFP TPM]-log2[siRNA 530 

ELAVL1 TPM], for each gene set. C) Heatmap of the median value of synthesis rate, processing 531 

rates, degradation rates, cytoplasmic versus nuclear localization, polyribosomal versus 532 

cytoplasmic localization, and translational status from ribosome profiling data for each gene set 533 

(top). Heatmap of the odds-ratio of the overlap between factor associated gene sets with 534 

annotation (bottom). D) Box-and-whisker plot for each gene set of the enrichment in P-bodies. 535 

E) Box-and-whisker plot for each gene set of the coefficient of variation across 25 individual 536 

HEK293 cells. 537 

 538 

Supplemental Figure 1. QC filtering of libraries. A) Description of PAR-CLIP suite to assess 539 

library quality control per annotation category (left). Example of number of reads mapping to 540 

each RNA category with up to 2 mismatches resolved by length of adapter-extracted sequence 541 

reads for an ELAVL1 library (middle). Sequencing read composition of the most abundant RNA 542 

category fir the ELAVL1 library. Reads were assigned as d0 (white), d1 T-to-C (red), d1 other 543 

than T-to-C, (light gray), and d2 (black) (right). B) Libraries had to have > 20,000 aligned reads 544 

and a mean conversion specificity > 0, and a higher mean T-to-C fraction than the the reference 545 

library (red lower, blue higher). C) Number of libraries analyzed and their quality control status. 546 
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D) Count of libraries passing QC per RBP. E) Examples of outlier library removal (libraries 547 

labeled with red text were removed) based on correlation of read 6-mer frequency for RBPs with 548 

3 or more libraries. 549 

 550 

Supplemental Figure 2. Grouping RBPs by sequence specificity. A) Heatmap of the number 551 

of 6-mers enriched per RBP at different specificity thresholds. The color scale represents the log2 552 

[number of 6-mers] that are enriched at a given threshold (y-axis). The thresholds are represented 553 

as log2 [6-mer frequency]. There are 4096 different 6-mers and if they were uniformly present 554 

this would represent a value of -12 =log2 [1/4096]. The horizontal dashed lines at -8, represents 555 

16-fold enrichment over a uniform background. For reference, the vertical dashed lines indicate 556 

the behavior of the reference library. B) Top 3 SSMART motif results using all binding sites 557 

found in mRNA-derived annotation categories ranked by the library size normalized enrichment 558 

over reference library. 559 

 560 

Supplemental Figure 3. Factor analysis model selection and performance. A) Plot 561 

of eigenvalues versus number of factors to determine the optimal number of factors using four 562 

methods (different colors). B) Barplot of the communality, or the variance in a given RBP 563 

cumulatively explained by the all factors. C) Heatmap of the median factor score coefficient 564 

value for all genes that clustered together. The number of genes assigned to a specific factor and 565 

the top two most significant enriched GO annotations for each ontology class: molecular 566 

function (MF), cellular component (CC), and biological process (BP). 567 

 568 

 569 
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Supplemental Figure 4. RNA metabolism profiles for factor-associated gene sets. A) Box-570 

and-whisker plot for each gene set of the synthesis rates, processing rates, degradation rates, 571 

cytoplasmic versus nuclear localization (Cyt vs Nuc), polyribosomal versus cytoplasmic 572 

localization (Poly vs Cyt), and translational status from ribosome profiling data. B) Heatmap of 573 

the odds-ratio of the overlap between factor associated gene sets with RNA categories based on 574 

similar metabolic profiles from (Mukherjee et al., 2017). C) Heatmap of the odds-ratio of the 575 

overlap between factor associated gene sets and protein localization annotation. D) Box-and-576 

whisker plot for each gene set of the median expression across 25 HEK293 cells.  577 
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