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Abstract 

For patients with ‘locked-in’ syndrome (LIS), brain-computer interfaces (BCIs) based on 

hemodynamics are a promising tool to regain communication. Visual and motor imagery are often-

used information-encoding strategies despite frequent visuo-motor impairments in LIS. However, 

evoking imagery not grounded in recent sensory experience is very challenging. Therefore, 

somatosensory imagery might be more suitable, as somatosensation is preserved even in late-stage 

LIS. Using 7T fMRI in healthy subjects, we find that somatosensory imagery is associated with 

topographic decoding-weight patterns in primary somatosensory cortex and show high-accuracy 

decoding with little pre-training. We immediately implement these novel findings to drive brain-based 

communication, providing a promising proof-of-concept for a novel type of communication BCI with 

high clinical potential. Our new BCI-control strategy paves the way for several future applications. 

Next to brain-based communication, it might be employed for neurofeedback-based training to restore 

somatotopy in stroke and chronic pain patients suffering somatosensory deficits. 
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Introduction 

Brain-computer interfacing refers to the use of a signal originating from neural (cerebral) 

activity to control an external device (Daly & Wolpaw, 2008; van Gerven et al., 2009; Wolpaw, 

Birbaumer, McFarland, Pfurtscheller, & Vaughan, 2002). The first BCIs used electrophysiological 

signals recorded by electrodes penetrating the brain (Fetz, 1969) or by means of 

electroencephalography (EEG, Farwell & Donchin, 1988). More recently, functional magnetic 

resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS), sensitive to 

hemodynamic changes induced by active neurons, have also been used in the context of BCI 

communication and control (Bardin et al., 2011; Chaudhary, Xia, Silvoni, Cohen, & Birbaumer, 2017; 

Gallegos-Ayala et al., 2014; Lee, Ryu, Jolesz, Cho, & Yoo, 2009; Monti et al., 2010; Naci, Cusack, 

Jia, & Owen, 2013; Naci & Owen, 2013; Nagels-Coune et al., 2017; Naito et al., 2007; Sorger et al., 

2009; Sorger, Kamp, Weiskopf, Peters, & Goebel, 2016; Sorger, Reithler, Dahmen, & Goebel, 2012; 

Yoo et al., 2004). Clearly, the brain-imaging technique sets constraints on the type of brain signals 

that can be used and the type of devices that can potentially be controlled. For example, compared to 

fMRI, EEG has a higher temporal resolution, is more mobile and cheaper. However, fMRI has the 

advantage of providing higher spatial resolution and higher sensitivity to subcortical brain regions. 

Also, hemodynamic BCIs generally allow for almost instant control, requiring less preparation and 

training of the subject (Nagels-Coune et al., 2017; Sorger et al., 2012). This means that hemodynamic 

BCIs can be especially useful for applications in a hospital setting that require high accuracy in a short 

amount of time and, in the case of fMRI, are used on an incidental basis. Such applications can be 

found in the realm of state-of-consciousness diagnostics (Naci et al., 2012), communication on 

important medical issues with ‘locked-in’-patients (Sorger et al., 2012) or auxiliary treatment in 

psychotherapy or rehabilitation. 

With hemodynamic BCIs, it is possible for users to apply an explicit strategy or task to 

control their brain signal and thereby the BCI output. The requirements for the control strategy vary 

depending on the intended application. In fMRI-neurofeedback applications, users attempt to reach a 

certain target brain activation profile by practicing and improving a certain mental strategy based on 

feedback on their performance. In this case, it is important to establish that the mental strategy is in 

principle feasible and activates the brain regions that underlie the symptoms that the BCI is intended 

to improve. For diagnostic or communication applications, on the other hand, there is more flexibility 

with respect to the applied mental strategies. However, the control strategy should preferably be 

intuitive and allow almost instant control. It should not tax the possibly limited attentional and 

cognitive resources of patients (Naci et al., 2012). Ideally, the selected control strategy should be 

tailored to the patient, relying only on those mental capacities that are preserved (Kaufmann, Holz, & 

Kubler, 2013), to increase proficiency in BCI control. It is therefore important to develop and test a 
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range of different mental strategies with corresponding experimental and data-analysis protocols to 

ensure that each patient can be offered the most optimal control strategy.   

An especially easy-to-implement category of hemodynamic BCI control strategies is mental 

imagery, because it does not require any particular stimulation device and can be tailored to the 

preserved mental capacities of the intended user of the communication BCI. After instructing the 

participant before the scanning session, start and stop instructions during scanning can be given in any 

sensory stimulus modality (visual, auditory, tactile), as long as they are technically available and 

compatible with the user’s faculties. Presently, motor and visual imagery are among the most 

frequently used mental-imagery strategies in the context of fMRI-BCIs. Both have been shown to 

generate robust brain activation patterns that can be used as a control signal in the context of fMRI-

BCIs for communication (Boly et al., 2007; Naci et al., 2012; Sorger et al., 2012), consciousness 

diagnostics (Monti et al., 2010) and neurofeedback (Scharnowski, Hutton, Josephs, Weiskopf, & 

Rees, 2012; Subramanian et al., 2011). Other mental imagery strategies that have been tested in the 

context of BCI control are spatial navigation (EEG: Cabrera & Dremstrup, 2008; fMRI: Monti et al., 

2010), inner speech and mental calculation (fMRI: Sorger et al., 2012; fNIRS: Naito et al., 2007), 

emotional imagery (fMRI: Johnston et al., 2011; Sulzer et al., 2013), mental drawing (fNIRS: Nagels-

Coune et al., 2017), thinking ‘yes’ or ‘no’ (fNIRS: Chaudhary, Xia, Silvoni, Cohen, & Birbaumer, 

2017; Gallegos-Ayala et al., 2014) and auditory imagery (EEG: Curran et al., 2004; fMRI: Yoo, Lee, 

& Choi, 2001).  

