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Abstract 
 
We present EPEE (Effector and Perturbation Estimation Engine), a method for differential 
analysis of transcription factor (TF) activity from gene expression data. EPEE addresses two 
principal challenges in the field, namely incorporating context-specific TF-gene regulatory 
networks, and accounting for the fact that TF activity inference is intrinsically coupled for all TFs 
that share targets. Our validations in well-studied immune and cancer contexts show that 
addressing the overlap challenge and using state-of-the-art regulatory networks enable EPEE to 
consistently produce accurate results. (Accessible at: https://github.com/Cobanoglu-Lab/EPEE) 
 
Main text 
 
Differential analysis of gene expression data is commonly used to dissect the mechanism of 
phenotypes of interest1. Commonly used differential expression (DE) methods2–5 do not account 
for the regulation of gene expression by transcription factors (TFs), even though TFs have a key 
role in controlling the transcriptome6. This shortcoming has prompted the development of 
differential regulation (DR) methods7–13, however these methods either do not permit the full 
representation of available context-specific regulatory data7,8,10–13 or interrogate regulators 
individually9,14 resulting in potential false positives for overlapping regulons8. To address these 
issues, we have developed the Effector and Perturbation Estimation Engine (EPEE) which 
infers the regulatory activity of all TFs jointly, constrained under the context-specific TF 
regulatory networks (Fig. 1).  
 
EPEE models gene expression as the result of latent activity by TF gene products. We use the 
context-specific TF regulatory graph to prune inaccessible targets for each TF regulon, and then 
infer the activity of all TFs jointly with a single multivariate model (Supplementary Note 1). The 
activity of any TF over its target genes are inherently related with each other. We use graph 
constrained fused lasso15 to reflect that intuition. Briefly, fused lasso16 is a method for 
multivariate regression where the inference of model parameters are “fused” according to a 
priori established relationships. Graph constrained fused lasso15 is an extension to the setting 
where the inferred parameters are related with a graph structure. In EPEE, we fuse the 
parameters of the model to respect the context-specific regulatory network during TF activity 
inference. Crucially, since we represent the inference of all TF activity as a single (multivariate 
regression) problem, our inference automatically adjusts for overlapping TF regulons.  
 
Overlap among TF regulons is widely prevalent, based on the state-of-the-art TF regulatory 
networks17 (Supplementary Fig. 1). Of the 206,403 TF-TF pairs in the CD4+ T cell context, 
206,352 (99.9%) overlap with each other to some degree (Supplementary Fig. 1c). To check if 
this is a feature specific to a few contexts, we evaluated all the 394 human contexts for which 
TF regulatory graphs are available17. We found that even the least complex context has 
overlaps among 96.4% of all the TF-TF pairs, whereas the median was 98% (Supplementary 
Fig. 1d). Causal inference theory dictates that all latent random variables that cause an effect 
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become dependent when conditioned on the outcome18. Consequently, when inferring TF 
activity (latent cause) from gene expression (observed outcome), the activity inference for all 
TFs with overlapping regulons are dependent on each other. Hence, we argue that the latent TF 
activity inference must be solved jointly and we propose a single, multivariate model.  
 
Most previous approaches on TF activity inference calculate each TF’s activity individually7–14 
and only aggregate at a later stage. For example, in the popular Gene Set Enrichment 
Analysis14 (GSEA), the running sum statistic evaluates each TF’s activity individually. Likewise, 
MARINa8 or VIPER12 use mutual information to estimate TF activity, and this measure evaluates 
each TF separately. These two latter methods8,12 utilize a post hoc correction for this problem, 
called “shadow analysis”, but its generality is unclear. To demonstrate the improvement that the 
joint TF activity model in EPEE provides over previous approaches, we conducted comparative 
evaluations. 
 
