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Figure 1. Illustration of three scenarios in a bivariate analysis. Each dot represents an individual, colored 

according to their genotype (0, 1 or 2 copies of the minor allele). In (a) trait 1 and 2 are correlated but the 

variant is only associated with trait 1. When considering traits 1 and 2 jointly in testing for association, there 

is greater separation of the genotype groups for trait 1 in the two-dimensional space compared with the y-

axis alone. For example, the blue and green dots would largely overlap in the one-dimensional space along 

the y-axis. In (b) the minor allele has opposite effects on traits 1 and 2 - increasing trait 1 and decreasing 

trait 2. The three genotype groups are better separated in the two-dimensional space than for either trait 

individually. In (c) the minor allele has a similar effect on traits 1 and 2 - increasing both traits. Separation 

of the three genotype groups in two-dimensional space is no greater than along the y-axis alone. The figures 

and text are adapted from Figure 1 in Stephens (2013)24. 
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Figure 2. Common variants associated with the perception of bitter taste: (a) quinine, (b) caffeine, (c) 

sucrose octaacetate, and (d) denatonium benzoate (n = 1757). The left half of the figure shows the 

Manhattan plots, displaying the association P-value for each SNP in the genome (displayed as –log10 of the 

P-value). The red line indicates the genome-wide significance threshold of P = 5.0e-8. rs10772420 (labelled 

in red), rs2597979 (labelled in green), and rs67487380 (labelled in blue) are the most significant SNP within 

a putative or associated locus for quinine, caffeine, and sucrose octaacetate, respectively. rs10261515 is 

labelled in (d) because it reaches genome-wide significance in the bivariate analysis (Table 1 and Figure 4). 

The right half of the figure shows regional plots ±400kb for the top SNPs on chromosomes 12 (a, b and c) 

and 7 (d) with gene model below. Plots are zoomed to highlight the genomic region that likely harbors the 

causal variant. The top SNP for PROP (rs10246939) is also labelled in the regional plot in (d). 
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Figure 3. Top SNP associations on chromosome 12 for perceived intensity of quinine, sucrose 

octaacetate (SOA), caffeine and denatonium benzoate (DB). The red, blue and green clusters represent 

the top SNP associations with quinine, SOA and caffeine respectively. The top SNPs for these three bitter 

compounds are clustered separately from one another, even though the lead SNPs (rs10772420 for quinine; 

rs2597979 for caffeine; rs67487380 for SOA) of each cluster are correlated (r2
rs10772420-rs2597979 = 0.24; 

r2
rs10772420-rs67487380 = 0.43; r2

rs2597979-rs67487380 = 0.08). The top SNPs for DB in this genomic region overlap 

with the tops SNPs for SOA, but the strengths of the associations with DB are weaker. In addition, there is 

evidence of pleiotropy. The red cluster is strongly associated with quinine, and more weakly associated with 

caffeine, SOA and DB; the blue cluster is associated with quinine, SOA and DB; the green cluster is 

associated with quinine and caffeine. A total of 1035 SNPs on chromosome 12 between 10950000 and 

113550000 base pairs are plotted here. 
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Figure 4. Manhattan plot showing a common variant (rs10261515) on chromosome 7 associated with 

the perception of denatonium benzoate (DB) based on the Bivariate GWAS of DB and quinine (n = 

1757). The signal on chromosome 7 is driven by DB (P = 2.5e-4 in the univariate analysis) not quinine (P = 

0.15). The signal on chromosome 12 is mainly due to the association of rs10772420 with quinine rather than 

DB as shown in Figures 2a and 2d. The red line indicates the genome-wide significance threshold of P = 

5.0e-8.  
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Figure 5. Potential model of the SNP regulation of human bitter taste perception. Quinine can be 

detected by bitter taste receptors T2R4, -7, -10, -14, -31, -39, -40, -43, and -46 on chromosome 12, and 

caffeine can be detected by the T2R7, -14, -43, and -46 (as summarized in Table 3), which overlap the T2Rs 

for quinine. Here we assume that each T2R is regulated by a major SNP with the corresponding number. 

rs10772420 is associated with the perception of quinine via its correlated SNPs; rs2597979 is associated 

with the perception of caffeine via its correlated SNPs.  
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