However, many of the above-mentioned imagery strategies could be suboptimal in patients who suffer 

impairments in the respective sensory or cognitive modalities. The current understanding is that “the 

nature of mental representations is formed by our perceptual apparatus and experience” (Schmidt, 

Ostwald, & Blankenburg, 2014). Therefore, it is important to extend the range of feasible imagery 

strategies available for operating a BCI in a clinical setting with imagery grounded in modalities in 

which intended BCI users have vivid memories based on recent experience. In this respect, 

somatosensory imagery could be an ideal candidate strategy, especially suited for older patients as 

well as patients suffering from locked-in-syndrome (LIS). The somatosensory modality is relatively 

well-preserved across the life span compared to, e.g., vision and audition. Also, in ‘locked-in’ patients 

vision is often impaired due to problems with eye-muscle control and drying of the eye ball related to 

lack of orbital movement, whereas the somatosensory modality is often one of the few sensory 

channels that is preserved in the complete ‘locked-in’ state (Murguialday et al., 2011). However, to 

our knowledge, a somatosensory imagery strategy has not yet been tested for hemodynamic brain-

computer interfacing.  

Therefore, the goal of the current study was to (1) investigate whether somatosensory imagery 

is a suitable strategy for operating a hemodynamic BCI, and provide a proof-of-concept that it is 
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suitable for online BCI-based communication; (2) explore to what extent its classification is driven by 

somatotopic information. For this proof-of-concept study, we exploited the high signal to noise ratio 

of ultra-high field 7T functional magnetic resonance imaging. 

Somatosensory imagery recruits the core imagery-generating network (de Borst & de Gelder, 

2017; McNorgan, 2012; Schmidt et al., 2014), but also involves primary and secondary 

somatosensory cortex (de Borst & de Gelder, 2017; McNorgan, 2012; Newman, Klatzky, Lederman, 

& Just, 2005; Olivetti Belardinelli et al., 2009; Schmidt et al., 2014; Wise, Frangos, & Komisaruk, 

2016; Yoo, Freeman, McCarthy, & Jolesz, 2003). In visual mental imagery, the topographic nature of 

representations has been shown to be preserved in primary visual cortex, even allowing for decoding 

of imagery content (Klein et al., 2004; Slotnick, Thompson, & Kosslyn, 2005; Thirion et al., 2006). 

The primary somatosensory cortex also contains topographic representations (hand: Kolasinski et al., 

2016; Nelson & Chen, 2008; Pfannmoller, Greiner, Balasubramanian, & Lotze, 2016; Sanchez-

Panchuelo, Francis, Bowtell, & Schluppeck, 2010; Schweizer, Voit, & Frahm, 2008; leg/foot: 

Akselrod et al., 2017; body: Penfield & Rasmussen, 1950; Zeharia, Hertz, Flash, & Amedi, 2015), but 

although imagery-induced activation has been shown in S1 and S2, it is unknown whether similar 

somatotopic activity can be induced using somatosensory mental imagery of the body surface. If 

somatosensory imagery would induce somatotopically specific activation patterns, this would 

probably simplify (online) classification, and open up the possibility to use it to activate and train 

particular subregions of the somatosensory map. 

 

Results 

Ten healthy participants were instructed by auditory cues to perform alternating somatosensory 

imagery of the hand or foot (figure 1) while ultra-high field 7T fMRI data were collected. Each 

participant completed five (participant 7) to six somatosensory-imagery classifier-training runs. Seven 

participants also completed one or more answer-encoding runs in which they answered a binary 

question using imagined somatosensory stimulation to the right hand to encode “yes” and imagined 

somatosensory stimulation to the left foot to encode a “no” answer.  

Suitability of somatosensory imagery for BCI 

After establishing that all participants subjectively experienced somatosensory imagery (see 

methods section 4.2), we went on to test the suitability of this strategy to induce activation that can be 

reliably decoded for the purpose for BCI communication. We hypothesized that, using a machine-

learning algorithm, the contents of somatosensory hand or foot imagery can be accurately decoded on 

the single-trial level with similar accuracy for each imagery class, with accuracy increasing when 

increasing numbers of runs are used to train the classifier (hypothesis 1a). Our second hypothesis (1b) 
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was that somatosensory imagery would yield accurate decoding of answer runs in simulated real-time 

as well as during a proof-of-concept online brain-based communication session.  

Testing the first hypothesis (1a), we found that significant above-chance classification accuracy 

(p<0.05, based on permutation testing) was achieved in eight out of ten subjects with one training run, 

and for all subjects for two or more trainings runs (figure 2). The average proportion correct 

classifications increased with the number of runs included for training (figure 3), up to 0.82 (sd= 0.12) 

when using five runs (four in one subject) for training and one run for testing. The effect of imagery 

class and the amount of training runs was tested in an imagery class (2, foot or hand) by training runs 

(5) repeated measures ANOVA on the edge corrected and logit transformed accuracy data. This 

revealed a significant effect of the number of training runs on the decoding accuracy (F(1.103, 8.112) 

= 8.823, p = 0.000, Greenhouse-Geisser [GG] corrected for non-sphericity with ε = 0.276). Planned 

within-subjects contrasts showed significant effects for the linear (F(1, 8) = 40.869, p< 0.000) and 

quadratic contrasts (F(1, 8) = 7.808, p< 0.023). There was no effect of the imagery class (F(1, 8) = 

1.728, p = 0.225), nor an interaction between imagery class and number of training runs (F(1.142, 

9.133) = 0.423, p = 0.558, GG corrected for non-sphericity with ε = 0.285).  

