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ABSTRACT 
 
Voltage-sensitive membrane proteins are united by the ability to transform 
changes in the membrane potential into mechanical work. They are responsible 
for a spectrum of key physiological processes in living organisms, including 
electric signaling and progression along the cell cycle. While the voltage-sensing 
mechanism has been well characterized for some membrane proteins such as 
voltage-gated ion channels, for others even the location of the voltage-sensing 
elements remains unknown. The detection of these elements using experimental 
techniques is complicated due to the large diversity of membrane proteins. Here, 
we suggest a computational approach to predict voltage-sensing elements in any 
membrane protein independent of structure or function. It relies on the estimation 
of the capacity of a protein to respond to changes in the membrane potential. We 
first show how this property correlates well with voltage sensitivity by applying 
our approach to a set of membrane proteins including voltage-sensitive and 
voltage-insensitive ones. We further show that it correctly identifies true voltage-
sensitive residues in the voltage sensor domain of voltage-gated ion channels. 
Finally, we investigate six membrane proteins for which the voltage-sensing 
elements have not yet been characterized and identify residues and ions 
potentially involved in the response to voltage. The suggested approach is fast 
and simple and allows for characterization of voltage sensitivity that goes beyond 
mere identification of charges. We anticipate that its application prior to 
mutagenesis experiments will allow for significant reduction of the number of 
potential voltage-sensitive elements to be tested. 
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Introduction 
 
The membrane potential (MP) in living cells results from the uneven distribution 
of ions between the two sides of the cell membrane (1). It regulates several 
critical physiological processes such as the formation and propagation of the 
action potential in excitable cells (1) and the progression along the cell cycle in 
non-excitable ones (2–4). Voltage-sensitive membrane proteins are able to 
detect changes in the MP and in some cases to act directly on it (5). The ability to 
understand and eventually to modulate the function of these proteins provides an 
interesting strategy to diagnose and treat neurological diseases by changing 
either the MP or the proteins’ response to it. 
 
The group of voltage-sensitive membrane proteins (VSMPs) includes 
representatives from transporters (5–37), enzymes (38–44), receptors (45, 46) 
and proteins playing a role in structure or adhesion (47) (Fig. 1). These proteins 
are extremely diverse in their structure, but all of them have a common ability to 
convert the electrical energy into a mechanical response. To achieve this, 
VSMPs have developed one or more voltage-sensing elements, which detect 
changes in the MP and alter their conformational state accordingly (5, 48). In 
voltage-gated potassium and sodium channels, the protein itself plays the role of 
the voltage sensor: the S4 helix of the S1-S4 helical bundle carries several 
positively charged residues, which upon application of an electric field move in 
the direction of this field (49–59). In most other VSMPs, the voltage-sensing 
elements are nowhere near as well characterized. Several studies suggest 
different origins of their voltage sensitivity, including specific protein residues 
and/or ions trapped inside protein cavities (8, 9, 60–67). Ions moving in an 
electric field have for instance been suggested to trigger conformational 
rearrangements in voltage-gated chloride channels (66, 68–70), solute carriers 
(10), active transporters (8, 9, 71, 72) and G-protein coupled receptors (67). 
 
In this work, we characterize the voltage sensitivity of several selected 
membrane proteins using a newly developed computational approach. It 
estimates how fast a local electric field acting on a protein changes upon 
application of an external electric field; we will call this property the local electric 
field response. It also estimates the system’s response capacity, which reflects 
the ability of the system to detect changes in a local electric field and to respond 
to them. The system’s response capacity has a direct connection to the gating 
charge, a well-known characteristic of voltage sensitivity that corresponds to the 
amount of charge transferred during protein activation. We show that in all tested 
voltage-sensitive proteins the system’s response capacity is large compared to 
voltage-insensitive ones, which suggests this could be an efficient tool to probe 
voltage sensitivity in other membrane proteins. We also show how the local 
electric field response can be large in selected regions of voltage-insensitive 
proteins. However, the lack of charges in these regions results in their inability to 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 5, 2018. ; https://doi.org/10.1101/295816doi: bioRxiv preprint 

https://doi.org/10.1101/295816


respond to changes in the MP. Finally, we investigate six VSMPs for which the 
voltage sensors have not yet been characterized. For each of them, we depict 
putative voltage-sensitive residues and/or voltage-sensitive ions trapped in 
protein cavities. 
 

