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Abstract 

Multivariate regression modelling provides a statistically powerful means of quantifying the 

effects of a given treatment while compensating for sources of variation and noise, such as 

variability between human donors and the behaviour of different peptides during mass 

spectrometry. However, methods to quantify endogenous post-translational modifications 

(PTMs) are typically reliant on summary statistical methods that fail to consider sources of 

variability such as changes in levels of the parent protein. Here, we compare three multivariate 

regression methods, including a novel Bayesian elastic net algorithm (BayesENproteomics) 

that enables assessment of relative protein abundances while also quantifying identified PTMs 

for each protein. We tested the ability of these methods to accurately quantify expression of 

proteins in a mixed-species benchmark experiment, and to quantify synthetic PTMs induced 

by stable isotope labelling. Finally, we extended our regression pipeline to calculate fold 

changes at the pathway level, providing a complement to commonly used enrichment analysis. 

Our results show that BayesENproteomics can quantify changes to protein levels across a 

broad dynamic range while also accurately quantifying PTM and pathway-level fold changes. 

Raw data has been deposited to the ProteomeXchange with identifiers PXD012784, 

PXD012782 and PXD012772. BayesENproteomics is available for Matlab: 

www.github.com/VenkMallikarjun/BayesENproteomics 

and Python3: 

www.github.com/VenkMallikarjun/BENPPy 
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Introduction 

Spiraling costs of drug/therapeutic development and a low probability of success have driven 

an increase in the use of models based on patient-derived material in an attempt to determine 

translational potential prior to clinical studies. However, unlike samples from genetically 

homogeneous, completely inbred model organisms, patient samples can possess substantial 

differences between individuals. This variability between samples can make discerning a 

statistically significant effect extremely difficult using the standard statistical methods 

commonly used in biology. The lack of statistical power caused by poor signal-to-noise ratios 

in primary samples and the difficulty in obtaining large donor cohorts can compromise 

potentially promising biological studies, resulting in wasted time and prohibitive expenditure. 

 

The problem of high inter-individual differences is rarely more acute than in high-throughput 

omics experiments where subtle differences in the levels of individual features within samples 

(e.g. transcripts, peptides derived from proteins, etc.) are compounded over many such 

features, demonstrating quantifiable inter-individual differences even between genetically 

identical twins (Brodin et al., 2015). This is especially relevant to typical mass spectrometry 

(MS) proteomic methods wherein quantities associated with multiple features (i.e. peptides) 

are used in the calculation of a fold change for a single protein. 

 

In bottom-up MS-based proteomics, proteins are enzymatically digested into peptides and the 

abundances of these individual peptides are used to derive protein quantifications. A core 

assumption is that peptide abundance is proportional to protein abundance. However, each 

peptide has different physico-chemical properties that mean they each behave differently 

during sample preparation or within the mass spectrometer itself. For instance, residues 

surrounding cleavage sites can affect efficiency of enzymatic digestion (Lawless and Hubbard, 

2012; Rodriguez et al., 2008); some peptides also ionise less efficiently than others (Abaye et 
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al., 2011) and in data-dependent analysis, peptides of similar mass-to-charge (m/z) ratios may 

compete during co-elution or ionisation (Schliekelman and Liu, 2014), potentially biasing the 

peptides finally detected. These discrepancies can be further exacerbated by biologically 

relevant post-translational modifications (PTMs) that alter the behaviour of individual peptides, 

resulting in substantial differences in measured intensities for peptides that belong to the same 

protein, even in purified protein samples. Even with normalisation, differences in the behaviour 

of individual features between donors and experimental treatments are difficult to account for. 

 

It was recently shown that combining MS datasets from multiple fractions and extraction 

conditions could achieve near-complete coverage of the human cell proteome, including 

>14000 protein isoforms (Bekker-Jensen et al., 2017). Interestingly, the same study also 

identified ~10000 phosphorylation sites and ~7000 acetylation sites without specific 

enrichment. New sample preparation techniques and the increasing sensitivity of MS 

instrumentation have increased coverage of PTMs. However, with this increase in sensitivity 

comes the problem of resolving differential regulation of different forms of the same protein 

(proteoforms), as not all peptides belonging to a given protein respond in the same way to a 

given treatment, an assumption made by many commonly used quantification methods. 

 

Common statistical methods for dealing with variability include the summarisation of peptide 

intensities using averages, sums or medians to give subject-level protein quantification 

(Goeminne et al., 2015). However, these subject-level summary models fail to account for 

differences in behaviour of peptides belonging to the same protein during analysis, and thus 

are prone to perturbation by outlier peptides. They are also highly dependent on obtaining 

large numbers of peptides from each protein and thus can suffer from low statistical power 

when analysing less extreme fold changes in small or low abundance proteins (e.g. 

transcription factors). To address this, previous statistical models have focused on exclusion 
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of outlier peptides to improve protein quantification (Forshed, 2013; Swift et al., 2013a), at the 

cost of a loss of information relating to different proteoforms for a given protein; or have 

attempted to deduce differences in the abundance of peptides belonging to different sub-

populations of the same protein (Henao et al., 2013, 2012; Webb-Robertson et al., 2014; Zeng 

et al., 2017). 

 

Multivariate regression has been shown to be a powerful means of analysing complex omic 

experiments (Smyth, 2006). For proteomics specifically, linear regression models represent a 

powerful means of teasing apart different, known sources of variability in peptide intensities, 

with the aim of returning the variability caused by a given experimental condition. Linear 

modelling has become the standard for transcriptomic analysis thanks to the widely used 

LIMMA package (Smyth, 2004) and has been successfully adapted for MS data analysis. For 

example, in the peptide-based model proposed by Choi et al. (2014) with donor effects added: 

 

𝑦"#$ = 𝛽& + 𝑋"𝛽" + 𝑋#𝛽# + 𝑋$𝛽$ + 𝜀"#$ .       (1) 

 

Where, for a given protein, 𝑦"#$ (the response variable) corresponds to the observed log2 

intensity for peptide f of that protein under experimental condition g from donor d. Predictor 

variables 𝛽", 𝛽#  and 𝛽$ correspond to the effect sizes of peptide f, group g and donor d, 

respectively. 𝛽& represents the intercept term. 𝜀 corresponds to a Gaussian error term centred 

on 0 with a variance (𝜎+) specific to each protein. The purpose of the regression calculation 

was to find how much the slope of the resulting line differed for a given experimental treatment 

(i.e. the effect size 𝛽# caused by the experimental treatment of interest g). In this instance the 

design matrix 𝑿 consisted solely of categorical variables encoded as binary variables of size 

𝑛	 × 	𝑝 (where 𝑛 = number of observations and 𝑝 = number of 𝛽s). 
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However, peptide-based linear models can be prone to overfitting, wherein predictive power 

is lost as the model attempts to fit the noise within the data rather than any overall trends. This 

may be due to the effects of outlier peptides, such as those that possess a biologically relevant 

PTM with a fold change different to that of its parent protein, or simply due to peptide mis-

identification. The effects of outlier peptides on the final linear model fit can be mediated by 

various weighting strategies (e.g. see Goeminne et al. (2016)). However, for modelling 

changes in PTM abundance, it would be useful to obtain effect sizes for peptides that 

specifically interact with a given treatment and separate them from effect sizes for other 

parameters that may be interacting with these peptides. Linear modelling is more flexible than 

the name suggests and can also handle interactions between predictor variables; for example, 

where an experimental condition has an effect on the intensity of an individual peptide – 

independent of its effect on the protein as a whole – possibly due to some biologically 

important PTM of that specific peptide. For example, we can extend the model in (1) to allow 

separation of peptide:treatment and peptide:donor effects in studies using primary human 

samples, as in (2) (see also the model in Clough et al, 2009). 

 

𝑦"#$ 	= 	 𝛽& + 𝑋"𝛽" 	+ 	𝑋#𝛽# +	𝑋$𝛽$ + 𝑋"𝑋#𝛽":# + 𝑋"𝑋$𝛽":$ 	+	𝜀"#$ .   (2) 

 

Wherein 𝑦"#$ corresponds to the intensity of peptide f, in experimental group g, from protein 

i, extracted from technical replicate r of donor d. The 𝛽s correspond to the fitted coefficients 

for each predictor variable. Note the interactions coefficients 𝛽":#, and 𝛽":$ in (2), denoting 

variability in individual peptide intensities, f, caused by the experimental treatment g or largely 

unknown features of the individual donor d. From here on we refer to (1) as linear and (2) as 

non-linear. 
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Unfortunately, overfitting becomes particularly acute in models that attempt to deal with many 

potential sources of variability, some of which may interact or correlate with one-another, and 

where the number of parameters to be estimated exceeds the number of observations. The 

inclusion of interaction terms in a model has potential to provide important biological insight 

regarding different isoforms and PTMs of a given protein (collectively called proteoforms) – 

vital mechanisms of post-translational regulation of cellular function. However, interaction 

terms may not be necessary for all proteins in a dataset, and the decision as to whether or not 

to include them would need to be made on a protein-by-protein basis. Importantly, while 

protein-based models are simpler and less prone to overfitting (because they do not include 

𝛽" or related interaction terms), peptide-based regression models have been shown to provide 

greater statistical power (Clough et al., 2009; Goeminne et al., 2015). Furthermore, by 

definition only peptide-based models are capable of providing quantifications for PTMs or 

differential splicing as variability in peptide behaviour is lost during protein-level 

summarisation. As we are interesting simultaneously quantifying protein and PTM fold 

changes, this eliminates protein-based models from consideration. 

