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ABSTRACT 

Identifying genomic probes (e.g., DNA methylation marks) is becoming a new approach to 

detect novel genomic risk factors for complex human diseases. The F test is the standard equal-

variance test in Statistics. For high-throughput genomic data, the probe-wise F test has been 

successfully used to detect biologically relevant DNA methylation marks that have different 

variances between two groups of subjects (e.g., cases vs. controls). In addition to DNA 

methylation, microRNA is another mechanism of epigenetics. However, to the best of our 

knowledge, no studies have identified differentially variable (DV) microRNAs. In this article, we 

proposed a novel model-based clustering to improve the power of the probe-wise F test to detect 

DV microRNAs. We imposed special structures on covariance matrices for each cluster of 

microRNAs based on the prior information about the relationship between variance in cases and 

variance in controls and about the independence among cases and controls. To the best of our 

knowledge, the proposed method is the first clustering algorithm that aims to detect DV genomic 

probes. Simulation studies showed that the proposed method outperformed the probe-wise F test 

and had certain robustness to the violation of the normality assumption. Based on two real 

datasets about human hepatocellular carcinoma (HCC), we identified 7 DV-only microRNAs 

(hsa-miR-1826, hsa-miR-191, hsa-miR-194-star, hsa-miR-222, hsa-miR-502-3p, hsa-miR-93, 

and hsa-miR-99b) using the proposed method, one (hsa-miR-1826) of which has not yet been 

reported to relate to HCC in the literature. 
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INTRODUCTION 

 

Investigating the relationship between genomics and complex human diseases has greatly 

improved our understanding of the molecular mechanisms of, and the interplay of environmental 

factors and genomic factors to, the complex human diseases. High-throughput data from cutting-

edge technologies have substantially facilitated the unbiased discovery of the genetic risk factors 

for many diseases. The standard approach to identify disease-associated genomic probes is to test 

if the mean expression (e.g., DNA methylation) between cases and controls is significantly 

different. In Statistics, variance is another important measurement, in addition to mean. The 

larger the variance is, the more information the data could provide. However, the information 

about variance has not been directly used to detect disease-associated genomic probes until 

recent years. 

 

Several groups of researchers have recently identified DNA methylation marks that have 

different variances between cases and controls[1-3]. They observed that (1) for differentially 

variable DNA methylation marks the variability in cases is usually higher than that in controls; 

and (2) differentially variable DNA methylation marks are biologically relevant. DNA 

methylation is a type of epigenetics, which studies the heritable changes in organisms caused by 

regulating gene expression without changing genetic code. DNA methylation inhibits gene 

expression by adding a methyl group to the cytosine or adenine DNA nucleotides. Another type 

of epigenetics is microRNAs that are short noncoding 18-25 nucleotide long RNA and 

negatively regulate mRNA translation [4, 5]. However, to the best of our knowledge, no studies 

have investigated differential variability for microRNAs. The main objective of this article is to 

develop statistical methods to detect microRNAs differentially variable between cases and 

controls. 

 

The F test is the classical method to test for equal variance between two groups of subjects, 

which evaluates whether the ratio of sample variances between two groups is significantly 

different from one. For high-throughput genomic data, such as DNA methylation data, the probe-

wise F test could be used. That is, we first perform the F test for each probe to test for equal 
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variance between cases and controls. We then calculate FDR-adjusted p-value to control for 

multiple testing, where FDR stands for false discovery rate. If the FDR-adjusted p-value < 0.05 

for a DNA methylation mark, we then claim that this DNA methylation mark is differentially 

variable between cases and controls. The advantages of this probe-wise approach include 

flexibility (one model per probe) and easy-implementation. However, differentially variable 

probes might be governed by the same underlying mechanism. Statistically speaking, the 

variances of differentially variable probes might follow the same distribution. Similarly, the 

variances of non-differentially variable probes might also follow the same distribution. We 

hypothesize that these underlying distributions of variances could help us improve the power of 

the F test to detect differentially variable probes. 