 
 
Figure 1: Membrane protein families, encompassing voltage-sensitive representatives. 
The families are arranged in four large groups according to (73) (only α-helical 
membrane proteins are shown). Channels are subdivided in voltage-gated (VGIC), 
ligand-gated (LGICs), Chloride channels and Aquaporins. Blue indicates families 
containing voltage-sensitive membrane proteins, and white indicates families in which 
voltage-sensitive representatives were not discovered so far. The families colored in red 
correspond to membrane proteins for which changes in the MP is the primary stimulus 
for activation. Finally, we colored in orange the families containing membrane proteins 
whose voltage sensitivity is controversial. To compose this figure we used data from 
references (5–47). 
 
Our approach only requires knowledge of the protein structure and modest 
computational resources, which makes it possible to apply prior to mutagenesis 
experiments in order to reduce the number of potential voltage-sensitive 
elements to be tested. 
 
 
Results and Discussion 
 
In voltage-sensitive membrane proteins charges are located in regions with a 
large local electric field response. Voltage sensitivity occurs in many different 
membrane proteins with diverse structure and function (5–47) – the unifying 
factor is how they are all able to detect changes in the membrane potential (MP) 
and to convert these changes into mechanical work (5). Our approach to 
characterize voltage-sensing elements is based on the hypothesis that the force 
acting on these elements increases substantially upon an increase in the MP. 
Thus, they are located in regions where a change in the MP 𝜕𝑉# results in the 
largest change in the local electric field 𝜕𝐸	(𝑟). We define the rate of change of 
𝐸	(𝑟) with respect to 𝑉# as the local electric field response 𝑅	(𝑟): 
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𝑅	(𝑟) ≡ +,(-)
+./

. (1) 
The actual system’s response, on the other hand, depends on the interplay 
between 𝑅	(𝑟) and the system charges 𝑞1 = {𝑞4,… , 𝑞7}. Here, 𝑞1 plays the role of 
an effector translating changes in the local electric field into mechanical work. We 
define the capacity of the system residue 𝑗 to respond to changes in the local 
electric field 𝐶; as: 

𝐶; ≡ ∑ 𝑅(𝑟1
;)𝑞1

;
1 , (2) 

where the summation runs over all charges 𝑞1 of the residue 𝑗. 𝐶; has a direct 
connection to the gating charge 𝑄;; it corresponds to the gradient of 𝑄; along the 
direction of the external electric field	𝑧	(cf. Methods): 

𝐶; = +?@

+A
. (3) 

𝑄; is a characteristic variable of voltage sensitivity, which was first proposed to 
report the amount of charge transferred by a residue 𝑗 upon gating in voltage-
gated ion channels (74–76). It can also be generalized to any activation process 
rather than only gating and therefore be applied to any given voltage-sensitive 
membrane protein. 𝐶; , on the other hand, reports the amount of charge 
transferred by a residue 𝑗 upon 1 Å displacement (along 𝑧). Therefore, 𝑄; can be 
viewed as a summation of 𝐶;  for all protein conformations involved in the 
activation process. Since in many cases this process remains largely 
uncharacterized, 𝐶;  of a single protein conformation can be considered as a 
good predictor for 𝑄;. 
 
Our approach calculates, first, the local electric field response 𝑅, depicting the 
system’s regions subject to voltage sensitivity, and second, the system’s 
response capacity 𝐶;, depicting the residues with the potential to contribute to the 
gating charge. 
 
To test the 𝑅&𝐶;  approach, we applied it to a set of voltage-sensitive and 
voltage-insensitive membrane proteins. In the former case, we have considered 
two voltage-gated ion channels, whose voltage-sensing elements have been well 
characterized, and six other membrane proteins, for which these elements 
remain largely unknown (see Table 1). 
 