 

Simpler models (e.g. those used by (Choi et al. (2014) and (Goeminne et al. (2016)) minimise 

the potential for overfitting found in more complex models. However, when many potential 

sources of variability exist it may be necessary to fit increasingly complex models wherein the 

choice of terms included, particularly any interaction terms, may need to be decided on a 

protein-by-protein basis. Failure to select the correct terms could result in models failing to fit 

correctly, or even at all, especially if complex interaction terms are included when not needed. 

However, not including these terms may mean that subtle differences in peptide behaviour 

that occur only in specific proteins may go unaccounted for, resulting in a loss of accuracy. 

Thus, a means of automatically selecting appropriate features from a more complex model for 

use in fitting a final, sparse model is necessary. 
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Regularisation can be employed to minimise overfitting and perform feature selection. 

Regularisation involves attaching penalty weights to each coefficient (𝛽), minimising its 

contribution to the final fit. The nature of the penalty can differ depending on the type of 

regularisation used. In the ridge regression algorithm used by Goeminne et al. (2016) an “L2” 

penalty is applied wherein 𝛽s are shrunk according to their squared norm, minimising the 

contribution of less important coefficients in explaining the total model variance. Although ridge 

regression shrinks coefficient estimates down to emphasise the most important 𝛽s, all 𝛽s 

remain non-zero. Another form of regularisation is LASSO (least absolute shrinkage and 

selection operator), which shrinks 𝛽s according to their “L1” absolute norm. With LASSO, some 

𝛽s can be set to exactly zero, excluding them from the model and giving rise to so-called 

“sparse” solutions. Several variations of these methods have been proposed, including an 

“elastic net” variation that combines properties of both ridge regression and LASSO to perform 

both model selection and shrinkage of remaining non-zero 𝛽s (Zou and Hastie, 2005). These 

frequentist regularisation methods have Bayesian parallels depending on the prior 

distributions the 𝛽 posteriors are sampled from, with L2 regularisation being equivalent to 

sampling of 𝛽s from a Gaussian distribution, L1 being equivalent to sampling from a Laplace 

(double exponential) prior and the elastic net being equivalent to 𝛽 sampling from an 

intermediate distribution (Bornn et al., 2010). 

 

Here we develop a Bayesian elastic net algorithm to provide regularised protein-specific 

models (BayesENproteomics), considering potential donor variability and interactions 

between specific peptides and experimental treatments and/or donor effects. This has the 

advantage in implicitly allowing for any individual peptide to behave differently from its 

identified protein group in response to treatment or donor effects. This means that 

BayesENproteomics does not assume that peptides have been identified correctly – a point 

we enforce by incorporating observation weights based on peptide identification confidence. 
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However, unlike previous Bayesian regression models that attempt to accommodate variable 

peptide behaviour within a protein (Henao et al., 2013, 2012; Webb-Robertson et al., 2014), 

BayesENproteomics can still provide fold change estimates for protein groups containing 

peptides with specific identifications, maintaining interpretability of subsequent results by 

presenting relative quantification of the “dominant” proteoform for that protein (separating 

different isoforms if unique peptides are available), whilst also presenting values for 

differentially abundant PTMs for further investigation. We benchmark BayesENproteomics 

against other commonly used peptide-centric regression methods. Finally, we extend our 

linear modelling pipeline to encompass pathway analysis as a complement to standard 

enrichment analysis. This enables complete analysis of a dataset from MS1 intensities to 

functional interpretation of observed proteoform changes. 

 

Results 

BayesENproteomics shows increased sensitivity and accuracy in estimating protein fold 

changes compared to other regression models 

To produce a benchmark dataset with known (ground truth) fold changes, peptides prepared 

from primary human mesenchymal stem cell (MSC) lysates and female C57BL/6J mouse skin 

were mixed in ratios of 3:1, 1:1 and 1:3 and analysed with a Q Exactive HF mass spectrometer 

(Figure 1A). Mixed species datasets have been used previously to validate protein 

quantification methods (Swift et al., 2013a), but the method has practical applications, such 

as when quantifying protein content in xenograft models (Ivanovska et al., 2017; Swift et al., 

2013b). Mixed mouse/human samples provide a difficult problem for prospective quantification 

algorithms as approximately 70% of tryptic peptides are shared between mouse and humans 

and thus have to be discarded to obtain estimates for specific proteins. This meant that the 

quantification algorithms examined here had a limited number of observations with which to 

work. Secondly, the dynamic range of absolute protein abundances was derived from actual 
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biological samples and so provided an accurate report of the error associated with estimating 

fold changes in low abundance proteins. Finally, this experiment yielded twin datasets (mouse 

and human); one with pronounced donor-donor variability (human cells) and one where all 

animals had the same genotype and environment (mouse skin), and so could be adequately 

explained by the model in equation (2) without donor effects. We reasoned that an algorithm 

that could account for donor-donor variability should be as accurate on the human dataset as 

on the mouse dataset. 

 

To automatically select appropriate β parameters it was possible to employ regularisation 

strategies such as ridge (as implemented previously (Goeminne et al., 2016) and here as 

LME-H), LASSO or elastic net regression to select the best set of βs by shrinking unimportant 

βs to zero (Figure 1B). As LASSO has been shown to lack consistency when selecting from 

several correlated βs, we chose to test elastic net-based regularisation (implemented as 

BayesENproteomics) as the introduction of L2 regularisation has been shown to introduce 

consistency to LASSO estimates by inducing grouping of correlated βs (Zou and Hastie, 

2005). However, the standard formula for calculating standard errors (SE) of β estimates (𝜎+ 

(𝑿4𝑿)67, where 𝜎+ is the residual variance and X is the design matrix, with superscript T 

denoting the transpose of X and SEs for each β, lie on the main diagonal of the resulting 

square matrix) was not suitable for sparse regression models due to shrinking of variance 

estimates by regularisation. This resulted in underestimation of variance and incorrectly lower 

SEs and p-values. While there were no simple ways to calculate SEs of coefficients in sparse 

regularised models, bootstrapping has commonly been used, however this is computationally 

intensive to do for hundreds of proteins. Bootstrapped SE estimates also differ from iteration 

to iteration, due to the inherent randomness of bootstrapping, thus compromising 

reproducibility. Bayesian regression methods addressed this limitation by estimating 

parameters as distributions for which summary statistics (e.g. means, standard deviations and 
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confidence intervals) were trivial to calculate. Bayesian regression methods were also more 

flexible in how the model parameters and hyperparameters could be defined. This made 

Bayesian regression methods generally better suited to fit non-linear models, such as in 

equation (2), which frequentist methods may have struggled to fit. To implement this non-

linear regression, we used a Monte Carlo Markov Chain (MCMC)-based Gibbs sampler to 

repeatedly sample from and update the prior conditional distributions for the parameters we 

wished to estimate (Figure 1C). Examples of the resulting chains are shown in Figure 1D and 

demonstrate good mixing and exploration of the posterior distributions. 

 

A common assumption made is that the majority of missing values in bottom-up proteomics 

are assumed to be missing non-randomly (MNR) due to low abundance (Goeminne et al., 

2016). To account for this lost variance, it is common to perform DGD imputation. In contrast, 

values can also be missing at random (MAR) and imputed from the observed values through 

local similarity-based approaches such as K-nearest neighbours. 

  

The proportion of MNR to MAR values is strongly dataset- and even protein-dependent (Lazar 

et al., 2016), meaning that the optimal choice of distribution to impute from likely differs 

between datasets and proteins. Many state-of-the-art imputation methods rely on the user 

deciding whether they think that all missing values in a dataset are MAR or MNR and selecting 

an imputation method that performs well under these conditions (Lazar et al., 2016; Webb-

Robertson et al., 2015). The nature of peptide missingness may vary between proteins, so it 

is unlikely that one method is suitable for all datasets and all proteins within them. To address 

this, we employed an adaptive multiple imputation (AMI) strategy, within the Gibbs sampler 

described in Figure 1, where a logistic regression determines if specific peptides or treatments 

positively correlate with missingness. Those missing values associated with parameters that 

showed higher than average, positive correlation with missingness were deemed to be MNR 
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and imputed from a truncated Gaussian distribution, or MAR and imputed from a Gaussian 

distribution otherwise within the main Gibbs sampler (similar to the model-based imputation 

described in Karpievitch et al., 2009; Koopmans et al., 2014; Li et al., 2011).  