 

In this article, we propose a mixture of 3-component multivariate normal distributions to fit the 

expression levels of microRNAs to identify microRNAs differentially variable (i.e., having 

different variances) between cases and controls. 

 

METHOD 

Model. We assume that microRNAs belong to one and only one of the following three clusters: 

(1) microRNAs having higher variances in cases than in controls (denoted the cluster as OV), (2) 

microRNAs having equal variances between cases and controls (denoted the cluster as EV), and 

(3) microRNAs having smaller variances in cases (denoted the cluster as UV). We follow Qiu et 

al. (2008)[6] to directly model the marginal distributions of microRNAs in the 3 clusters. In this 

article, we modified Qiu et al.’s (2008) marginal model[6] to allow the detection of DV probes. 

We assume that (1) data have been normalized to remove the effects of confounding factors, 

such as chip effect, and batch effect, etc., and (2) data have been transformed so that the 

distributions of microRNA expressions are close to normal distributions.  

 

For a given microRNA, we denote Xi as the pre-processed expression for the i-th subject, i=1, …, 

m, where m=mc+mn, mc is the number of cases and mn is the number of controls. For the k-th 

cluster (k=1, 2, or 3), we assume that the expressions of the mc cases are identically distributed 

with mean 𝜇!" and variance 𝜎!"! . We assume that the expressions of the mn controls are 

identically distributed with mean 𝜇!" and variance 𝜎!"! . According to Qiu et al. (2008)[6], Xi’s 
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are marginally correlated with correlation 𝜌!" for cases and 𝜌!" for controls. We also assume 

that (1) cases and controls are independent, and (2) the 𝑚×1 random vector (X1,…, Xm)T follows 

a multivariate normal distribution. For the OV cluster, we require that 𝜎!!! > 𝜎!!! . For UV cluster, 

we require that 𝜎!!! < 𝜎!!! . For the EV cluster, we require that 𝜎!!! = 𝜎!!! . We allow the means 

and correlations are different between cases and controls in the EV cluster. 

 

We used the EM algorithm[7] to estimate the model parameters 𝜇!", 𝜎!"! , 𝜇!", and 𝜎!"! . The 

posterior probability 𝑝!" = 𝑃𝑟 𝑔𝑡ℎ 𝑚𝑖𝑐𝑟𝑜𝑅𝑁𝐴 𝑖𝑛 𝑘𝑡ℎ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟|𝒙 = 𝜋!𝑓! 𝒙 / 𝜋!𝑓! 𝒙 +

𝜋!𝑓! 𝒙 + 𝜋!𝑓! 𝒙  is used to assign the 𝑔-th microRNA to one of the 3 clusters, where 𝑓! 𝒙  is 

the density function of the multivariate normal distribution for the 𝑘-th cluster. If 𝑝!!is the 

largest posterior probability among 𝑝!!, 𝑝!!, and 𝑝!!, then the 𝑔 -th microRNA will be assigned 

to the 1st cluster (i.e., OV cluster). The Supplementary Document gives the details about the 

model and the corresponding parameter estimation procedure. 

 

Real datasets. We downloaded two microRNA datasets from NIH’s Gene Expression Omnibus 

(GEO)[8]: GSE67138 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67138) and 

GSE67139 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE67139). Both datasets are 

from the same project that aims to detect microRNAs differentially expressed between human 

hepatocellular carcinoma (HCC) tumor tissues with and without vascular invasion. GSE67138 is 

the first batch containing 57 samples (34 invasive tumor tissues and 23 non-invasive tumor 

tissues), while GSE67139 is the second batch containing 120 samples (60 invasive tumor tissues 

and 60 non-invasive tumor tissues). The expression levels of microRNAs in both GEO datasets 

were measured by using Affymetrix Multispecies miRNA-1 Array (GPL8786). Both datasets 

contain 847 microRNAs.  