We conducted comparative validation studies in two independent and well-studied contexts with 
known driver TFs: T helper cell differentiation and colorectal adenocarcinoma. The immune cell 
context enables us to compare methods within the context of normal transcriptional regulation. 
The cancer dataset, on the other hand, enables us to evaluate performance under the disrupted 
regulatory state that accompanies genomic instability in carcinogenesis19. Furthermore, the T 
cell data is homogeneous (i.e. highly purified biological replicates of the exact same cell types), 
while the cancer data from TCGA20 represents heterogeneous input because of both tumor 
purity21 and subclonality22. The final major difference between the two datasets is the number of 
samples: the immune cell differentiation dataset has five samples per class (representative for a 
standard research laboratory effort), whereas the cancer dataset has close to five hundred 
samples (representative of a major consortium effort). In summary, we carefully selected these 
two validation studies to cover the diverse range of conditions in which differential TF activity 
assessments can be used. 
 
Our first validation study was to identify the known driver TFs controlling CD4+ naïve T cells 
differentiation to T helper cells 1, 2, and 17 (Th1, Th2, Th17). We selected the driver TFs as 
follows: STAT623–27 and GATA328 for Th2; TBX2129, STAT130 , STAT430 for Th1; and RORα31, 
STAT331,32, and ARID5A33 for Th17 differentiation of CD4+ T cells. We input the same RNA-seq 
data34 to all methods (Supplementary Note 2). We quantified performance as the ranking of 
the ground truth TFs with each method, with higher rank signifying better performance. We used 
ten alternative methods that represent a variety of inference and regulation models 
(Supplementary Note 3). Eight were developed and/or previously used to estimate regulatory 
activity7–14. We also included two differential expression methods to test the effectiveness for 
searching for an increase in the expression of the TF itself as a marker of its activity: ANOVA as 
a canonical differential expression analysis method11, and sleuth as a state-of-the-art DE 
method5. Of the eight differential regulation methods, three do not require an explicit regulatory 
network7,10,11 while the remaining five utilize a mathematical representation that evaluates each 
TF regulon individually. Among the alternatives, DISCERN11 is the only method that also solves 
the TF activity inference problem jointly for all TFs, albeit cannot incorporate a fully specified TF-
gene network. Therefore, we tested multiple members of each category of method a practitioner 
can use to identify TF activity. We observed that while other methods show significant variation 
and often fail to properly identify the known drivers, EPEE is consistently accurate in ranking 
ground truth TFs as differentially active (Fig. 2). 
 
EPEE can incorporate context-specific TF regulatory networks with weighted edges, which are 
available thanks to recent large-scale data collection efforts such as ENCODE35 or FANTOM536 
(Supplementary Table 2). Among the alternative methods, only REACTIN9 and i-score13 can 
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utilize these rich regulatory graphs. GSEA uses MSigDB37 TF target gene sets, that cannot 
represent TF-gene edge weights; MARINa and VIPER utilize ARACNE38 networks built using 
only transcriptomic data; while D-score7, LNS10, and DISCERN11 do not utilize any regulatory 
graph. The methods without networks serve as controls for the quality of the state-of-the-art 
regulatory networks: if the current networks are too deficient (not all TF motifs are available, for 
example) then the network-independent methods should perform better, and vice versa. For the 
methods that can utilize context-specific TF regulatory graphs, including our method, we input 
the CD4+ T cell network that Marbach and colleagues curated17 using FANTOM536 data. EPEE 
consistently outperformed methods with a range of network inputs, showing that EPEE provides 
an improved model to benefit from the state-of-the-art regulatory networks. 
 
We then elucidated the contributions to our method’s performance. The regularization provides 
consistency (Supplementary Fig. 2), while the context-dependent network contributes to the 
accuracy (Supplementary Fig. 3). EPEE can resolve TFs with high regulon overlap, while other 
methods cannot necessarily do so (Supplementary Fig. 4). Furthermore, the performance is 
not the result of parameter tuning. We used an entirely independent dataset of acute myeloid 
leukemia (AML) gene expression (microarray data) to determine the default hyperparameter 
values (Supplementary Fig. 5) and we simply used these default settings for all the results in 
our study. Likewise, for the competing methods we also used the default settings, unless 
suggested otherwise in the manual or documentation for that method (Supplementary Note 3).  
 