 

To interrogate the accuracy of each imputation method we created a synthetic dataset 

consisting of a single protein with 1000 peptides measured across 2 treatment groups (G1 

and G2) with 6 replicates each. Values for G1 and G2 were populated from normal 

distributions with means of 0 and -2, respectively, and variance = 1, such that the ground-truth 

(log-scale) fold change, 𝐺2 − 𝐺1	 = 	−2. Zero, 10, 20 or 30% of these values were deleted 

randomly (simulating MAR missingness) along with all values < −∞, -2, -1 or 0 (simulating 

MNR missingness) and we asked which imputation method could most accurately recapitulate 

the deleted values by comparing the root mean squared error (RMSE) between imputed 

values and ground truth deleted values. While no single method was capable of fully 

approximating the deleted values, DGD imputation showed the worst performance when MAR 

dominated and improved as MNR values became more prevalent (Figure 2A). As expected, 

KNN and BPCA showed the opposite trend with high accuracy in MAR-dominated datasets 

(especially for BPCA); decreasing as MNR proportion increased (Figures 2B, C). Model-based 

imputation using DanteR (Karpievitch et al., 2009) showed good performance with small 

proportions of missing values, but performed markedly decreased as missingness proportion 

increased (Figure 2D). AMI showed good accuracy in MAR-dominated datasets (typically 

intermediate between KNN and BPCA, depending on missingness proportion), but 

importantly, AMI was not negatively affected by the presence of MNR values and exceeded 

the performance of BPCA and KNN in cases of pure MNR missingness (Figure 2E). These 

results showed that AMI, as implemented in BayesENproteomics, possessed more consistent 

accuracy, and may be better suited to imputing values in a mixed-missingness-type dataset. 
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Figure 3A shows estimation of log2 fold changes for non-differentially abundant proteins (339 

with >2 unique peptides) in pairwise comparisons between three technical replicates from the 

same (mouse skin) sample, comparing the BayesENproteomics algorithm with other 

commonly used peptide-based models, namely: ordinary least-squares (OLS), as utilised in 

MSStats (Choi et al., 2014) with donor effects added (this manuscript) and ridge 

regression/mixed-effects models with Huber residual weights, (LME-H) as utilized in MSqRob 

(Goeminne et al., 2018, 2016) but necessarily modified to quantify donor effects, and 

peptide:treatment and peptide:donor interaction effects (see Methods section). All methods 

correctly determined log2 fold change values clustered around zero. Both LME-H and 

BayesENproteomics showed a single statistically significant false positive (p-value of false 

discovery, with Benjamini-Hochberg correction, BHFDR < 0.05) that disappeared when the 

imputation method was switched from DGD to AMI. 

 

Estimation of differentially abundant mouse (130 proteins with >2 unique peptides; Figure 3B) 

and human (299 proteins with >2 unique peptides; Figure 3C) proteins in our mixed 

human:mouse dataset showed larger variation in observed fold change values, with a number 

of proteins giving consistently incorrect fold change directions, regardless of the regression 

method (Figure S1) – a common problem in label-free quantification (Zhang et al., 2017), even 

with state-of-the-art data-independent acquisition methods (Navarro et al., 2016). While 

BayesENproteomics improved specificity, it typically did not improve the accuracy of these 

consistently incorrect fold change estimates. Imputation method appeared to more strongly 

determine these incorrect fold change estimates, suggesting that incorrect estimates were due 

to missing values. Application of AMI corrected some incorrect fold change estimates but 

worsened others compared to DGD imputation, suggesting that pure MNR imputation may be 

more appropriate for a subset of proteins (Figure S1). OLS and LME-H models had difficulty 

detecting any significantly differentially abundant proteins for expected fold changes < 3 
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(Figures 3B, C). In contrast, BayesENproteomics correctly identified more proteins as 

significantly differentially abundant in all comparisons (Figures 3B, C), with AMI increasing the 

number of true positives over DGD imputation. Importantly, fold change estimates calculated 

by BayesENproteomics possessed lower mean squared deviation from ground truth 

compared to those from OLS and LME-H, which improved further with AMI (Figure 3D). 

BayesENproteomics also showed decreased coefficient of variance (CV) values for 

differentially abundant proteins in the mixed human:mouse dataset compared to both OLS 

and LME-H (Figure 3E). 

 

BayesENproteomics correctly detects increases in stable isotope-labelled proteoforms 

following PNGase F treatment in H218O 

Protein function and activity is strongly determined by diverse PTMs, giving rise to different 

proteoforms within a given protein population. MS-based proteomics represents a powerful 

means to systemically interrogate changes in PTM abundance. However, determining relative 

PTM fold changes from PTM’d peptide abundance is dependent on accurate protein 

quantification (Wu et al., 2011). While it is possible to calculate protein abundance from only 

unmodified peptides, this ignores the fact that some proteins are constitutively modified as 

part of their normal maturation pathway (e.g. many extracellular matrix proteins are heavily 

glycosylated prior to secretion) and excluding these PTM-containing peptides from protein 

quantification would exclude a large proportion of all proteoforms present for that protein. 

While methods have been developed to analyse individual proteoform abundance in 

multiplexed, labelled experiments (Malioutov et al., 2017), labelling is not always feasible and 

methods for quantifying differentially abundant PTMs in label-free experiments lag behind. 

Furthermore, while an ideal scenario would be to directly compare modified to unmodified 

peptide ratios (Tsai et al., 2017), this is not always achievable in label-free proteomics of 

complex samples. While linear regression modelling has been shown to impart greater power 
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and accuracy to protein quantification compared to summary statistical methods (Clough et 

al., 2009; Goeminne et al., 2015), applying it to study PTMs is difficult due to the requirement 

for complex non-linear models that may be subject to overfitting. 

 

To interrogate how well the three models implemented here were able to detect differentially 

abundant PTMs, we developed a benchmark dataset using PNGase F to introduce a stable 

isotope (18O) label on N-linked glycosylated residues (Figure 4A). We reasoned that PNGase 

F-treated peptides should show an increase in N-linked 18O labelling compared to 

spontaneous deamidation observed in control peptides incubated in H218O buffer alone. To 

test if our PNGase F treatment of peptides had worked correctly (independently of any 

subsequent quantification methods) we first searched treated and control samples separately 

and counted the total number of N- and Q-linked, 18O-labelled peptides identified (Figure 4B). 

This analysis showed that more 18O-labelled peptides were identified in the PNGase F-treated 

samples than controls, which contained 79 N-linked peptides presumably from spontaneous 

non-enzymatic deamidation. We expected that most spontaneously deamidated peptides 

would be unaffected by PNGase F treatment and that we would only observe an increase in 

relative 18O-peptide abundance or parent 18O-protein abundance for PNGase F-responsive 

peptides. Furthermore, as spontaneous deamidation can occur to both Q and N residues, 

resulting in 18O-E and 18O-D residues, respectively, while PNGase F catalyses only 

deamidation of N-linked glycosylation sites, comparison to fold changes of Q-linked 

deamidation provided an ideal negative control. 

 

To detect differentially abundant PTMs we employed three statistical methods. The first was 

a simple summary statistical extension to the OLS protein quantification method wherein log2 

fold changes for donor-normalised PTM’d peptide intensities were normalised to the log2 fold 

changes of their parent protein (calculated by OLS). The second involved using the ridge 
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regression performed by LME-H to fit the non-linear model described in equation (2) where 

peptide:group and peptide:donor interaction βs were entered as random intercept terms to 

limit overfitting. Finally, we used BayesENproteomics to fit the non-linear model described in 

equation (2) to calculate PTM fold changes. 

 

From simple cell lysates, following PNGase F treatment without enrichment we found 261 18O-

labelled sites (180 N-linked, 81 Q-linked) in 172 proteins when samples from all groups were 

aligned and search together. Histograms in Figure 4C showed that OLS and LME-H could not 

discern an increase in N-linked 18O-protein abundance following PNGase F treatment 

compared to Q-linked (all p-values > 0.05). In contrast, BayesENproteomics was able to 

correctly discern a positive skewing of the N-linked 18O-protein histogram compared to that of 

the Q-linked proteins that improved to significance with concomitant application of AMI (all p-

values < 0.05, Figure 4C). 