To test the second hypothesis (1b) and provide a proof-of-concept for brain-based 

communication, we used the answer runs that were available from seven subjects (17 runs in total, 7 

‘no’, 10 ‘yes’; table 1). A simulated real-time analysis revealed no significant effect of the number of 

runs used for training (F(5, 30) = 1.470, p = 0.229, figure 4). Using all training runs, the average 

proportion correct for these seven subjects was 0.86 (sd = 0.17), mounting to 0.92 (sd =0.08) when 

disregarding one subject who, after the session, indicated he misunderstood the instructions for the 

answer runs. In the proof-of-concept online communication session with the last subject all answers to 

the questions were accurately decoded. 

Assessment of somatotopy  

Secondly, we wanted to assess whether classification success would be based on somatotopic 

information. We hypothesized (2a) that classification accuracy would be higher in primary 

somatosensory cortex, where somatotopy is most pronounced, compared to secondary somatosensory 

cortex and (2b) that the discriminative weights obtained from the support vector machine (SVM) 

would show a somatotopic distribution. 

To test the first hypothesis (2a), we compared results obtained from anatomical probability 

masks of S1 versus S2 (Eickhoff, Amunts, Mohlberg, & Zilles, 2006; Eickhoff, Schleicher, Zilles, & 

Amunts, 2006; Geyer et al., 2001; Geyer, Schleicher, & Zilles, 1999; Geyer, Schormann, Mohlberg, 

& Zilles, 2000). The average proportion of correct classifications for a leave-one-run-out 

classification (training on all runs minus one and testing on the remaining run) was significantly 
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higher in primary somatosensory cortex compared to the secondary somatosensory cortex (F(1, 8) = 

10.581, p = 0.012, figure 5). The probability level also significantly affected classification accuracy 

(F(2.382, 19.060) = 20.174, p = 0.000, GG corrected with ε = .340). Decoding accuracy increased 

with decreasing probability level (i.e. larger mask sizes, supplementary table 2 and 3). The linear (F(1, 

8) = 48.685, p = 0.000) and quadratic (F(1, 8) = 10.024, p = 0.013) within-subjects contrasts were 

significant. The region by level interaction was not significant (F(2.734, 21.873) = .593, p = 0.611, 

GG corrected with ε = 0.391). Significant above-chance classification accuracy (p<0.05) was 

achieved in all ten subjects at the lowest probability level (largest mask) in S1, versus seven out of ten 

subjects at the lowest probability level in S2. 

Next, we tested somatotopy of the discriminative SVM weights (hypothesis 2b). Visual inspection 

of discriminative SVM weight maps revealed a pattern that roughly corresponded to the expected 

somatotopy in four out of ten subjects (2, 8, 9 and 10; figure 6). A weaker somatotopic pattern was 

observed in one subject (4). A reversed pattern was noticed in two subjects (3 and 6), and a mixed 

pattern was seen in three final subjects (1, 5 and 7). In a more quantitative evaluation of the extent to 

which there was a somatotopic distribution in the discriminative SVM weights, we tested whether 

there was a distinction in the median coordinates of the voxels associated with the 200 largest positive 

(foot) weights and the largest negative (hand) weights. We focused on the x-coordinates only, because 

somatotopy is expected to be most pronounced on the medial-lateral axis of the brain. A Wilcoxon 

signed rank test revealed that there was a significant within-subject difference (z = 2.09, p = 0.0365) 

between the median x-coordinates of the voxels associated with the 200 largest positive (foot) weights 

and the median x-coordinate of the voxels associated with the 200 largest negative (hand) weights. 

The median x-coordinate across subjects was 8.50 (sd = 14.5) for the 200 largest positive weights and 

-21.5 (sd = 18.4) for the 200 largest negative weights (figure 7). Also, we found a significant 

correlation between the difference in median x coordinates and the overall classification accuracy, i.e. 

subjects with a larger value for the foot-hand median x-coordinate difference (larger ‘hand-foot 

distance’) also showed a higher classification accuracy (Spearmann’s rho .948, p = 0.000). 

 

Discussion 

The current study (1) investigated whether somatosensory imagery is a suitable encoding 

strategy for a hemodynamic (fMRI-based) BCI, aiming to provide a proof-of-concept of its suitability 

for online BCI-based communication and (2) tested to what extent its decoding is based on 

somatotopic information. In accordance with our first set of hypotheses, we found that the contents of 

somatosensory imagery could be decoded above chance in each of our participants with similar 

accuracy for hand or foot, and that decoding accuracy increased with an increasing number of training 
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runs. We also found that answers to binary questions encoded by seven healthy participants using the 

somatosensory imagery BCI could be successfully decoded in simulated real-time as well as during a 

proof-of-concept online communication session tested in one subject. In accordance with our second 

set of hypotheses, we found that decoding accuracy was significantly higher in primary 

somatosensory cortex compared to secondary somatosensory cortex, and that discriminative weight 

patterns generated by healthy participants through somatosensory mental imagery showed a 

somatotopic distribution.  

Suitability for use in fMRI Brain-Computer-interfacing 

The average classification success was 82% for the offline leave-one-run out cross-validation 

procedure on the training runs, and 92% for the classification of the answer runs in simulated real-

time (86% when including a subject who indicated afterwards that he misunderstood the instructions). 