 

We checked the data quality by visualizing the plot (Fig. A1) of percentiles across arrays and the 

plot (Fig. A2) of the first and second principal components. Both plots indicate the two datasets 

have been cleaned and have good quality (i.e., no apparent outlying microRNAs, outlying arrays, 

or technical batch effects). Hence, we directly use the two datasets in the further analyses. We 

regarded GSE67138 as the discovery set and GSE67139 as the validation set. 
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Simulation. We conducted 4 sets of simulation studies. In the first set (denoted it as SimI), we 

generated microRNA data from the proposed marginal mixture model, where estimated model 

parameters for GSE67138 (i.e., the discovery set) are used as the true values of the model 

parameters (𝜋! = 0.10, 𝜋! = 0.84, 𝜋! = 0.06, 𝜇!! = −0.80, 𝜎!!! = 1.24, 𝜌!! = −0.02, 

𝜇!! = 0.55, 𝜎!!! = 0.08, 𝜌!! = 0.14). We generated 100 datasets, each of which has 1,000 

microRNAs for 50 cases and 50 controls. Ten percent (100) of the 1,000 microRNAs are in the 

OV cluster. Six percent (60) microRNAs are in the UV cluster. The remaining 84% (840) 

microRNAs are in the EV cluster. 

 

In the second set (denoted it as SimII), we generated microRNA data from a mixture of 3 

multivariate t distribution with the same mean vectors and covariance matrices as those in SimI 

and with degrees of freedom 3. SimII is used to evaluate the performance of the proposed 

method when the normality assumption is violated. 

 

In the third set (denoted it as SimIII) of the simulation studies, we generated microRNA data 

from the same model as that in SimI, except that the marginal correlations within subject-groups 

were set to zero (𝜌!" = 0 and 𝜌!" = 0). SimIII is used to evaluate the performance of the 

proposed method when there are no marginal correlations. 

 

In the fourth set (denoted it as SimIV) of the simulation studies, we generated microRNA data 

from the same model as that in SimII, except that the marginal correlations within subject-groups 

were set to zero (𝜌!" = 0 and 𝜌!" = 0). SimIV is used to evaluate the performance of the 

proposed method when there are no marginal correlations and when the normality assumption is 

violated. 

 

Statistical Analysis. We compared the proposed method (denoted as gs) with ten existing equal-

variance tests by using both the real datasets and the simulated datasets. The ten equal variance 

tests are: (1) F test (denoted as F); (2) Ahn and Wang’s score test[9] (denoted as AW); (3) 

Phipson and Oshlack’s AD test[10] (denoted as PO.AD); (4) Phipson and Oshlack’s SQ test[10] 

(denoted as PO.SQ); (5) Levene’s test[11] (denoted as L); (6) Brown and Forsythe’s test[12] 

(denoted as BF); (7) trimmed-mean-based Levene’s test[12] (denoted as Ltrim); (8) improved 
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AW test based on Levene’s test[13] (denoted as iL); (9) improved AW test based on BF test[13] 

(denoted as iBF); and (10) improved AW test based on trimmed-mean-based Levene’s test[13] 

(denoted as iTrim). Except for the F test, the other 9 tests are robust to the violation of the 

normality assumption. 

 

We first applied the 11 methods (the gs method and the 10 existing methods) to the discovery set 

(GSE67138) to detect microRNAs differentially variable between invasive tumors and non-

invasive tumors.  For the 10 existing methods, we obtained FDR-adjusted p-values. If a 

microRNA has FDR-adjusted p-value < 0.05, we claim that this microRNA has significantly 

different variances between invasive tumors and non-invasive tumors. We then applied the same 

procedure to the validation set (GSE67139).  We claim that a microRNA is a validated DV 

microRNA (1) if the microRNA is DV in both discovery and validation sets, and (2) if the sign 

of the difference (𝑠!! − 𝑠!!) is the same in both datasets, where 𝑠!! and 𝑠!! are sample variances for 

cases and controls, respectively. We next calculated the proportion of the validated DV 

microRNAs pValid=n12/n1, where n1 is the number of DV microRNAs in the discovery set 

(GSE67138) and n12 is the number of DV microRNAs in both the discovery set (GSE67138) and 

the validation set (GSE67139).  