 

Similarly, when measuring differentially abundant PTMs there was great disparity between the 

three methods. The summary statistical extension to OLS produced noisy estimates of PTM 

fold changes and was unable to discern an increase in N-linked 18O-PTMs following PNGase 

F treatment compared to Q-linked (Figures 4C, D). LME-H displayed overly strong 

regularisation of interaction terms, resulting in the majority of PTM fold change estimates being 

approximately zero (Figures 4C, D). BayesENproteomics estimates of N-linked 18O-PTM fold 

changes were correctly positively skewed (Figures 4C, D) and significantly different from Q-

linked 18O sites with AMI. This showed that BayesENproteomics with AMI could quantify PTM 

fold changes more accurately than either normalised summary statistics or mixed-effects 

models. 
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Pathway analysis using linear modelling (PALM) 

Theoretically, modelling pathway activity as a function of protein abundances (PALM) can 

have several advantages over classical pathway over-representation (Figure 5A) and 

enrichment (Figure 5B) analysis. Similar to enrichment analysis, the PALM approach 

proposed here (Figure 5C) utilises all proteins regardless of significance or fold change 

magnitude. This avoids potentially arbitrary decisions used in defining “interesting” and 

“null/background” sets for over-representation analysis (reviewed in Huang et al., 2009) that 

can become difficult if a dataset is further sub-divided (e.g. experiments where proteins are 

divided into several clusters according to changing expression profiles). Secondly, unlike 

enrichment analysis, PALM does not assume that there is no intrinsic correlation between 

proteins in a given dataset. This assumption can be violated in pull-down or proximity-labelling 

experiments where a specific subset of proteins is quantified. Additionally, PALM uses 

additional information regarding the direction and magnitude of fold changes and the error 

regarding their estimation to provide an overall estimate of how a given pathway behaved 

based on information available in a given dataset (Figure 5D). Finally, PALM provides 

pathway-level fold change and error estimates, facilitating pathway-level clustering in 

complex, multi-treatment or time-series datasets to gain a better “bird’s-eye view” of what is 

happening in a dataset. We compared Reactome (Fabregat et al., 2018; Milacic et al., 2012) 

pathway-level fold changes estimated using either the Reactome website tool 

(https://Reactome.org) or PALM. Pathway-level fold changes were estimated from the 

technical replicate and mixed human:mouse datasets using BayesENproteomics protein-level 

fold change estimates (Figures 3A-C). PALM pathway fold change estimates correlated with 

pathway averages calculated by Reactome (Figure 5E). While the magnitude of pathway-level 

log2 fold changes was typically not equal to their protein components due to being inferred 

from relatively fewer observations and down-weighted according to uncertainty in initial protein 

fold change estimates (always > 0), directionality was conserved leading to an estimate of 

whether that pathway significantly increased or decreased. PALM BHFDR-adjusted 
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significance estimates of differentially abundant pathways showed an FDR of 0.03 (4 false 

positives out of 120 non-significant comparisons); this was acceptable within the pre-specified 

BHFDR cut-off of 0.05 (Figure 5E). Enrichment analysis using PANTHER (pantherdb.org; Mi 

et al., 2017) showed no significant enrichments for any of the comparisons in Figure 5E 

(Supplementary Tables S1-3), likely because of the high between-protein correlation within 

the mouse:human dataset where most proteins had similar fold changes, resulting in a “null” 

set with negligible difference to any given “interesting” set. 

 

Discussion 

Multivariate regression methods represent a powerful means to deconvolute sources of 

variance in complex experiments. Here we attempted to design a statistical method that was 

able to accurately quantify protein and PTM fold changes in label-free proteomics experiments 

performed on heterogeneous primary human samples. Others have previously shown the 

superiority of linear regression-based effect size estimates over summary statistics (Clough et 

al., 2009; Goeminne et al., 2015). Here we outlined a weighted Bayesian regression algorithm 

with elastic net regularisation to cope with differentially abundant PTMs as well as the high 

variability and generally low availability of samples from human donors, while still maintaining 

high interpretability of the resulting models (Figure 6). In particular, BayesENproteomics 

incorporates an “adaptive” missingness mechanism that attempts to determine whether a 

value is MAR or MNR. Missing value imputation is performed as part of the Gibbs sampler 

and is thus unfortunately not available as a standalone component. In addition, we utilised a 

novel weighing method that considered confidence in peptide identification to improve 

quantification accuracy. We demonstrated the accuracy and specificity of the algorithm using 

serial mixed species datasets and stable isotope labelling using peptides obtained from 

multiple human donors. 
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Characterisation of complex samples is notoriously complex due to ionisation suppression and 

detection masking by peptides with similar m/z ratios often leading to missing values and 

underestimation of larger fold changes (this study and Goeminne et al., 2016). The mixed 

species dataset used here represented an especially difficult case with most (~70%) peptides 

rendered unusable due to being shared between the two species. While all methods tended 

to underestimate fold change magnitude (likely due to conflicting peptides in data-dependent 

analysis, exacerbated in mixed species analysis), we showed that BayesENproteomics was 

better able to confidently identify differentially abundant proteins and PTMs than simpler 

regression methods with greater accuracy in fold change estimates compared to OLS and 

LME-H regression models. Furthermore, we show that missing value imputation was a strong 

determinant for those proteins with consistently incorrect fold change estimates (poor 

accuracy). BayesENproteomics typically did not improve the accuracy of fold change 

estimates for these proteins, but was still able to classify them as significantly different in 

agreement with ground truth. This increased specificity without increased accuracy could 

potentially be dangerous, highlighting the importance of subsequent experimental validation 

and may warrant exclusion of proteins with proportions of missing values above some pre-set 

threshold.  

 

We used the iterative nature of MCMC processes to incorporate multiple imputation of missing 

values into protein fold change quantification. This eliminated the need for separate imputation 

and quantification steps and allowed final fold change error estimates to consider the intrinsic 

uncertainty regarding imputation of missing values (Schafer and Olsen, 1998). Here we 

employed a standard random imputation from prior distributions, but this could easily be 

substituted for any desired method. 
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Currently, BayesENproteomics does not utilise shared peptides, an approach that others have 

shown improves accuracy (Blein-Nicolas et al., 2012) at the cost of increased computation 

time. Use of empirical Bayes correction of variances (as in all methods tested here) can 

increase power by borrowing information from all proteins/PTMs without having to fit a single 

model for all proteins simultaneously (as would be required to allow the use of shared 

peptides) for the purposes of calculating significance. MCMC samplers are known to be 

particularly computationally intensive, particularly if the experimenter wanted to extend it with 

additional fixed interaction effects to quantify PTM behaviour. BayesENproteomics side-steps 

this problem by fitting individual models for each protein, at the cost of not being able to use 

shared peptides. On an especially rich dataset, such as those generated by a modern Q 

Exactive HF mass spectrometer, analysis using BayesENproteomics can take several hours 

to process on a standard desktop computer. This is approximately three times longer than 

LME-H and several times longer than OLS regression. Importantly, the use of 

Gaussian/Laplacian priors for estimating β parameters presumed that logged fold changes lay 

on an approximately normal distribution. If it was suspected that this was not the case, 

BayesENproteomics may not be a suitable method of analysis.  

 

Linear models are extremely customisable, and indeed, can require significant tailoring to best 

analyse complex multivariate experiments. Without sufficient background knowledge it can be 

very difficult to anticipate all potential sources of variability that need to be accounted for in 

any putative statistical model. Nevertheless, BayesENproteomics showed negligible 

perturbation by inclusion of potentially extraneous parameters and so is well-suited for 

complex experimental setups that may include different batches, fractions, serial extractions, 

instruments and donors. Regularisation hyperparameters for additional effects can be 

sampled from the conditional distributions detailed here.  
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Finally, we extended our linear modelling pipeline to encompass pathway analysis. In 

transcriptomics experiments it is common to achieve coverage of the entire transcriptome (> 

20000 transcripts in a given human cell/tissue), where hundreds to thousands may be 

differentially regulated in response to any given treatment. These large numbers make over-

representation analysis using χ2 or Fisher’s exact tests well-suited to analysing differentially 

regulated transcriptomic processes. In contrast, proteomics experiments typically cover only 

a fraction of the total proteome (< 3000 proteins out of a potential > 20000 in a given human 

cell/tissue, increased further when considering multiple proteoforms) where only a hundred or 

fewer proteins may be differentially regulated, making it difficult to discern statistically 

significant process enrichment and erroneously giving the impression that “nothing is 

happening”, often despite obvious morphological or metabolic changes assessed by other 

methods. Attempting to model pathway-level changes as a function of component parts for 

transcriptomics has previously shown that incorporating fold change estimates can increase 

specificity for discriminating pathway-level changes (Ozerov et al., 2016). Although, it should 

be noted that the aim with PALM is not biomarker discovery (for which more stringent statistical 

cut-offs are needed) but rather to simply distil a complex dataset with many proteins down to 

fewer, more readily understandable pathways by assessing what processes are represented 

and what they do in response to a given treatment. This works in a similar way to previous 

enrichment tools (e.g. PANTHER (Mi et al., 2017)) and is comparable to previous 

implementations of Bayesian regression in proteomics (Henao et al., 2013), however here we 

opted to maintain interpretability by utilizing curated protein-pathway annotations when picking 

proteins to use in pathway-level model fitting. Here we chose to use Reactome pathway 

annotations (Fabregat et al., 2018), but alternative categorical annotations could be used if 

desired. PALM provides a way of compressing information from many protein/proteoform fold 

changes into fewer annotated pathway fold changes, aiding interpretation of complex, multi-

dimensional datasets. PALM can be used as a standalone pathway analysis tool; although it 
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does assume protein fold changes are formatted according to the BayesENproteomics 

protein-level output format (see examples on https://github.com/VenkMallikarjun). 