The fact that the classification success was higher for simulated real-time classification of the answer 

runs could be explained by the additional training run that was used for training the classifier in 

simulated real-time, whereas in the offline leave-one-run out procedure one run necessarily had to be 

left out for testing. However, the evaluation of the effect of additional training runs in the offline 

condition suggested that the beneficial effect of adding training runs levelled off after four runs. 

Another possible explanation might lie in the slight differences in the analysis pipelines for the 

simulated real-time and offline analyses regarding slice-scan-time-correction and data transformation 

(Talairach transformation and downsampling to 2mm3 offline versus smoothing with 4mm FWHM 

Gaussian kernel in native space in simulated-real-time). On the other hand, the increased accuracy for 

the answer run classification might also be related to enhanced imagery quality during the answer run, 

due to extended practice, focus on a single imagery strategy (in contrast to the alternating imagery 

strategies in the training runs) and possibly increased motivation because of the social interaction 

component of answering a genuine question.  

Taken together, these findings inspire confidence that somatosensory imagery will be a viable 

additional control strategy for BCI communication procedures. Somatosensory imagery might be 

especially suited for locked-in patients with reduced visual or auditory faculties who lack muscle 

control. These patients might not be able to evoke stable imagery involving their most affected 

modalities, as they lack recent memories of sensory experiences which can increase the level of detail 

and vividness of mental representations generated by imagination (Hassabis & Maguire, 2009). The 

current study was performed at 7T, but given the relatively large distance between hand and foot 

representations in primary somatosensory cortex similar results could be expected at a field strength 

of 3T which is more commonly available in clinical settings. Our novel somatosensory imagery 

control strategy might also be applied in binary fNIRS-based communication BCIs. Of course, taking 
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into account the considerably lower spatial resolution of fNIRS, optode placement and data analysis 

procedures would have to be optimized. 

Topographic nature of somatosensory imagery  

Our results indicate that decoding accuracy was higher within the primary than in the 

secondary somatosensory cortex mask, and that it is possible to induce somatotopic discriminative 

weight patterns by mental imagery. The median x-coordinates of the subjects with highest offline 

classification accuracies roughly correspond to values reported in the literature for finger (Kolasinski 

et al., 2016; Nelson & Chen, 2008; Pfannmoller, Greiner, Balasubramanian, & Lotze, 2016; Sanchez-

Panchuelo, Francis, Bowtell, & Schluppeck, 2010; Schweizer, Voit, & Frahm, 2008) and foot 

representations (Akselrod et al., 2017; figure 7). The slightly more medial imagery-related weight 

coordinates could be due to the fact that, in the current study, imagery involved the whole hand 

whereas stimulation is usually delivered to the fingers only. For the foot, imagery coordinates were 

more inferior than reported stimulation coordinates. Similar observations of corresponding sites for 

imagery and stimulation in primary sensory cortices have also been made in previous studies in the 

somatosensory domain (de Borst & de Gelder, 2017; Newman et al., 2005; Schmidt et al., 2014; Wise 

et al., 2016; Yoo et al., 2003), however, to our knowledge, the current study is the first to report a 

somatotopic pattern of discriminative weights in the (primary) somatosensory cortex during imagery. 

Previous studies have reported topographic recruitment of visual cortex during imagery (Klein et al., 

2004; Slotnick, Thompson, & Kosslyn, 2005; Thirion et al., 2006)  

The presence of a somatotopic pattern in the discriminative weights, that is a more medial and 

right sided location for the highest positive weights corresponding to the imagery class ‘foot’ and a 

more lateral and left sided location for the highest negative weights associated with ‘hand’, was 

associated with higher classification success. This suggests that subjects might increase classification 

success by increasing the level of somatotopy in their imagery-induced brain activation patterns. If 

this finding can be extrapolated to subjects with maladaptive somatosensory representations, we 

speculate that the current BCI might be suitable to use for training the somatotopy of these 

representations. Somatosensory dysfunction and aberrant plasticity have been linked to pain severity 

in chronic pain (Di Pietro et al., 2013; Di Pietro, Stanton, Moseley, Lotze, & McAuley, 2015; Flor, 

Braun, Elbert, & Birbaumer, 1997; Kim, Kim, & Nabekura, 2017; Pleger et al., 2005; Wrigley et al., 

2009), but see Makin et al. (2013) for an alternative view). Neurofeedback based on somatosensory 

mental imagery could be especially suitable for clinical interventions in patients for whom actual 

somatosensory stimulation is difficult or impossible due to their physical limitations or technical 

limitations of the scanner environment.  

Somatotopic patterns could in theory also be evoked using motor imagery or even actual 

movement. However, our subjects were carefully instructed and trained in a mock scanner to 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 11, 2018. ; https://doi.org/10.1101/296640doi: bioRxiv preprint 

https://doi.org/10.1101/296640


9 

 

exclusively use somatosensory imagery, and it was emphasized that they should not move during 

imagery runs. Subjects’ compliance to these instructions is supported by the fact that we did not 

observe hand or foot movement during training or scanning. Also, during the training runs, subjects 

did not receive any feedback or reward based on their performance, so there was no incentive to try 

out non-somatosensory imagery strategies. In line with this, subjects’ reports indeed indicated that 

they used purely somatosensory strategies (supplementary table 1).  