 

For the validated DV microRNAs detected by the gs method, we also check if they are validated 

differentially expressed (DE) microRNAs by using R Bioconductor package limma[14]. A 

microRNA is a validated DE microRNA if the FDR-adjusted p-value for testing equal mean 

expression between cases and controls is < 0.05 in both the discovery and validation sets and if 

the sign of the mean difference 𝑥! − 𝑥!is the same in both discovery and validation sets, where 

𝑥! and 𝑥! are the sample means of the cases and controls, respectively. Denote 𝑆!"#$%& as the set 

of microRNAs that are validated DV, but not validated DE. Denote 𝑆!"#$%& as the set of 

microRNAs that are validated DE, but not validated DV. Denote 𝑆!"#! as the set of microRNAs 

that are both validated DE and validated DV. 

 

We applied miRSystem[15] to predict the target genes of microRNAs in each of the 3 sets: 

𝑆!"#$%&, 𝑆!"#$%&, and 𝑆!"#!. miRSystem also provides the enriched KEGG pathways for the 

predicted target genes.  
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For simulated datasets, we calculated the magnitude of agreement between the true cluster 

memberships of microRNAs and the detected cluster memberships by each of the 11 methods by 

using the Jaccard index[6, 16]. The maximum value of the Jaccard index is one, indicating 

perfect agreement. The minimum value of the Jaccard index is zero, indicating that the 

agreement is by chance. 

 

Results. For the real data analyses, the numbers of the DV microRNAs in the discovery set, and 

the numbers and proportions of the validated DV microRNAs are shown in Table	1. The gs 

method detected 132 DV probes based on the discovery set, 67 of which are validated in the 

validation set. Among the 67 validated DV microRNAs, 66 microRNAs are OV and only one 

microRNA is UV. The proportion of the validated DV microRNAs is 0.51 for the gs method, 

which is the highest among the 11 methods. For all the 11 methods, the number (nValid.OV) of 

the validated OV microRNAs is much larger than the number (nValid.UV) of the validated UV 

microRNAs. This observation is consistent with what observed by other researchers using DNA 

methylation data[3].  

 

We got 324 DE microRNAs based on the discovery set, among which 217 DE microRNAs were 

validated. There are only 7 microRNAs in 𝑆!"#$%& (hsa-miR-1826, hsa-miR-191, hsa-miR-194-

star, hsa-miR-222, hsa-miR-502-3p, hsa-miR-93, and hsa-miR-99b), the parallel boxplots of 

which are shown in Fig. A3. 𝑆!"#$%& contains 157 microRNAs (Table A1), the parallel boxplots 

of which are shown in Fig. A4. 𝑆!"#! contains 60 microRNAs (Table A2), the parallel boxplots 

of which are shown in Fig. A5. 

 

Based on the miRSystem analysis, there are 1,639 genes (Table A3) targeted by the 7 

microRNAs in 𝑆!"#$%&, 8,141 targeted genes (Table A4) for the 157 microRNAs in 𝑆!"#$%&, and 

6,893 targeted genes (Table A5) for the 60 microRNAs in 𝑆!"#!. 

The 1,639 genes targeted by the 7 microRNAs in 𝑆!"#$%& are significantly enriched 

(RAW_P_VALUE < 0.05) in 6 KEGG pathways (CALCIUM SIGNALING PATHWAY, 

SALIVARY SECRETION, AMYOTROPHIC LATERAL SCLEROSIS (ALS), MAPK 

SIGNALING PATHWAY, PPAR SIGNALING PATHWAY, and ALZHEIMER'S DISEASE) 
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(Table A6). The 8,141 genes targeted by the 157 microRNAs in 𝑆!"#$%& are significantly 

enriched in only one KEGG pathway (ANTIGEN PROCESSING AND PRESENTATION) with 

RAW_P_VALUE=2.70E-2 (Table A7). The 6,893 genes targeted by the 60 microRNAs in 𝑆!"#! 

are enriched in two KEGG pathways (O-GLYCAN BIOSYNTHESIS and GLYCINE SERINE 

AND THREONINE METABOLISM) (Table A8). 