 

With the improvement of MS technology, and the production of highly efficient unconstrained 

searching algorithms (Devabhaktuni et al., 2018; Kong et al., 2017), identification and 

quantification of increasingly rare PTM’d peptides, and thus their parent proteoforms, has 

become possible even without enrichment. Many quantification methods have discarded or 

otherwise diminished the influence of these potentially relevant peptides in bottom-up protein 

quantification. Here, the use of regularised interaction coefficients facilitated the reporting of 

differentially abundant PTMs and the exclusion of potentially misidentified peptides from 

protein (and subsequent pathway) fold change estimates. Global quantification of proteoforms 

represents an exciting avenue for understanding how cell function is regulated post-

translationally. BayesENproteomics was able to account for differences in PTM’d peptide 

behaviour whilst increasing accuracy of protein quantification in benchmark datasets with 

limited observations and inter-donor variability. 
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Materials and Methods 

Table 1. Reagents and Tools Table 

Reagent/Resource Reference or Source  Identifier or Catalogue 
Number 

Experimental Models   

C57BL/6J (M. musculus) skin Skin provided by Hardman 
group, mice originally from 

Jackson Lab 

000664 

Primary human 

mesenchymal stromal cells 
(isolated from patient bone 

marrow) 

Wrightington Hospital, 

Wigan, UK 

N/A 

Chemicals, Enzymes and 
other reagents 

  

PNGase F from 
Elizabethkingia 

meningoseptica 

Sigma-Aldrich P7367 

H218O Sigma 329878 

low-glucose DMEM with 

pyruvate 

Thermo Fisher Scientific 11885084 

fetal bovine serum Labtech.com  

penicillin/streptomycin 

cocktail 

Sigma-Aldrich P4333 

ammonium bicarbonate Sigma-Aldrich 09830 

sodium dodecyl sulphate Sigma L3771 

sodium deoxycholate Sigma D6750 
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protease inhibitor cocktail Sigma P8340 

phosphatase inhibitor 
cocktail 

Sigma P0044 

dithiothretol Sigma D0632 

immobilized trypsin beads Perfinity (via Thermo Fisher 
Scientific) 

60109-101 

urea Thermo Fisher Scientific 29700 

calcium chloride dihydrate Sigma C3306 

iodoacetamide Sigma I1149 

trifluoroacetic acid Sigma 61030 

ethyl acetate Sigma 34858 

POROS R3 beads Thermo Fisher Scientific 1133903 

acetonitrile Thermo Fisher Scientific TS-51101 

formic acid Thermo Fisher Scientific 28905 

Software   

Matlab (2012a or higher) with 

Bioinformatics and Statistics 
and Machine Learning 

toolboxes 

The MathWorks Inc.  

Bayesian PCA imputation 
code 

(Oba et al., 2003) http://ishiilab.jp/member/oba
/tools/BPCAFill.html#i7 

BayesENproteomics (Matlab 
code) 

This manuscript https://github.com/VenkMalli
karjun/BayesENproteomics 
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Progenesis QI for proteomics 

(v3.0) 

Non-linear Dynamics  

Mascot Daemon Matrix Science http://www.matrixscience.co

m/ 

Scaffold (v3.0) Proteome Software, Inc. http://www.proteomesoftwar

e.com/products/scaffold/ 

R 3.5.2; RStudio 1.1.534 R Consortium https://www.rstudio.com/ 

 

Methods and Protocols 

Cell culture  

For the mixed species benchmark experiment, primary human mesenchymal stem cells 

(MSCs) were isolated from the bone marrow (knee and hip) of a single donor with informed 

consent and ethical approval, using established protocols (Strassburg et al., 2010). All 

experiments were performed in accordance with relevant guidelines and regulations, and with 

National Research Ethics Service and University of Manchester approvals. MSCs were 

cultured on tissue culture treated polystyrene (TCTP) in low-glucose DMEM with pyruvate 

(Thermo Fisher Scientific) supplemented with 10% fetal bovine serum (FBS, Labtech.com) 

and 1% penicillin/streptomycin cocktail (PS, Sigma-Aldrich). 

 

Preparation of primary human MSCs lysates  

Cells were lysed in 25 mM ammonium bicarbonate (AB) buffer containing 1.1% sodium 

dodecyl sulphate (SDS, Sigma), 0.3% sodium deoxycholate (Sigma), protease inhibitor 

cocktail (Sigma), phosphatase inhibitor cocktails (Sigma). Six 1.6 mm steel beads (Next 

Advance) were added to the tube and samples were homogenised with a Bullet Blender (Next 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 3, 2019. ; https://doi.org/10.1101/295527doi: bioRxiv preprint 

https://doi.org/10.1101/295527


Mallikarjun et al. Label-free proteoform quantification 

Page 26 of 57 
 

Advance) at maximum speed for 2 minutes. Homogenates were cleared by centrifugation (12 

°C, 10000 rpm, 5 minutes). 

 

Preparation of mouse skin lysates 

Skin from 3-month old female C57BL/6J mice was a gift from the Hardman group (University 

of Manchester; all animal work was performed under UK Home Office and local ethics 

committee approval). Ventral skin was shaved and scraped, then dissected into 1 mm3 pieces. 

100 µL of 8 M urea (Fisher Scientific) in 25 mM AB containing 25 mM dithiothretol (DTT, 

Sigma), protease and phosphatase inhibitor cocktails (Sigma) was added to the tissue 

sections with six 1.6 mm steel beads (Next Advance). Samples were then homogenised with 

a Bullet Blender (Next Advance) at maximum speed for 3 minutes. Resulting homogenates 

were cleared by centrifugation (12 °C, 10000 rpm, 5 minutes). 

 

Preparation of tryptic peptides  

Immobilised trypsin beads (Perfinity Biosciences) were suspended in 150 µL of digest buffer 

(1.33 mM CaCl2, Sigma, in 25 mM AB) with 50 µL of cell or tissue lysate and shaken at 1400 

rpm overnight at 37 °C in a thermocycler. The resulting digest was then reduced by the 

addition of 4 µL of 500 mM DTT (Sigma, in 25 mM AB; 10 min. shaking at 1400 rpm at 60 °C) 

and alkylated by the addition of 12 µL 500 mM iodoacetamide (Sigma, in 25 mM AB; 30 min. 

shaking in the dark at room temperature). Immobilised trypsin beads were removed by 

centrifugation at 10000 rpm for 10 min. Supernatant containing reduced, alkylated peptides 

were transferred to 1.5 mL ‘LoBind’ Eppendorf tubes and acidified by addition of 5 µL 10% 

trifluoroacetic acid (TFA, Sigma) in water, and cleaned by two-phase extraction (3 x addition 

of 200 µL ethyl acetate, Sigma, followed by vortexing and aspiration of the organic layer). 

Peptides were desalted using POROS R3 beads (Thermo Fisher). Briefly, R3 beads were 

thoroughly mixed in 50 % (v/v) acetonitrile (Sigma; prepared in milliQ H2O; elute solution) by 
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vortexing, to a concentration of 10 mg/mL. For each sample, 120 µL of bead suspension was 

pipetted into a well of a 96-well filtration membrane plate. The plate was then centrifuged (200 

x g, 1 min, room temperature) and the run-through was collected into a separate 96-well plate. 

The beads were then resuspended in 50 µL elute solution and centrifuged again twice before 

repeating the procedure with 0.1 % TFA (prepared in milliQ H2O; wash solution). The run-

through from the collection plate was discarded and the R3 beads were resuspended in 100 

µl of sample before centrifugation. This process was repeated until all sample had been added. 

Bead-bound peptides were washed twice in wash solution. The run-through was discarded 

and the collection plate was washed with elute solution. Peptides were then eluted by two 

rounds of suspension in 50 µL elute solution and centrifugation. Eluted peptides were then 

lyophilized. Peptide concentrations (measured by Direct Detect spectrophotometer, Millipore) 

in injection solution (5% HPLC grade acetonitrile, Fisher Scientific, 0.1% TFA in deionized 

water) were adjusted to 200 ng/µL prior to MS analysis. 

 

Preparation of serial mixtures of human and mouse peptides  

Primary human MSCs and mouse skin sections were prepared separately as described above. 

Tryptic peptides from each preparation were mixed in ratios of 3:1, 1:1 and 1:3 (human:mouse, 

one series for each human donor:mouse), as described previously in (Swift et al., 2013a). 