Based on the current data, we cannot establish a link between classification accuracy and the 

use of a specific somatosensory imagery strategy: The two subjects with largest classification success 

used touch and warmth imagery, as did the two subjects with the lowest classification success. It 

would be interesting to investigate whether imagery targeting different somatosensory submodalities 

induces different patterns of activation in primary somatosensory cortex. However, such pattern 

differences might be most apparent within a limb-specific subregion, whereas the general somatotopy 

of hand and foot is most likely preserved across somatosensory submodalities (Sur, Wall, & Kaas, 

1984). 

We instructed our subjects to stick with the same strategy for hand and foot. Whereas some 

subjects only reported using imagery based on one somatosensory submodality (e.g. vibrotactile 

stimulation), others used imagery of more naturalistic somatosensory stimulation involving a 

combination of somatosensory submodalities. Such imagery, e.g., combining warmth and touch might 

increase vividness and evoke stronger activation. Work by Kosslyn and Thompson in the visual 

domain suggests that the level of vividness and detail is related to primary visual cortex activation 

during imagery (Kosslyn & Thompson, 2003). We therefore propose to leave the choice of strategy to 

the participant, and have them choose the strategy that subjectively evokes most vivid and detailed 

imagery and that they feel most comfortable with. 

There are some limitations to this study. Somatosensory imagery involved only two 

contralateral body parts, which are relatively far apart in physical and somatotopic space, and whose 

representations reside on contralateral sides of the body. Thus, classification could have been based 

solely on less specific imagery related to body side. However, the fact that classification success was 

highest within the primary somatosensory cortex mask and linked to the degree of somatotopy in the 

discriminative weight maps indicates that subjects used a limb-specific somatosensory imagery 

strategy rather than a body-side related strategy. This is also in accordance with the introspective 

description of imagery strategies reported by the subjects. However, note that the question whether 

the brain signal is body-part or body-side specific is irrelevant in the context of the suggested two-

choice communication BCI application, as long as it can be used at will. 

A final limitation of this study is that only healthy subjects without neurological impairments 

participated in the current study. Patients might have shorter attentional spans leading to more 
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variable imagery quality. However, we found higher classification rates during answer runs than 

during training runs, possibly due to increased motivation. This effect might positively extrapolate to 

patients in a BCI communication setting. 

Conclusion 

Taken together, we conclude that somatosensory imagery is a successful information-

encoding strategy for hemodynamic BCI-based communication with a high clinical potential. The 

current results pave the way for future applications, such as brain-based communication for patients 

with locked-in-syndrome, and neurofeedback-based training to support the rehabilitation of 

somatosensory representations in stroke and chronic pain patients suffering from somatosensory 

deficits.  

 

Methods 

Participants 

Ten neurologically healthy participants (six males, mean age = 29 years, sd = 5 years, one 

left-handed) were recruited among students and staff members of the Faculty of Psychology and 

Neuroscience at Maastricht University (Maastricht, The Netherlands). Participants were screened for 

MRI counter-indications and signed an informed consent form prior to their participation. Students 

received a monetary compensation or credit points after the experiment. The study was conducted in 

accordance with the Declaration of Helsinki and approved by the ethics committee of the Faculty of 

Psychology and Neuroscience. 

Procedure and experimental design 

Two to five days before the actual scanning took place, subjects participated in a training 

session in which they performed one or more imagery runs in a mock scanner. The purpose of this 

training session was to instruct them about the task and possible imagery strategies, and to encourage 

them to try several imagery strategies and select the one that worked best for them, evoking the most 

stable and vivid somatosensory experience, as assessed by introspection. Two imagery strategies were 

suggested as possible starting points. The first strategy was to imagine someone gently touching the 

inner surface of the hand or foot. The second strategy was to apply techniques from autogenic 

training, imagining a heavy and warm feeling in the hand or foot. The session lasted at least 30min or 

until the participant indicated (s)he had found a subjectively effective imagery strategy.  

During the scanning session, the participants’ heads were stabilized with foam padding to 

minimize head movement. They were instructed not to move and to keep their eyes closed during the 
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functional runs. They received auditory instructions indicating when they had to start imagining touch 

to the right hand (“hand”) and the left foot (“foot”), and when they could stop (“rest”). Each 

participant completed five (participant 7) to six somatosensory-imagery classifier-training runs. Every 

classifier-training run contained a pseudorandom sequence of nine left-foot (LF) and nine right-hand 

(RH) somatosensory mental imagery trials of 18s duration, each followed by a 16, 18 or 20s rest 

period (figure 1). Seven participants also completed one or more answer-encoding runs in which they 

answered a binary question using imagined touch to the right hand to encode “yes” and imagined 

touch to the left foot to encode a “no” answer. Each answer-encoding run included five tactile-

imagery trials (encoding the same answer). Timing of the imagery trials and rest intervals was 

identical to the training runs. If possible, each question was followed by two answer runs. In the first 

answer run, subjects were asked to encode the actual answer to the question using the appropriate 

imagery strategy. In the second answer run, they were asked to encode the opposite answer (in order 

to obtain approximately the same number of “yes” and “no” answers-encoding data). The correct 

answers to the questions were unknown to the researcher responsible for data analysis until after 

completion of the offline analyses. In one subject, the answer runs were also analysed online and the 

results were reported back to the participant right after the run.  

After scanning, participants were asked to fill out a questionnaire in which they had to rate the 

experienced quality of their somatosensory imagery (i.e., whether it was a robust mental experience) 

and the extent to which it evoked a tactile sensation (i.e., to what extent did they experience it as 

inducing tactile input coming from the target limb) on a ten-point scale (one being the worst/least 

applicable, ten being the best/most applicable). They also rated the percentage of time that they were 

successful at maintaining the imagery and described the particular imagery strategy they used. 