 

For the first simulation study (SimI), almost all of the 100 values of the Jaccard index by the gs 

method are equal to one (the perfect agreement). Figure	1 showed that the gs method had 

significantly higher values of the Jaccard index than the 10 existing equal-variance tests. The 

pattern of the Jaccard index values is similar for SimIII (Figure	3), where subjects are marginally 

independent. 

 

The gs method still had much higher values of the Jaccard index than the 10 existing equal-

variance tests even for data generated from multivariate t distributions, although the average 

values of Jaccard index were much smaller (<0.5) in SimII (Figure	2) and SimIV (Figure	4). 

 

Discussion.  

In this article, we proposed a novel method to detect microRNAs having different variances 

between cases and controls. The proposed method is different from probe-wised equal-variance 

tests in that it does not involve hypothesis testing since it is a model-based clustering. To the best 

of our knowledge, the proposed method is the first clustering algorithm to detect differential 

variable genomic probes.  

 

In the 4 simulation studies, the proposed method outperformed 10 probe-wised tests, including 

the classic F test that has been reported to outperform other equal-variance tests when the 

normality assumption is held[17, 18]. The reason why the gs method performed better than the F 

test in SimI and SimIII, where the normality assumption is held, is that the gs method could 

borrow information across microRNAs (i.e., the estimation of the model parameters uses the 

information provided by al microRNAs). 
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The gs method and the F test outperformed the other 9 tests in SimII and SimIV, where the data 

were generated from multivariate t distribution (i.e., the normality assumption is violated). This 

indicates that the gs method and the F test could work well relative to other equal-variance tests 

for data with uni-modal and symmetric distributions. Fig. A6 shows the histograms and qqplots 

for a simulated dataset in each of the 4 simulation scenarios. In future research, we will evaluate 

the performance of the gs method in scenarios where the violation of the normality assumption is 

caused by skewed distributions. The robustness of the gs method warrants further investigation. 

 

In the real data analysis, the gs method detected 67 validated DV microRNAs (66 OV and 1 UV), 

seven of which are DV only. The 7 DV-only microRNAs (hsa-miR-1826, hsa-miR-191, hsa-

miR-194-star, hsa-miR-222, hsa-miR-502-3p, hsa-miR-93, and hsa-miR-99b) targeted to 1,639 

genes based on the miRSystem analysis. Except for hsa-miR-1826, all DV-only microRNAs 

have been associated with HCC. Elyakim et al. (2010)[19] showed that miR-191 is a candidate 

oncogene target for hepatocellular carcinoma therapy. Law and Wong (2011)[20] reported the 

association of miR-194 with metastatic behavior of HCC. Murakami et al (2006)[21] reported 

that miR-222 is increased in poorly versus moderately versus well-differentiated hepatomas. Jin 

et al. (2016)[22] reported that miR-502-3p suppressed cell proliferation, migration, and invasion 

in HCC by targeting SET. Li et al. (2009)[23] confirmed that the miR-106b-25 cluster, which 

miR-93 belongs to, is over-expressed in HCC. Morishita et al. (2016)[24] found that miR-99b is 

up-regulated in HBV-infected HCC cells. 

 

 

The 1,639 genes, which are targeted by the 7 DV-only microRNAs, are enriched in 6 KEGG 

pathways (CALCIUM SIGNALING PATHWAY, SALIVARY SECRETION, 

AMYOTROPHIC LATERAL SCLEROSIS (ALS), MAPK SIGNALING PATHWAY, PPAR 

SIGNALING PATHWAY, and ALZHEIMER'S DISEASE). All these 6 pathways have been 

linked to HCC in the literature. For example, Huang et al. (2017)[25] reported that increased 

mitochondrial fission induced cytosolic calcium signaling in HCC cells. Chen et al. (2017)[26] 

reported that in a mice study, DNA methylation marks that are differentially methylated between 

livers with HCC and livers without HCC are enriched in the SALIVARY SECRETION pathway. 

Seol et al.’s (2016)[27] results suggest that Riluzole, an amyotrophic lateral sclerosis (ALS) drug, 
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has an anti-cancer effect on HCC. Feng et al. (2017)[28] reported that cantharidic acid inhibits 

HCC cell proliferation by inducing cell apoptosis through the p38 MAPK signaling pathway. 