 

Stable isotope labelling of peptides  

Desalted peptides were resuspended in 100 mM AB dissolved in H218O with or without 5 U 

PNGase F (Sigma), to a final volume of 10 µL. Peptides were then incubated in a thermocycler 

(1400 rpm, 37 °C) for 5 hours before drying down to a minimal volume in a vacuum centrifuge 

and resuspension in injection solution prior to MS analysis. 
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Mass spectrometry (MS)  

Digested samples were analysed by liquid chromatography (LC) coupled tandem MS (LC-

MS/MS) using an UltiMate® 3000 Rapid Separation LC system (RSLC, Dionex Corporation) 

coupled to a Q Exactive HF (Thermo Fisher), peptide mixtures were separated using a 

multistep gradient from 95% A (0.1% formic acid, FA, Thermo Fisher, in water) and 5% B 

(0.1% FA in acetonitrile) to 7% B at 1 min, 18% B at 58 min, 27% B at 72 min and 60% B at 

74 min at 300 nL/min, using a 75 mm x 250 µm, inner diameter 1.7 µm, CSH C18 analytical 

column (Waters). Peptides were selected for fragmentation automatically by data dependent 

analysis. 

 

Preliminary data analysis using Progenesis QI (Nonlinear Dynamics)  

Spectra from multiple samples were automatically aligned using Progenesis QI (version 3.0) 

with manual placement of vectors where necessary. Peak picking sensitivity was set to 4/5 

and features with a charge greater than +4 or fewer than 3 isotopes were excluded from further 

analysis. In the mouse/human mixed-species experiment, remaining features were searched 

using Mascot (server version 2.5.1, parser version 2.5.2.0; Matrix Science), against the 

SwissProt and TREMBL pan-mammalian database for the mixed species dataset or human-

only for the stable isotope labelling dataset, or mouse-only for the negative control technical 

replicate dataset (release-2016_04; non-human and non-mouse identifications were 

removed). The peptide database was modified to search for alkylated cysteine residues 

(monoisotopic mass change, +57.021 Da) as a fixed modification, with oxidized methionine 

(+15.995 Da), hydroxylation of asparagine, aspartic acid, proline or lysine (+15.995 Da) and 

phosphorylation of serine, tyrosine, threonine (+79.966 Da) as variable modifications. For the 

PNGase F-treated experiment, the peptide database was modified to search for alkylated 

cysteine residues (+57.021 Da) as a fixed modification, with oxidized methionine (+15.995 

Da), 18O-deamidation of asparagine/glutamine (+2.988 Da) and 16O-deamidation of 
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asparagine/glutamine (+0.984 Da). A maximum of one missed cleavage was allowed. Peptide 

tolerance and MS/MS tolerance were set to 8 ppm and 0.015 Da, respectively. Peptide 

detection intensities were exported from Progenesis QI as Excel (Microsoft) spread sheets for 

further processing. Deamidated spectrum counts were performed in Scaffold (version 4, 

Proteome Software) using .DAT files from Mascot, following pre-processing in Progenesis QI 

as detailed above. We applied quantification calculations to proteins detected with >2 unique 

(by sequence) peptides. Peptides assigned to proteins with ‘unreviewed’ status in the UniProt 

database were reassigned to the most abundant ‘reviewed’ protein with sequence identity in 

the dataset. Peptides shared between different protein groups were excluded from 

subsequent analysis. 

 

Multi-variate regression modelling  

To compare different types of regression analysis we used three different types of linear 

regression algorithms: (A) ordinary least squares (OLS); (B) Linear mixed effects models with 

Huber residual weights (LME-H); and (C) BayesENproteomics. Further details and references 

for each method are provided in the following sections. All analysis was performed using code 

written for Matlab R2015a (The MathWorks Inc). Heatmaps were created using the 

heatmap.2() function from the gplots R package, using the default options. 

 

Imputation of missing values 

Monte Carlo Markov Chain (MCMC)-based methods can be used to deduce any unknown 

value, including missing values in proteomics experiments, provided appropriate conditional 

distributions can be provided. We used this property to build an adaptive (multiple) imputation 

(AMI) method that gives consistent accuracy regardless of the type of missingness that 

dominates a given dataset. We benchmark AMI against other commonly used imputation 

methods that either exclusively assume values are missing at random (MAR) or missing non-
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randomly (MNR). MAR imputation was performed using K-Nearest Neighbours (KNN) – where 

K = 11 or Bayesian principal component analysis (BPCA). KNN, which fills missing values 

using the average of the K nearest (by Euclidian distance) peptides, was performed using the 

knnimpute() Matlab function. BPCA was selected as a representative example of PCA-based 

methods that decompose the dataset and reconstruct the missing values using the principal 

components. BPCA imputation was performed using Matlab code available from 

http://ishiilab.jp/member/oba/tools/BPCAFill.html (Oba et al., 2003). MNR imputation was 

performed by random sampling from a down-shifted Gaussian distribution (DGD) as described 

by Tyanova et al. (2016) (albeit for protein-level imputation). Briefly, for each peptide, minimum 

non-missing peptide intensities were averaged to model the centre of a normal distribution 

with a width equal to 0.3 times that peptide’s σ (standard deviation). The mean (i.e. centre) of 

this normal distribution was negatively shifted by 1.6σ to model low abundance missingness 

or “missing non-randomly” (MNR), Missing values were then randomly imputed from this 

downshifted normal distribution. As an example of model-based imputation, DanteR 

(Karpievitch et al., 2009), downloaded from https://omics.pnl.gov/software/danter was run in 

RStudio (version 1.1.453) running R 3.5.2. 

 

AMI uses a logistic regression to determine whether missing values are MAR or MNR and 

imputes from appropriate conditional distributions. Logistic regression, similar to that 

employed by Li et al. (2011), was used to discern whether a given missing value was MAR or 

MNR as in (3). 

 

Z>? = log C
DEF
76DEF

G = 	𝜃& + 𝑋"𝜃" +	𝑋#𝜃# +	𝜀>"# .      (3)  

 

Where 𝑅> represents a binary vector for protein q with elements 𝑟7, …	𝑟M denoting whether an 

observation was missing (𝑟? 	= 	1) or not (𝑟? 	= 	0) and Z> represents the logit transform of R> 
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to enable estimation of regressor coefficients 𝜃 using linear regression. As Z>? ∈ {−∞,+∞}, 

we set minimum and maximum values for Z> to -10 (corresponding to a probability for 

observation 𝑖 being missing, 𝑟? 	< 	0.00005) and 10 (𝑟? 	> 	0.99995). 𝑋" and 𝑋# represent binary 

design matrices denoting the peptide (f) and treatment group (g) from which a given 

observation is derived.	𝜃Y (𝑗 = 1. . . , (𝑝" + 𝑝# + 1)) represents a 1	 ×	 (𝑝" + 𝑝# + 1) vector of 

regressor coefficients; 𝑝" and 𝑝# represent the number of elements in 𝜃" and 𝜃#, respectively. 

𝜃" and 𝜃# denote whether observations from a given peptide or treatment correlate with values 

in 𝑅> (i.e. whether probability of “missingness” increases when looking at intensities from 

particular peptides or from particular experimental treatment groups). The intercept term, 𝜃& 

denotes the intrinsic probability of missingness for that protein. If 𝜃Y > 𝜃& and 𝜃Y > 0 we inferred 

that missing observations associated with 𝜃Y were MNR, and MAR otherwise. MAR and MNR 

missing values were imputed as part of each Gibbs sampler iteration as in (4) and (5). 

 

𝒚\(]^_)FE
`(]^_)Fab

	~	𝑀𝑉𝑁g𝑿(hiD)𝛽?674 	, 𝜎?67+ j𝑿(hiD)𝑿(hiD)
4 k67l;    (4) 

𝒚\(]m_)FE
`(]m_)Fab

	~	𝑇𝐺𝑎𝑢𝑠𝑠 r
𝑿(hsD)𝛽?674 	, 𝜎?67+ j𝑿(hsD)𝑿(hsD)4k

67
,

	𝑎 = 𝑚𝑖𝑛{𝒚uvwxyzx$} − 2, 𝑏 =	𝒚|]m_} ~
�.   (5) 

 

Where 𝒚\(hiD)?> represents a vector of score-weighted (see below) MAR log2(intensity) values 

for protein q at the ith iteration of the Gibbs sampler. 𝛽?674  is the vector of parameter estimates 

and 𝜎?67+  is the residual variance from the i-1th iteration of the Gibbs sampler, respectively. 

Missing values in 𝒚\?> are sampled according to the multivariate normal distribution (MVN) 

described in (4) (see also section 3.1 in Zeng et al. (2017)). MNR missing values were imputed 

from a truncated Gaussian (TGauss) with an upper limit determined by the percentile of 

observed log2 intensity values corresponding to the fraction of values that are deemed MNR 

(𝒚|]m_} ~) from the missingness regression model in (3). In (5), 𝑎 and 𝑏 represent the lower and 
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upper limits of the TGauss distribution. Thus, if 5% of observations for a given protein are 

determined to be MNR according to (3), then the cut-off for the truncated Gaussian is equal to 

the 5th percentile of observed log2 intensity values. New missing values were imputed for each 

iteration of the Gibbs sampler. The multiple imputation strategy implemented in 

BayesENproteomics thus accounted for the inherent uncertainty in imputation by basing the 

resulting β estimates (and subsequent hypothesis testing) on distributional estimates of 

missing values (Schafer and Olsen, 1998) rather than fixed point estimates as in OLS and 

LME-H, where single random samples could strongly influence individual protein fold change 

estimates. 