All subjects reported successful somatosensory imagery. The type of strategies used ranged 

from imagining a warm feeling (four subjects), imagining vibratory stimulation to the finger or toe 

(two subjects), to imagining touch (massage, brush strokes, somatosensory sensation; four subjects; 

supplementary table 1). On a scale of 1-10, the average score subjects gave for the quality of their 

hand imagery was 6.9 (sd = 0.65) and of their foot imagery 6.6 (sd = 0.49). The average score in 

response to the question to what extent they experienced a tactile sensation during imagery was 5.3 

(sd = 2.3) for the hand and 4.9 (sd = 1.9) for the foot. The reported average percentage of time that 

somatosensory imagery worked during the hand imagery epochs was 75% (sd = 4.5%, N=6) and 73% 

(sd = 8.2%, N=6) for the foot imagery epochs. Paired t-tests did not reveal any significant differences 

between foot- and hand-related ratings at p<0.05.  

MRI data acquisition 

Data were acquired at Maastricht Brain Imaging Centre (Maastricht University) on a 7T 

scanner (Siemens Healthcare, Germany) with a 32 receiver channel (Nova) head coil. 
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The scanning session included the acquisition of an anatomical scan (8min) and five to six 

classifier training runs (12min/run). In seven subjects, there was sufficient time to end the session 

with one to seven additional answer-encoding runs (1 answer run: 2 subjects, 2 answer runs: 4 

subjects, 7 answer runs: 1 subject) in which the participant answered one or more binary questions 

using somatosensory imagery (4min/run).  

For the anatomical scan a Magnetization Prepared 2 Rapid Acquisition Gradient Echoes 

sequence (MP2RAGE, Marques et al., 2010) was used with 240 slices of 0.7 thickness, in-plane 

resolution of 0.7mm, 240mm x 240mm field-of-view, TR/TE= 5000/2.47ms, inversion time 1900ms, 

inversion time 2 2750ms, flip angle 15 degrees, flip angle 2 3 degrees and GRAPPA acceleration 

factor 3. 

In the functional runs, a gradient echo sequence was used with 78 slices of 1.5mm thickness, 

1.5mm in-plane resolution, 198 mm x 198 mm field-of view, TR/TE = 2000/26.1ms, 60 degree flip 

angle, multiband acceleration factor 2 and GRAPPA acceleration factor 3 (340 volumes for the 

training runs, 96 volumes for the answer runs). In each session, five volumes were acquired in 

opposite phase encoding direction to be used for (offline) correction of EPI distortions. 

Data analysis 

Preprocessing for offline multivariate analyses 

Offline data analysis was performed using Brainvoyager QX 2.8.4 (BrainInnovation, 

Maastricht, the Netherlands). The anatomical scan was down-sampled to 1mm3. The first two 

volumes of each functional run were discarded. The remaining volumes were adjusted based on slice-

scan time, realigned to the first functional image of the session using rigid body transformations, 

temporally filtered to remove linear trends and nonlinear periodic signals with a frequency below 

0.01Hz, corrected for EPI distortions, coregistered to the anatomical scan interpolating to 2mm3 

isotropic, and normalized to Talairach space. This procedure includes the definition of subject specific 

anatomical landmarks (AC [anterior commissure], PC [posterior commissure] and the borders of the 

cerebrum) that are used to rotate each brain in the AC–PC plane followed by piecewise, linear 

transformations to fit each brain in the common Talairach ‘proportional grid’ system (Talairach & 

Tournoux, 1988).  

The multivariate analyses were limited to the voxels included in anatomical masks. Masks 

were obtained by creating anatomical regions of interest (ROIs) in Talairach space based on the Jülich 

probability maps for the primary (PSC3a, PSC3b, PSC2 and PSC2; Geyer, Schleicher, & Zilles, 1999; 

Geyer, Schormann, Mohlberg, & Zilles, 2000; Grefkes, Geyer, Schormann, Roland, & Zilles, 2001) 

and secondary somatosensory cortex (SIIOP1, SIIOP2,SIIOP3 and SIIOP4; Eickhoff, Amunts, 
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Mohlberg, & Zilles, 2006; Eickhoff, Schleicher, Zilles, & Amunts, 2006) at different probability 

levels (see below).  

Features (t-values per voxel) were extracted by linearly fitting each voxel within the mask 

with a design matrix consisting of a constant term (intercept) and a modelled hemodynamic response, 

within a temporal window of 30s, spanning from one volume (2s) before the auditory cue to 14 

volumes (28s) after the auditory cue. The modelled hemodynamic response was obtained by 

convolving a canonical hemodynamic response function (hrf) with a box-car predictor whose value 

was one in the volumes corresponding to the imagery blocks, and zero otherwise. The fit was done 

separately for each trial, and the t-estimates of the hemodynamic model were used as features per 

voxel. This procedure resulted in 45 (participant 7)/54 feature examples per class (nine per run).  