Table 1 
 

Voltage-sensitive 
membrane proteins, 

whose voltage 
sensors have been 
well characterized 

Voltage-sensitive membrane proteins, 
whose voltage sensors remain largely 

unknown 

Voltage-insensitive 
membrane proteins 

• Voltage-gated 
potassium 
channel Shaker 

• Connexin Cx26 (60–62, 77–79) 
• Transient receptor potential channel 

TRPV1 (11, 63, 80) 

• Two-pore domain 
potassium 
channel TWIK-1 
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(49–59) 
• Voltage-gated 

sodium channel 
NavMs (49–59) 

• Voltage-dependent anion channel VDAC1 
(64, 65, 81, 82) 

• Voltage-gated chloride channel ClC1 (66, 
68–70, 83) 

• Muscarinic acetylcholine receptor M2 (45, 
46, 67, 84, 85) 

• Na+/K+ ATP-ase (8, 9, 71, 72, 86) 

(87) 
• Ligand-gated ion 

channel GLIC 
(88) 

 
For each protein, we calculated the local electric field response 𝑅  and the 
system’s response capacity 𝐶;  (Fig. 2). In many voltage-sensitive membrane 
proteins, we detected regions with large 𝑅  and therefore with a potential to 
respond to changes in 𝑉# . The center of the voltage sensors in Shaker and 
NavMs (49–59), the N-terminus in VDAC1 (64, 65, 81, 82), and the Cl- binding 
site in ClC1 (66, 68–70, 83) all show 𝑅 larger than 0.08 Å-1. However, in the M2 
receptor (45, 46, 67, 84, 85), which is also known to be voltage-sensitive, 𝑅 is 
small and reaches a maximum of only 0.04 Å-1 in the Na+ binding site. Moreover, 
in voltage-insensitive membrane proteins, large 𝑅 values were detected along 
the conductive pore, with the selectivity filter in TWIK-1 (87) and the gate in GLIC 
(88) showing 𝑅 as large as 0.08 Å-1. Therefore, 𝑅 does not directly correlate with 
voltage sensitivity and cannot be used to discriminate between voltage-sensitive 
and voltage-insensitive proteins. 
 
𝐶; , on the other hand, correlates rather well with voltage sensitivity: for all 
voltage-sensitive membrane proteins 𝐶; is large, while it is close to or below the 
detection threshold for all voltage-insensitive ones. Together with the previous 
observation, this suggests that voltage-sensitive proteins have evolved to place 
their charges in the regions with large 𝑅 and therefore maximize their potential to 
respond to changes in 𝑉#. In contrast, in voltage-insensitive proteins, charges are 
located far from the regions with large 𝑅 and thus do not sense changes in the 
local electric field. This also suggests our approach can be used to probe voltage 
sensitivity in other membrane proteins, in which this property has not yet been 
tested. 
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Figure 2: The local electric field response 𝑅 (left) and the system’s response capacity 𝐶; 
(right) estimated for eight different membrane proteins: voltage-gated potassium channel 
Shaker (89, 90), voltage-gated sodium channel NavMs (91), connexin Cx26 (92), 
transient receptor potential channel TRPV1 (93–95), voltage-dependent anion channel 
VDAC1 (96), voltage-gated chloride channel ClC1 (97), muscarinic acetylcholine 
receptor M2 (98), Na+/K+ ATP-ase (99), ligand-gated ion channel GLIC (100) and two-
pore domain potassium channel TWIK-1 (101). The slices of the systems along the 
normal to the membrane are shown. The grey area shows the regions, which are not 
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accessible to water, i.e. the proteins and the membrane. In order to clearly represent 𝐶;, 
we approximated each point charge of the system element 𝑗 with a Gaussian distribution 
(σ = 1.5 Å) and then integrated the signal over 25 slices (each 1 Å width) parallel to the 
plane shown in the figure. Only the values above the detection threshold were 
considered for the integration (cf. Methods). Shaker, NavMs, Cx26, VDAC1 and ClC1, 
for which changes in the MP is the primary stimulus for activation, have the largest 𝐶;, 
while TRPV1, which is known to be very weakly voltage-sensitive (11, 63, 80), has the 
smallest 𝐶; among the voltage-sensitive membrane proteins. 
 
In voltage-gated ion channels the residues with large 𝐶; correspond to the true 
voltage sensors. We further describe the results obtained for the two voltage-
gated ion channels, Shaker and NavMs. For voltage-gated ion channels in 
general, the mechanism of voltage sensitivity has been well characterized based 
on numerous experimental and computational studies (49–59). These channels 
have four-helix bundle domains that sense changes in the MP – voltage sensor 
domains. One of the four helices (S4) carries several positively charged residues, 
while the other three (S1-S3) include a few negative countercharges (50, 51). 
Upon application of an electric field, the positive charges of S4 are displaced 
along the direction of this field to trigger conformational rearrangements in the 
pore domain (49, 52–58). 
 