 

Weighting of residuals based on confidence of peptide identification 

Identification of PTM'd peptides was performed by the inclusion of variable modifications 

during peptide database searching. Inclusion of multiple variable modifications was found to 

increase the number of false positive peptide identifications. The number of false-positive 

identifications was reduced by discarding peptides with low Mascot scores using a standard 

FDR cut-offs based on identification p-values. We employ a Benjamini-Hochberg FDR 

(Benjamini and Hochberg, 1995) cut-off of < 0.2. 

 

BayesENproteomics also employed a novel heuristic outlier weighting scheme that weighted 

against outlier peptides (which may possess biologically relevant PTMs), particularly if 

confidence in their identification was low. In this case we used Mascot scores as our indicator 

for peptide identification confidence. Firstly, Mascot scores, 𝑆7..., 𝑆M were scaled by dividing 

them by a modified Bonferroni-like cut-off (similar to that described on the Mascot website, 

http://www.matrixscience.com/help/interpretation_help.html, accessed 23/10/17) and 

adjusted so that all the highest scoring peptides were weighted equally, as in (6) with values 

between 0 and 1. 
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𝑆� = 𝑚𝑖𝑛 �1, �
j67&j���b�j7/(+&�)k	k67�k

�, N = total peptides in dataset.      (6) 

 

During each iteration of the Gibbs sampler, an n-dimensional vector of weights, 𝑤 with 

elements 𝑤7..., 𝑤M, was calculated using a variation of the automatic outlier detection and 

weighting method in (Ting et al., 2007). Initially, there was no a priori reason to exclude - or 

diminish the influence of - peptides that have passed the initial FDR screen. Instead, we opted 

to weight in favour of those peptides that either have high Mascot scores or low residuals (7). 

Transformed Mascot scores in 𝑆� were used to parameterize a binomial distribution giving 𝑆� 

that would determine if observations from that were favourably weighted each Gibbs sampler 

iteration (8). 

 

𝑤? − 1 − 𝑆��|𝜎+, 𝑆��~	𝐺𝑎𝑚𝑚𝑎g𝑆�� +
7
+
, 7
+
+ 7

+��
𝑅?+l , 𝑖 = 1…𝑛;      (7) 

𝑆�� |𝑆�~𝐵𝑖𝑛𝑜𝑚j1, 𝑆�k.           (8) 

 

Where	𝑹 is a vector of residuals with elements	𝑅7 …𝑅M, 𝑅	 = 	𝒚 − 𝑿𝛽. Observations were then 

weighted by multiplying each row of 𝑿 and each value of 𝒚 by their respective weight 

calculated in (7), (9) and (10). 

 

𝑿�?Y = 𝑿?Y𝑤?, 𝑖 = 1…𝑛, 𝑗 = 1… 𝑝;        (9) 

𝒚\? = 𝒚?𝑤?, 𝑖 = 1…𝑛.          (10) 

 

Where 𝑿� and 𝒚\ are the weighted design matrix and response vector, respectively. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 3, 2019. ; https://doi.org/10.1101/295527doi: bioRxiv preprint 

https://doi.org/10.1101/295527


Mallikarjun et al. Label-free proteoform quantification 

Page 34 of 57 
 

Linear regression implementation 

Peptide-based linear regression modelling has previously been shown to possess greater 

statistical power and accuracy than summarization models when detecting differentially 

abundant proteins (Goeminne et al., 2015). Here we compare three different models for 

calculating differentially abundant proteins and PTMs: 

 

(A) Ordinary least squares (OLS):  

Differential protein abundance was calculated using the simple linear model (Choi et al., 2014; 

Clough et al., 2009) shown in (1), using the fitlm Matlab function. For calculating differential 

PTM abundance, the log2 fold change for each PTM’d peptide was normalised to the log2 fold 

change calculated for parent protein abundance. In cases where a single PTM site was shared 

by 2 or more peptides (i.e. missed cleavages), the most abundant one was used. 

 

(B) Linear mixed-effects models with Huber residual weights (LME-H):  

The ridge regression/mixed-effects algorithm developed by Goeminne et al. (2016), wherein 

peptides were modelled as random effects (i.e. they were assumed to be randomly sampled 

from a larger population and that they accurately modelled the variance of that population) 

using the more complex model shown in equation (2). Goeminne et al. (2016) exploited the 

link between ridge regression and mixed effects models to assign each 𝛽Y a specific penalty, 

𝜆Y (where	𝜆Y = 	𝜎?+/𝜎?Y+ , 𝜎?+ = residual variance of protein i, 𝜎?Y+  = variance of coefficient 𝛽Y for 

protein 𝑖, 𝑗	 = 	1, 2… 	𝑝). We recapitulated this algorithm using the fitglme Matlab function, 

including Huber weighting of residuals. To calculate changes in PTM abundances, 

peptide:group and peptide:donor interaction effects (𝛽":#, and 𝛽":$ in (2), respectively) were 

included as random effects with the size of the resulting interaction 𝛽s denoting changes in 

the abundance of that peptide in response to treatment or donor effects, respectively. 
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(C) BayesENproteomics:  

This method utilises a novel Bayesian linear regression algorithm with elastic net 

Regularisation based on the hierarchical model detailed by Kyung et al. (2010). Bayesian 

methods employ Regularisation based on the prior distribution parameters were estimated 

from, with elastic net Regularisation being equivalent to sampling from an intermediate 

Gaussian/Laplacian prior. Sampling was performed using a Gibbs sampler with the maximum 

number of iterations for each protein set at 25	 × 	𝑟𝑢𝑛𝑠	 +	𝑝" (runs = total number of MS runs 

to be analysed, 𝑝" = number of peptides), or 1000 – whichever was higher – with half of these 

as burn-in iterations. The full hierarchical model for a single protein is detailed in equations 

(11)-(15). 

 

𝛽|𝜎+, 𝜏+, 𝜆+, 𝑿�, 𝒚\	~	𝑀𝑉𝑁r
g𝑿�4𝑿� + 𝑰�(𝜏6+ + 𝜆+)l

67
𝑿�4𝒚\,

	𝜎+ g𝑿�4𝑿� + 𝑰�(𝜏6+ + 𝜆+)l
67 �;       (11) 

𝜎+|𝛽, 𝜏+~	𝐼𝐺 C(M67��)
+

, 7
7&&

+ D�D
+
	+	

(�b�) ¡�
ab�

+
+ �����

+
G;        (12) 

𝜏Y6+|𝛽Y, 𝜎+, 𝜆7	~𝐺𝐼𝐺 C−
7
+
, ¢�b���

�£
� , 𝜆7+G.            (13) 

 

Let 𝜏6+ represent a vector of latent variables (𝜏76+ … 𝜏�6+) – sampled from the generalised 

inverse Gaussian (GIG) distribution in (13) using the sampler in Makalic and Schmidt (2016) 

– for each 𝛽Y such that larger values of 𝜏Y6+ (j = 1…, p) result in 𝛽Y being shrunk towards zero. 

𝐷¥�
67		denotes a diagonal matrix with elements 𝜏Y6+, j = 1..., p. Residual variance (𝜎+) is sampled 

from an inverse gamma (IG) distribution in (11). To enforce sparsity, we employ two 

Regularisation hyperparameters, 𝜆7 and 𝜆+, with different conditional distributions, specifying 

LASSO (14) and ridge hyperparameters (15), respectively. Notably, while overall covariance 

is controlled by 𝜆7 through its effect on 𝜏Y6+, each 𝛽Y is given its own L2 Regularisation 

hyperparameter, 𝜆+Y , similar to the LASSO-like "horseshoe" estimator (Makalic and Schmidt, 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 3, 2019. ; https://doi.org/10.1101/295527doi: bioRxiv preprint 

https://doi.org/10.1101/295527


Mallikarjun et al. Label-free proteoform quantification 

Page 36 of 57 
 

2016). This leads to smaller coefficients (i.e. "noise") being more aggressively shrunk towards 

zero compared to larger coefficients (i.e. "signal"), compared to regression using scalar 

Regularisation hyperparameters that lead to constant shrinkage across all 𝛽s.	𝜆7+ and 𝜆+ are 

sampled from gamma distributions of the form 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏), with a posterior mean of ¦
v
. 

 

𝜆7+|	𝜏+~	𝐺𝑎𝑚𝑚𝑎g𝑝, 1 +
7
+
∑ 𝜏Y+
�
Y¨7 l;       (14) 

𝜆+Y|𝛽Y, 𝜎
+	~	𝐺𝑎𝑚𝑚𝑎C1, 3 +	

�£
�

+��
G.             (15) 

 

Estimates of parameters were taken as means of Gibbs-sampled posterior distributions made 

from post-burn-in iterations. 