Data were imported in Matlab (R2013b, Mathworks Inc.) using the NeuroElf (v1.0, 

http://neuroelf.net, Jochen Weber) for feature extraction and Spider toolboxes for multivariate 

classification. A linear Support Vector Machine (SVM) (Vapnik, 1995) with a constraint parameter 

C= 1 was used in several leave- run-out cross-validation procedures which differed depending on the 

research question, and are described in more detail below. Before learning a model, training features 

were z-scored to ensure the magnitude of weights would be interpretable. To test whether 

classification accuracies were significantly above chance, 2000 permutations (Golland, Liang, 

Mukherjee, & Panchenko, 2005) were performed in which condition labels were randomly reassigned 

to each block in each separate run. The p-value was calculated as the ratio between the number of 

permutations where the error was lower or equal to the observed one and the total number of 

permutations (adding one to both numerator and denominator to avoid zero values). Subsequently, 

proportions correct classifications were computed with edge correction ([number of correctly 

classified trials – 0.5]/number of trials) and logit transformed before statistically testing the 

hypotheses of interest using SPSS (IBM SPSS Statistics 24 for Windows, Armonk, NY: IBM Corp.).  

Suitability of somatosensory imagery for BCI  

Effect of the amount of training data and imagery class  

To test the hypothesis that the amount of training data would increase decoding accuracy 

independent of the imagery class  the number of runs used for SVM training was increased from one 

to five, each time testing on one of the remaining runs, using all possible combinations. Features were 

extracted from the largest, most inclusive anatomical masks of the primary and secondary 

somatosensory cortex. To test single-subject significance, permutation tests were performed. The edge 

corrected and logit transformed classification accuracies were subsequently entered in a two-way 

repeated-measures ANOVA in with imagery class (2) and number of training runs (5) as within-
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subject factors. To test whether accuracy increased with the number of training runs, within-subject 

planned polynomial contrasts were used. 

Assessment in the context of BCI communication 

To test the suitability of the current approach for (online) communication, a simulated real-

time classification was performed using Turbo-BrainVoyager (version 3.2, BrainInnovation B.V., 

Maastricht, the Netherlands) to emulate the procedure that would be performed during the scanning 

session. In the last participant, a proof-of-concept online communication experiment was performed 

in which the answer runs were also decoded online during the scanning session using an SVM based 

on data from all available training runs.  

The online and simulated real-time analyses were based on slice data in native resolution 

(1.5mm3), which were 3D-motion corrected using the standard TBV incremental procedure spatially 

realigning each volume to the first recorded volume by rigid body transformation. The lowest 

probability (largest) S1 and S2 mask was back-transformed from Talairach space into native space. 

After spatially smoothing the functional data with a 4 mm full -width -at -half –maximum (FWHM) 

kernel, t-values were computed by fitting a general linear model with the same predictors as used in 

the offline procedure, within the same temporal window of 30s, spanning from one volume (2s) 

before the auditory cue to 14 volumes (28s) after the auditory cue. T-values from the S1 and S2 mask 

were used as features for SVM training and testing using LIBSVM (2000-2009 Chih-Chung Chang 

and Chih-Jen Lin). 

In the simulated real-time analyses, the effect of the number of training runs was tested by 

using a classifier based on an increasing number of runs, starting from the run closest to the answer 

run to emulate the temporal adjacency that is characteristic for the online situation, each time adding a 

preceding run for each additional level for SVM training, and subsequently testing on the available 

answer run(s). The resulting edge-corrected and logit transformed accuracies were entered into a 

repeated-measures ANOVA with number of training runs (1-6) as within factor was used to 

statistically assess the effect of the amount of training data.  

Assessment of somatotopy  

Comparing accuracy in primary and secondary somatosensory cortex masks 

The effect on decoding accuracy of the anatomical region chosen for feature extraction was 

evaluated by repeating the cross-validation procedure with five runs (four for subject 7) for training 

and one run for testing with features extracted from the anatomical masks of the primary (PSC3a, 

PSC3b, PSC2 and PSC2) and secondary (SIIOP1, SIIOP2, SIIOP3 and SIIOP4) somatosensory cortex 

at different probability levels (Eickhoff, Amunts, et al., 2006; Eickhoff, Schleicher, et al., 2006; Geyer 
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et al., 1999; Geyer et al., 2000; Grefkes et al., 2001). The probability level (a percentage) of a mask 

for a particular anatomical area indicates that all voxels in that mask were classified as part of that 

anatomical area in at least the corresponding percentage of subjects in the database used to construct 

the anatomical probability map. For example, an anatomical mask with a probability level of 30% 

contains voxels that were classified as belonging to that particular anatomical region in at least 30% 

of the subjects in the database used to construct these anatomical probability maps. The higher the 

probability level, the smaller the mask size (supplementary table 2). To test single-subject 

significance, permutation tests were performed. 

Accuracy values were entered in a two-way repeated-measures ANOVA, with anatomical 

region (2, S1 or S2) and probability level (8, 10-80%) as within-subject factors, to test whether there 

was a difference between S1 and S2 in terms of decoding accuracy, and whether this was possibly 

affected by the probability level, which was further assessed using within-subject planned polynomial 

contrasts. For the ANOVA, only probability levels of 80% or lower were taken into account which 

corresponded to masks with more than 500 voxels, to ensure stable classification results. 