Our approach correctly detects the positively charged residues on S4 and their 
negative countercharges on S1-S3 as voltage-sensing elements (Fig. 3). Among 
them, residues located in the center of the voltage sensor domain show large 𝐶;	, 
while those exposed to the extracellular or cytosolic solutions show 𝐶;	 close to 
the detection threshold (cf. Methods). This indicates that, in the conformational 
states of Shaker and NavMs chosen for the analysis, residues such as R4 and 
K5/R5 contribute most to the gating charge, while the contribution from R1 and 
R2 is small. 
 
A few other residues show 𝐶;	 above the detection threshold, including R118 on 
the S4-S5 linker and E178 in the selectivity filter of NavMs, and a positive residue 
on S2 in both Shaker and NavMs. To our knowledge, the role of these residues 
in voltage sensitivity has not yet been assessed, and thus experimental 
verification will be required to confirm whether they are true or false positive 
signals. 
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Figure 3: Detection of the voltage-sensing elements in the two voltage-gated ion 
channels, Shaker (89, 90) and NavMs (91). A. Cartoon representation of the two 
channels. The residues whose 𝐶; is larger than the detection threshold are shown. B. 𝐶; 
estimated for Shaker and NavMs; the average and the standard deviation are shown. 
The positively and negatively charged residues are shown as blue and red bars, 
respectively. The dashed lines represent the detection threshold. S1-S6 denotes the 
transmembrane segments, and ph+SF – the pore helix and the selectivity filter. The 
residues colored in blue or red and shown in bold correspond to the known voltage 
sensors and were detected by our method; those colored in blue and are not shown in 
bold – to the known voltage sensors, for which our method showed 𝐶;  below the 
detection threshold. Finally, residues colored in black were detected by our method but 
were not yet shown to play a role in voltage sensitivity. 
 
Estimation of the system’s response capacity allows for detection of voltage 
sensors in uncharacterized voltage-sensitive membrane proteins. The correct 
identification of voltage sensors in Shaker and NavMs strengthened our 
confidence in the predictive ability of our approach and suggested applying it to 
other membrane proteins, whose voltage sensors remain unknown. Overall, we 
applied it to six membrane proteins, including Connexin Cx26 (92), Transient 
Receptor Potential channel TRPV1 (93–95), voltage-dependent anion channel 
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VDAC1 (96), voltage-gated chloride channel ClC1 (97), muscarinic acetylcholine 
receptor M2 (98), and Na+/K+ ATP-ase (99) (Fig. 4 and 5). 
 

 
 
Figure 4: Detection of the voltage-sensing sensing elements in connexin Cx26 (92), 
transient receptor potential channel TRPV1 (93–95) and voltage-dependent anion 
channels VDAC1 (96). A. Cartoon representation of the membrane proteins. The 
residues whose 𝐶; is larger than the detection threshold are shown. B. 𝐶; estimated for 
Cx26, TRPV1 and VDAC1; the average and standard deviation are shown. The grey 
rectangles correspond to different regions of the proteins: NTH denotes the α-helical N-
terminus in Cx26 and VDAC1, TM1-TM4 – transmembrane segments in Cx26, S1-S6 – 
transmembrane segments in TRPV1, and β-barrel – the β-barrel in VDAC1. 
 
For Cx26, we detected two regions with large 𝐶; , including the extracellular 
opening (E42, D46, D50, K41, R75, R184 and K188), and the center of the 
protein subunit (E147, R32 and R143) (Fig. 4). Many of these residues have 
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already been suggested to play crucial roles in voltage sensitivity (60, 62, 77–
79). For instance, molecular dynamics simulations (62, 79) suggested an 
electrostatic network between E42, D46, R75, R184, E187 and K188 to be a part 
of the voltage sensor. Experimental evidence indicates mutagenesis of R75, K41 
and E42 significantly alters Cx26 voltage sensitivity (60, 77, 78). In particular, 
K41 neutralization results in an increase of the gating charge, while the double 
mutant K41E/E42S was shown to be more sensitive to voltage than the wild type 
(60). While experimental evidence suggests D2 to also contribute to voltage 
sensitivity (61), this residue did not exhibit any large 𝐶; value in our analysis. We 
believe this discrepancy might be caused by the low resolution of the N-terminus, 
where D2 is located (92): shortly after the start of molecular dynamics 
simulations the N-terminus lost its secondary structure and significantly deviated 
from its initial position, which limits the predictive power in this region. 
 