To test whether EPEE can generalize to other biological domains, we applied EPEE to identify 
driver TFs from colorectal adenocarcinoma (COAD) gene expression data in TCGA (Fig. 3). In 
this context, we compared against msVIPER and GSEA due to their popularity, and ANOVA as 
the standard differential expression method. We used known oncogenes MYC20,39 and 
SOX920,40 as ground truth TFs that are differentially active in cancer. On the other end, we used 
KLF441–43 as a TF known to be differentially active in normal tissue, since KLF4 is commonly 
inactivated in cancer via diverse mechanisms such as miRNA silencing44,45. We used EPEE to 
identify both the statistically significantly perturbed genes and regulators (Benjamini-Hochberg 
FDR < 0.05, based on permutation tests as described in Supplementary Note 1) and show the 
inferred TF-gene regulation changes (Fig. 3a). EPEE correctly identified the differential activity 
of all three TFs (Fig. 3b). GSEA failed to identify SOX9 as an oncogene, and KLF4 as 
differentially active in normal. msVIPER correctly identified KLF4 as differentially active in 
normal, but misplaced both MYC and SOX9 by inferring many other TFs to be more active in 
cancer. Overall, EPEE outperformed alternative methods in cancer as well as it did in immune 
cells. 
 
Finally, we used EPEE to infer differential TF activity separately for each consensus molecular 
subtype (CMS) of colorectal adenocarcinoma (Supplementary Fig. 6). We found that MYC, 
SOX9 and KLF4 activity were homogenous across each CMS subtype despite varying purity 
estimates in each CMS (Supplementary Fig. 7). We also discovered subtype-specific TFs with 
differential activity, some of which were reported to be colorectal adenocarcinoma related 
(ASCL246–49, ETV450, HSF151) while others represent novel predictions that can be tested by 
follow-up experimental work.  
 
In conclusion, we assert that the prevalent overlap among TF regulons causes problematic TF 
activity inference by readily available existing methods and thus present a novel solution that 
models all TF activity as a single multivariate regression problem. We demonstrate consistently 
accurate results on well-studied immune and cancer contexts. We provide our method EPEE 
open source and freely available.  
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Figure 1. Schematic overview of EPEE in relation to alternative approaches. 
We construct a schematic example to illustrate our motivation for developing EPEE. In this 
schematic, the ground truth (top row) is that one TF is active in each condition. Differential 
expression methods (second row) do not account for any regulatory relationship among genes, 
and simply report the genes with different expression. Single TF activity model based differential 
regulation methods (third row) evaluate each TF individually, and this is problematic when TF 
regulons overlap, leading to false positives. EPEE (bottom row) uses the appropriate context-
specific TF-gene regulatory network and models all TF activity as a single multivariate 
regression problem, to address both context-specific changes and overlapping regulons. 
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Figure 2: EPEE infers transcriptional regulators reliably and effectively. We tested 
regulator inference in CD4 naïve T cell differentiation to T helper 1 (Th1), Th2, Th17 cells. Drivers 
are known for each pathway therefore we can compare performance. EPEE performs 
remarkably better than all other DE (red) and DR (gold: no network, light blue: transcriptomic 
data driven network, dark blue: full regulatory network) methods. In the log percentile plots, the 
top dashed line represents the 90th percentile threshold, the bottom dashed line represents the 
50the percentile. 
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Figure 3: EPEE can accurately infer differential regulation events in cancer. (a) We 
conducted differential analysis of TF activity between colorectal adenocarcinoma (COAD) 
samples and tissue-matched controls using TCGA data. Circos plot shows differential regulation 
with red and blue TF-gene edges having high activity in cancer and normal. Green band maps 
TFs and grey band maps perturbed genes. (b) We also performed the same analysis using 
GSEA, msVIPER, and ANOVA. EPEE accurately identified the oncogenes MYC and SOX9 as 
differentially active, ranking MYC as the most differentially active TF in cancer. EPEE also 
identified tumor suppressor KLF4 to be differentially active in normal.  
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