Assessment of somatotopy in discriminative SVM weights  

The extent to which the classification was based on somatotopically different weight patterns 

in primary somatosensory cortex was assessed using the average discriminative weights across the 

different training splits. Discriminative weights were extracted from single-subject maps (obtained 

when testing the overall single-subject classification accuracies) that represented the average weights 

across the different training splits, using SVM classifiers trained on features from the most inclusive 

anatomical mask, with all possible combinations of 4/5 runs for training. Because the representations 

of hand and foot are most clearly separated on x- axis (left-to right), we computed the subject-specific 

median x-coordinates for the 200 largest positive (foot imagery) and 200 largest negative weights 

(hand imagery), and compared them using a Wilcoxon signed rank test. Finally, the Spearman rank 

correlation was computed between the subject-specific differences in median x-coordinates for foot 

and hand and the leave-one-run-out classification accuracy 
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Tables  
Table 1: Data from simulated real-time analysis of answer runs. No answer-encoding data were 

obtained for subjects 4, 7 and 9 due to running short of MR scanning time. 
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Table 1   Training 
on run: 6 5-6 4-6 3-6 2-6 1-6 

   

Subjects 

Position 
of answer 
run in 
session 

Correct 
/total 

Correct 
/total 

Correct 
/total 

Correct 
/total 

Correct 
/total 

Correct 
/total Question 

Subject's 
answer Comment 

S01 run 7 1.00 1.00 1.00 0.80 0.60 1.00 Did you have a job in high school? yes   

             

S02 run 7 0.60 0.80 0.80 0.80 0.80 0.80 Did you ever ride a scooter? no   

  run 8 0.80 0.80 1.00 1.00 1.00 1.00 Control: Provide opposite answer yes   

S03 run 7 0.40 0.60 0.60 0.60 0.60 0.80 Would you ever like to visit the moon? yes subject misunderstood instructions 

  run 8 0.60 0.60 0.20 0.40 0.40 0.20 Control: Provide opposite answer no subject misunderstood instructions 

S05 run 7 1.00 1.00 1.00 1.00 1.00 1.00 Did you ever ride a scooter? yes   

             

S06 run 7 0.40 0.60 0.60 0.60 0.80 0.80 Would you ever like to visit the moon? yes   

  run8 0.20 0.80 1.00 0.80 1.00 1.00 Control: Provide opposite answer no   

S08 run 7 1.00 1.00 1.00 1.00 1.00 1.00 Would you ever like to visit the moon? yes   

  run 8 0.40 0.40 0.40 0.20 0.40 0.60 Control: Provide opposite answer no   

S10 run 7 0.80 0.80 0.60 0.60 0.60 0.60 Did you ever ride a scooter? yes   

  run 8 0.20 0.80 0.80 1.00 1.00 1.00 Would you ever like to visit the moon? yes   

  run 9 1.00 1.00 1.00 1.00 1.00   1.00 Control: Provide opposite answer no   

  run10 0.00 0.60 0.80 0.80 1.00 1.00 Have you ever visited the circus? yes   

  run11 1.00 0.60 1.00 1.00 1.00 1.00 Control: Provide opposite answer no   

  run12 1.00 0.80 1.00 1.00 1.00 1.00 Do you have brothers and sisters? no   

  run13 0.20 0.60 0.40 0.60 0.80 1.00 Control: Provide opposite answer yes   

Overall   69% 79% 80% 77% 79% 86%      
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Figure Legends  
Figure 1: Diagram illustrating the timing and an exemplary pseudorandom temporal order of imagery 

trials and rest intervals for the classifier-training and answer runs. 

Figure 2: Individual offline classification accuracies. Individual single-trial classification accuracies 

were obtained using a leave-one-run out cross-validation scheme based on spatial features 

extracted from the mask combining S1 and S2 at the most lenient probability threshold. The 

black dots indicate the average individual classification accuracies. The grey dots and shaded 

area respectively represent the average of the empirical null distribution and 95% confidence 

interval obtained by permutation testing (2000 permutations). 

Figure 3: Effect of the amount of training data on the offline-obtained single-trial classification 

accuracy using a leave-one-run out cross-validation scheme based on spatial features 

extracted from the mask combining S1 and S2 at the most lenient probability threshold. The 

dots indicate the average classification accuracies across the nine participants who completed 

a total of six training runs and the shaded area indicates the standard deviation across 

participants.  

Figure 4: Effect of the number of training runs on average classification success in the simulated real-

time procedure. The dots indicate the average classification accuracy across all participants 

who completed one or more answer runs and the shaded area the standard deviation.  

Figure 5: Offline single-trial classification accuracies for S1 versus S2. Accuracies were obtained 

using a leave-one-run out cross-validation scheme based on spatial features extracted from 

separate masks of S1 (red line) and S2 (purple line) at different probability levels ranging 

from 10% to 80% . Higher probability levels were excluded because the masks included less 

than 500 voxels for the S2 mask. The shaded areas indicate the standard deviation for each 

case. 

Figure 6: Z-scored average individual weight maps obtained from the combined S1 and S2 mask at 

the most lenient probability threshold, projected on individual cortical surface reconstructions. 

Individual subject data were ordered by average classification accuracy in the leave-one-run 

out cross validation procedure (accuracy increases from left to right and top to bottom). The 

map of participant 7 is shown separately, because for this, only four training runs could be 

used for testing instead of the five available for the other participants. Warm colors indicate 

positive weights (one could say voting for “foot”), cold colors for negative weights (a vote for 

“hand”). The white dotted lines indicate the central sulci. Hypothetical somatotopic SVM 
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weight pattern with similar color coding is shown at the bottom right of the figure, based on 

the approximate location reported for the hand and foot representations in the primary 

somatosensory cortex. Note that the foot representation extends onto the medial surface. 

Figure 7: Weight distribution on the medial-lateral brain axis for hand and foot imagery. Median x-

coordinate of the 200 largest positive and negative weights for individual subjects, ordered 

from left to right according to increasing classification accuracy. The shaded region indicates 

expected location for foot (orange)  and hand (blue) on somatotopic map based on values 

reported in the literature (Akselrod et al., 2017; Nelson & Chen, 2008). The dotted line 

indicates the brain midline. 
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