TRPV1 has a four-helical domain, which is similar to the voltage sensor domain 
of Shaker and NavMs (93, 94). However, since this channel does not include 
several crucial charges on S4 and the corresponding countercharges on S1-S3 
(93, 94), it likely responds to changes in the MP through a different mechanism. 
Our analysis reveals that in addition to the lack of charges, the four-helical 
domain also shows small 𝑅, emphasizing that this region is not able to sense 
changes in the MP (Fig. 2). On the other hand, we found 𝐶; values above the 
detection threshold for residues of the extra- and intracellular openings of the 
four-helical domain (R455, R474, E478, R491, E513) and of the S4-S5 linker 
(R557, E570, D576, R579) (Fig. 4). Mutagenesis of several of these residues 
(R557, E570, D576 and R579) has already been shown to significantly affect 
TRPV1 voltage sensitivity (63), which agrees well with our predictions. 
 
In VDAC1, we observed multiple residues spread over the entire protein with 
large 𝐶; values (Fig. 4). These include 5 residues on the α-helical N-terminus 
and 27 residues on the β-barrel. Experimental evidence also indicates that both 
the N-terminal α-helix and the β-barrel contribute to voltage sensitivity (64, 65, 
81, 82). Together with our data, this suggests a scenario where the entire protein 
is involved in the response to changes in the MP rather than a single domain 
playing the role of voltage sensor. Among the residues pinpointed by our 
analysis, mutagenesis of D16, K20, K61 and E84 is known to modulate the 
steepness of the current-voltage relationship (64), while that of D32 and K96 
does not significantly affect voltage sensitivity (64). This indicates there are likely 
a few false positive signals in our analysis; therefore it has to be combined with 
experiments to confirm voltage sensitivity of the detected elements. 
 
Previous experimental studies performed on ClC1 have revealed two sources of 
voltage sensitivity in this protein. Mutagenesis of the so-called gate residue E148 
completely abolishes voltage sensitivity (29, 97, 102), and changes in Cl- 
concentration affects gating charge responsible for activation (66, 68–70). Our 
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analysis shows large 𝐶; for both E148 and Cl- ions bound along the conduction 
path (Fig. 5). Moreover, it also pinpoints a region at the interface between the two 
ClC1 subunits; in particular, K147, K165, K409, E225 and E490 all show 𝐶; 
above the detection threshold, suggesting they are likely significant contributors 
to the ClC1 gating charge. 
 

 
Figure 5 Detection of the voltage-sensing elements in the voltage-gated chloride channel 
ClC1 (97), muscarinic acetylcholine receptor M2 (98) and Na+/K+ ATP-ase (99). A. 
Cartoon representation of the membrane proteins. The residues whose 𝐶; is larger than 
the detection threshold are shown. B. 𝐶; estimated for ClC1, M2 receptor and Na+/K+ 
ATP-ase; the average and standard deviation are shown. The grey rectangles 
correspond to different regions of the proteins: A-R denotes the α-helical 
transmembrane segments in ClC1, TM1-TM7 – the transmembrane segments in M2 
receptor, TM1-TM10 – the transmembrane segments in Na+/K+ ATP-ase, β and γ – 
auxiliary subunits of Na+/K+ ATP-ase. 
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In the case of the M2 receptor, the identified voltage-sensing element is complex 
and composed of the protein residues and a Na+ ion bound inside the internal 
hydrophilic pocket. The role of a Na+ ion in M2 receptor voltage sensitivity was in 
fact recently suggested based on molecular dynamics simulations (67), while 
mutagenesis experiments revealed a crucial role of D69 in generation of the 
gating current (84). Our data agrees with these findings and shows large 𝐶; for 
D69, a Na+ ion and also for D107 (Fig. 5). In addition, our results support the 
recent experimental finding that the DRY motif on the TM3 segment does not 
contribute to voltage sensitivity (84). 
 
Finally, for the Na+/K+ ATP-ase, we found three regions where 𝐶; is above the 
detection threshold, including the ionic binding site, the extracellular and cytosolic 
openings (Fig. 5). The ionic binding site, which is composed of E327, D808, 
D926, E953 and three Na+ ions, shows the largest contribution to the gating 
charge. This agrees with the known data reporting that changes in the 
extracellular Na+ concentration has a strong effect on voltage sensitivity of the 
Na+/K+ ATP-ase current (8, 9, 71, 72). 
 