 

Pathway analysis using linear modelling (PALM)  

PALM using Reactome (Fabregat et al., 2018; Milacic et al., 2012) pathway annotations was 

performed as described above using logged fold changes (calculated from the three methods 

detailed above) as the response variable (𝒚) according to the model for a given Reactome 

pathway: 

 

𝑦#� = 𝛽& + 𝑋#𝛽# + 𝑋�𝛽� + 𝜀#�.       (16) 

 

Where 𝛽# and 𝛽� denote pathway-level effect sizes due to experimental treatment g and 

protein p. Residual weights (𝑤) were set to 𝑚𝑖𝑛 g1, |𝒚F|
�ªF
l, where 𝑆𝐸? (𝑖	 = 	1. . . 𝑛) is the standard 

error of that protein fold change estimate, 𝒚?. The code allows the user to limit estimation to 

only those pathways with a minimum observed number of proteins present in a given dataset; 

here, we set the minimum to be five. Comparisons to PALM were performed using Reactome’s 
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own service (https://reactome.org) or PANTHER (http://pantherdb.org; Mi et al., 2017) using 

the enrichment option with the default settings. 

 

Empirical Bayes correction of protein variances.  

All methods included Empirical Bayes correction for stabilising variance estimation (Kammers 

et al., 2015; Smyth, 2004). Empirical Bayes-modified t-tests were used to calculate p-values 

for determining significance of differentially abundant proteins and PTMs. 

 

Data availability 

All quantification was performed on Progenesis QI peptide-level outputs using code written for 

Matlab R2015a (The MathWorks Inc). Progenesis QI peptide ion outputs used in this study, 

along with protein/pathway-level output files as .csv are freely available from 

www.github.com/VenkMallikarjun/BayesENproteomics. BayesENproteomics code is available 

for Matlab (used in this manuscript; www.github.com/VenkMallikarjun/BayesENproteomics) 

and Python3 (www.github.com/VenkMallikarjun/BENPPy). The raw data have been deposited 

to the ProteomeXchange with identifiers PXD012784 (mouse skin negative control), 

PXD012782 (PNGase F stable isotope labelling PTM quantification benchmark) and 

PXD012772 (human:mouse mixed species protein quantification benchmark). 
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Figure 1. Extraction and preparation of mouse and human proteins for use in label-free 

quantification using multiple regression models. 

(A) Schematic diagram of the protocol used to prepare samples for the mixed species 

benchmark experiment.  

(B) Flow diagram showing the effect of regularisation on estimated parameters used in fitting 

models.  

(C) Schematic representation of how the Gibbs sampler arrives at the final (posterior) 

distribution for a single parameter. As the sampler proceeds, it will ideally converge on a single 

posterior distribution, as progressive iterations are biased towards areas of higher likelihood. 

Iterations from before this point are typically discarded (“burn-in” iterations) as those samples 

will not come from the target posterior distribution. Each parameter is then summarized from 

its respective estimated distribution (green and blue distributions) and all parameters lie on 

the target posterior distribution (grey distribution).  

(D) Example traces from post-burn-in samples to build posterior β distributions corresponding 

to log2 (protein abundance) estimates (denoted β1, β2 and β3). Traces show good mixing with 

no bias towards particular regions of their respective posterior distributions. Note that chains 

may not necessarily converge on exact expected fold change values, because: (i) the 

experimenter must first select one group to normalise the others to, so as to allow relative 

quantification; and (ii) imperfect accuracy. 
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Figure 2 

 

 

 

Figure 2. Comparison of missing value imputation strategies.  

Heatmaps showing RMSE of imputed values against ground truth deleted values for (A) DGD; 

(B) KNN (where K = 11); (C) BPCA; (D) model-based imputation using DanteR; and, (E) AMI. 

Colours closer to red denote smaller RMSEs and overall better performance. Synthetic dataset 

had 12000 values in total. To simulate MNR missingness values below the given threshold 

were deleted, corresponding to 0% (threshold = −∞), 1.2 % (-2), 8.9 % (-1) or 29 % (0) missing 

values. !! = failure of KNN and DanteR to run in this scenario due to too many missing values. 

  

DGD

- -2 -1 0

MNR threshold

30

20

10

0

%
 M

A
R

 v
al

ue
s

KNN

- -2 -1 0

30

20

10

0

AMI

- -2 -1 0

30

20

10

0

BPCA

- -2 -1 0

30

20

10

0

DanteR

- -2 -1 0

30

20

10

0

!!

0

1

2

3

4

R
M

SE
im

puted vs ground truth

better

worse

!!

A B C

D E

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 3, 2019. ; https://doi.org/10.1101/295527doi: bioRxiv preprint 

https://doi.org/10.1101/295527


Mallikarjun et al. Label-free proteoform quantification 

Page 50 of 57 
 

Figure 3 
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Figure 3. BayesENproteomics increases specificity compared to other multi-variate 

regression methods. 

(A) Volcano plots showing quantification of fold change estimates (x-axis) vs. significance (y-

axis) observed in pairwise comparisons between three technical replicates.  

(B-C) Volcano plots showing quantification of mouse and human proteins, respectively, across 

all comparisons in the mixed human:mouse benchmark experiment. Numbers in top right 

corners denote numbers of true positives observed with numbers in brackets denoting true 

positives showing the expected direction of fold change.  

(D) Bar chart showing squared deviation from ground truth across all contrasts for the 

indicated dataset. Bars represent means ± standard error of squared deviations. 

(E) Boxplots showing coefficients of variation (CVs) for all differentially abundant proteins in 

the mixed human:mouse benchmark experiment. Dotted lines in (A)-(C) indicate Benjamini-

Hochberg false discovery rate corrected p-value (BHFDR) = 0.05. OLS fit using simple model 

in equation (1), black; LME-H according to equation (2), red; BayesENproteomics as in (2), 

cyan; BayesENproteomics with AMI, blue. n = 4 human donors, 4 mice. 
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Figure 4 
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Figure 4. PNGase-catalysed stable isotope labelling quantified by summarization with 

normalisation and multivariate regression methods. 

(A) Schematic diagram illustrating experimental setup for the variable PTM benchmark 

dataset.  

(B) The number of deamidated peptides was increased following 5 hours PNGase F treatment. 

Only peptides from proteins identified by >1 peptide were counted. 

(C) Histograms showing fold changes in N-linked 18O labelled N-linked deamidation (yellow) 

and 18O labelled Q-linked deamidation (green).  

(D) Scatter plots comparing protein and PTM log2 fold changes for the indicated quantification 

methods. n = 5 human donors. Indicated p-values show significance from comparison of N-

linked (yellow) and Q-linked (green) histograms calculated by Welch's two-sample t-test 

(pWelch) or Kruskal-Wallis test (pKW). 
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Figure 5 
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Figure 5. Pathway analysis using linear models (PALM) on mixed-species dataset.  

(A-C) Schematic diagrams representing different methods of pathway analysis. The 

advantages of PALM over classical enrichment and over-representation analysis are: (i) no 

need to select “interesting” and “null/background” sets; (ii) incorporation of uncertainty of 

protein fold change estimates into pathway-level fold changes. 

(D) Schematic diagram showing hierarchical tree structure for linear model assembly from 

MS1 intensities (bottom) to pathways (top). 𝛽s correspond to effect sizes estimated in 

equations 1, 2 and 16. 

(E) Scatter plots showing pathway-level fold changes calculated from the BayesENproteomics 

with AMI protein-level fold changes for the technical replicate negative control (top) and 

mouse:human mixed species datasets (middle, bottom) from Figures 3A-C, using either 

Reactome’s own tool (x-axis) or PALM (y-axis). As Reactome.org only provides significance 

for over-representation given a set of protein identifiers, a statistical power comparison is not 

possible. Enrichment analysis using PANTHER showed no significant differences for any 

pathways. Each dot represents a single Reactome pathway. Pathways follow the expected 

direction of the component proteins, though confidence in original protein-level fold change 

estimates may affect exact magnitudes of pathway-level fold changes. Only pathways with ≥5 

proteins present in the dataset are shown. 
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Figure 6 
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Figure 6. Summary schematic of complete BayesENproteomics and PALM workflow, 

including missing value imputation using AMI. 

Symbols correspond to those in equations 1 and 2. Regression modelling aims to decompose 

experimental variability contained in logged signal intensity (𝑦, with 𝑋 denoting which 

observation in 𝑦 came from which treatment, peptide, donor, etc) into constituent parts (𝛽s), 

some of which may be of interest to the experimenter (e.g. variability caused by experimental 

treatment, 𝛽4yx¦¬xM¬) and others that – while less interesting – may still need to be accounted 

for (e.g. variability caused by peptide behaviour during mass spectrometry, 𝛽®x�¬?$x). 

BayesENproteomics achieves this using a Gibbs sampler to iteratively optimize 𝛽 estimates, 

resulting in posterior distributions for both 𝛽s and any missing values (𝑦?ww?M#) in the dataset. 

Protein-level logged fold changes (𝛽4yx¦¬xM¬	(�yu¬x?M)) are then fed into a second round of 

model fitting to provide pathway-level logged fold changes (𝛽4yx¦¬xM¬	(�¦¬¯`¦°)). 
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