 
Conclusions 
 
One of the reasons voltage sensitivity in membrane proteins is hard to detect is 
that it depends on a combination of two factors: the ability of a protein to focus an 
electric field in some of its regions and its ability to respond to the electric field 
based on the presence of charged elements in these regions. We show that it is 
possible to use a simple and cheap computational tool to distinguishing between 
voltage-sensitive and voltage-insensitive proteins, and to detect true voltage-
sensitive residues in voltage-gated ion channels. The application of these tools to 
six membrane proteins without well-characterized voltage sensors leads to the 
prediction of several candidates for voltage-sensing elements, some of which 
have already been shown to contribute to voltage sensitivity while others remain 
to be tested experimentally. The suggested approach is general, it does not 
require extensive computational studies, and it can be applied to any other 
membrane protein regardless of structure or function. This application is 
important to unravel the variety of ways voltage sensitivity has been manifested 
in biological molecules, and it should be highly useful both to identify how 
different factors such as mutations, membrane composition, or ligand binding 
might alter voltage sensitivity and to engineer this property into voltage-
insensitive membrane proteins. 
 
 
Methods 
 
Connection between 𝐶; and 𝑄; 
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Equation (2), which we use to estimate the capacity of the system’s element 𝑗 to 
respond to changes in the local electric field 𝐶;, can be rewritten as: 

𝐶; 	≡ ∑ 𝑅C𝑟1
;D𝑞1

;
1 = ∑

+,E-F
@G

+./
𝑞1
;

1 = ∑
+
HI(JF

@)
HK/
+A

𝑞1
;

1 , (4) 

where 𝜑	(𝑟1
;) is the local electrostatic potential measured at the position 𝑟1

;, and 
the summation runs over all charges 𝑞1

; of the element 𝑗. The numerator in Eq. 

(4) +M(-F
@)

+./
 can be substituted for the coupling function 𝑓	(𝑟1

;), which by definition 

represents the coupling of the charge 𝑞1
; to the local electrostatic potential and 

has a direct connection to the gating charge 𝑄; (103): 
 

𝑄; = ∑ 𝑞1
;

1 (𝑓OC𝑟1
;D − 𝑓QC𝑟1

;D). (5) 
 
Here, 𝑄; is represented as a charge-weighted difference between the coupling 
functions of the activated and deactivated states 𝑓OC𝑟1

;D and 𝑓QC𝑟1
;D, respectively. 

Combining Eqs. (4) and (5) we obtain: 
 

𝐶; ≈ ∑
+SE-F

@G

+A
𝑞1
;

1 = +?@

+A
, (6) 

 
where 𝑓C𝑟1

;D corresponds to a conformational state for which the high-resolution 
structure has been obtained. Therefore, 𝐶; is equivalent to 𝑄; when the residue 𝑗 
is displaced by 1 Å along the direction of the external electric field 𝑧. 
 
Systems’ preparation and Molecular Dynamics simulations 
 
The Charmm-GUI server was used to prepare the systems for molecular 
dynamics simulations (104). Briefly, every protein of interest was embedded into 
a 1-palmytoyl-2-oleoylphosphatidylcholine (POPC) bilayer and solvated with 150 
mM of either KCl or NaCl solution. The CHARMM36 force field (105) was used to 
describe proteins and lipids with TIP3P as a water model (106). Note that the Na+ 
ion bound inside the protein cavities of the M2 receptor was not placed there 
initially; instead, it reached the binding site during the molecular dynamics 
simulations. For the detailed description of the systems composition and 
properties, see Table 2. 
 
Table 2 
 

Protein PDB 
code 

Residue patching System’s 
dimensions 

[ÅxÅxÅ] 

Number 
of 

atoms 

Duration of 
the 

equilibration 
last step 
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[ns] 
Shaker* A 

homology 
model 
based on 
2r9r (90) 
see (89) 
for the 
details 

none 130x130x105 191.034 1 μs 

NavMs 5hvx (91) none 145x145x120 209.838 400 ns 
GLIC 4npq 

(100) 
none 110x110x145 159.083  1 μs 

TWIK-1 3ukm 
(101) 

disulfide bond between 
C78 and C78 
(intersubunit) 

105x105x125 127.219 200 ns 

Cx26 2zw3 (92) disulfide bonds 
between C45 and 
C156, C50 and C152, 
C56 and C145 

130x130x122 189.168 200 ns 

VDAC1 3emn 
(96) 

none 85x85x85 54.590 200 ns 

TRPV1** 3j5r (93–
95) 

none 160x140x175 402.346 750 ns 

ClC1 1ots (97) none 130x130x100 158.553 200 ns 
M2 
receptor 

3uon (98) disulfide bonds 
between C96 and 
C176, C413 and C416 

90x90x105 76.169 200 ns 

Na+/K+ 
ATP-
ase*** 

3wgu (99) D195, E358, E779, 
D804, E954 are 
protonated; disulfide 
bonds between C126 
and C149, C159 and 
C175, C213 and C276 

115x115x190 250.192 100 ns 

* The trajectory used for the analysis was taken from (89). 
** The trajectory for the closed capsaicin-bound state of TRPV1 used for the analysis 
was taken from (95). 
*** The trajectory for the sodium-bound Na+/K+ ATP-ase used for the analysis was taken 
from (107). 
 
The molecular dynamics simulations were performed using GROMACS 2016.1 
(108). Each system was equilibrated following a multi-step protocol. During the 
first 2.5 ns, the protein and lipid headgroups were restrained to their initial 
positions to allow for the rearrangements of lipid tails and solution. The lipid 
headgroups were subsequently released and the simulations continued for 2.5 
ns. In the next 35 ns, the restraints applied to the protein backbone and 
sidechains were gradually decreased from 4000 kJ/mol/nm and 2000 kJ/mol/nm, 
respectively, to 0 kJ/mol. Finally, the protein was fully relaxed without restraints 
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until the root mean square deviation with respect to the initial structure reached a 
plateau value (for the duration of this last step of the equilibration, see Table 1). 
The final frame of the equilibration trajectory was used for the simulations under 
an electric field. 
 
A Nose-Hoover thermostat (109) and Parrinello-Rahman barostat (110) were 
used to keep temperature (300 K) and pressure (1 atm) constant. A cutoff of 1.2 
nm was applied for short-range electrostatics and VdW interactions. For the 
latter, a switching function between 1.0 and 1.2 nm was applied to smoothly bring 
the forces to 0 at 1.2 nm. Particle Mesh Ewald summation (111) was used for the 
long-range component of electrostatics. 1 fs time step was used for the first two 
steps of the equilibration, and 2 fs – for the rest of the equilibration and the 
simulations under an electric field. 
 
Molecular Dynamics simulations under an electric field 
 
For each protein of interest, 10 conformational states were extracted from the 
equilibration trajectory with a stride of 20 ns. For every state, 9 short (2 ns) 
molecular dynamics simulations were performed with the restraints applied to all 
heavy atoms of the protein and under an electric field; the following values of the 
field were used: -0.08, -0.06, -0.04, -0.02, 0, 0.02, 0.04, 0.06 and 0.08 V/Å. 5 
frames were extracted from each of the trajectories to compute an average local 
electrostatic potential map	𝜑 using the PMEpot plugin of VMD (112): 
 

∇U𝜑(𝑟) = −4𝜋∑ 𝜌1(𝑟)1 . 
 

(7) 

Here, 𝜌1(𝑟) corresponds to a point charge approximated by a spherical Gaussian 
with an Ewald factor of 0.25. Equation 7 was solved on a grid with a resolution of 
1 Å. 𝑅, 𝑅;  (per-residue local electric field response: 𝑅; = ∑ 𝑅(𝑟1

;)1 /𝑁), and 𝐶; 
were calculated using Eqs. (1) and (2) with an in-house python code. Finally, the 
average and the standard deviations of 𝑅; and 𝐶; were computed based on all 
10 conformational states and also all subunits in the case of homo-multimers. 
 
The detection threshold was identified based on the calculations of 𝑅; (Fig. S1). 
For every protein of interest 𝑅; was computed for the two dimensions orthogonal 
to that of the external electric field (i.e. in the Eq. (1) the components of the local 
field orthogonal to the external field were used). The largest 𝑅; value, 0.02 Å-1, 
was further considered as the detection threshold. 
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