Nwosu et al. (2017)[29] reported that down-regulated genes (HCC vs. non-HCC) were enriched 

in PPAR SIGNALING PATHWAY based on each of the 8 HCC datasets downloaded from the 

Gene Expression Omnibus (GEO). Jin et al. (2015)[30] reported that Kynurenine 3-

monooxygenase (KMO), an enzyme playing a critical role in Huntington’s and Alzheimer’s 

diseases, exhibits tumor-promoting effects towards HCC.  Hence, DV-only microRNAs are 

biologically relevant to HCC. 

 

There are no overlaps among the enriched pathways for the 3 sets of microRNAs in the real data 

analysis: 𝑆!"#$%& (the set of microRNAs that are validated DV, but not validated DE), 𝑆!"#$%& 

(the set of microRNAs that are validated DE, but not validated DV), and 𝑆!"#! (the set of 

microRNAs that are both validated DE and validated DV). This indicates DV-only microRNAs 

might provide additional information about the molecular mechanisms of HCC than that 

provided by DE microRNAs. 

 

 

Fig A7. showed that the distributions of the original real datasets are quite different from normal 

distributions. For the gs method, we followed Qiu et al.’s (2008) [6] data preprocessing. That is, 

we first performed the Box-Cox transformation, and then for each microRNA, we performed 

mean-centering and scaling operations so that the mean expression level is 0 and the variance is 

1. Fig A7 showed that even after the Box-Cox transformation and scaling, the distributions of the 

data are still quite different from normal distributions. In the real data analysis, we applied the 

original data downloaded from GEO for all the 10 existing equal-variance tests. We also tried to 

apply the F test to the Box-Cox transformed data. The F test detected 159 DV microRNAs from 

the discovery set (GSE67318), but 472 DV microRNAs from the validation set (GSE67319), 

which is more than half of the 847 microRNAs. Further investigation is warranted. 

 

In summary, the proposed gs method outperformed existing equal-variance tests in the 

simulation studies and detected biologically relevant microRNAs in a real data analysis of HCC 

data. The gs method is based on a mixture of multivariate normal distributions. Although the gs 
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method showed some robustness to the violation of the normality assumption, in future we will 

study how to improve the gs method to make it robust to the violation of the normality 

assumption. 
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Table	1.	Information	about	the	validated	DV	microRNAs	

method	 nSig	 n.OV	 n.UV	 nValid	 nValid.OV	 nValid.UV	 pValid	
gs	 132	 91	 41	 67	 66	 1	 0.51	
F	 239	 183	 56	 106	 96	 10	 0.44	
AW	 55	 46	 9	 26	 26	 0	 0.47	
PO.AD	 148	 113	 35	 59	 54	 5	 0.40	
PO.SQ	 58	 48	 10	 29	 29	 0	 0.50	
L	 139	 106	 33	 58	 54	 4	 0.42	
BF	 53	 37	 16	 24	 24	 0	 0.45	
Ltrim	 79	 57	 22	 34	 33	 1	 0.43	
iL	 131	 99	 32	 55	 51	 4	 0.42	
iBF	 49	 35	 14	 23	 23	 0	 0.47	
iTrim	 72	 52	 20	 31	 30	 1	 0.43	
nSig:	the	number	of	the	DV	microRNAs	detected	in	the	discovery	set;	n.OV:	the	number	of	OV	
microRNAs	detected	in	the	discovery	set;	n.UV:	the	number	of	UV	microRNAs	detected	in	the	discovery	
set;	nValid:	the	number	of	validated	DV	microRNAs;	nValid.OV:	the	number	of	validated	OV	microRNAs;	
nValid.UV:	the	number	of	validated	UV	microRNAs;	pValid	=	nValid/nSig.	
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Figure	1.	The	boxplots	of	the	100	estimated	Jaccard	indices	based	on	the	100	simulated	datasets	in	SimI.	The	closer	to	one	
the	Jaccrd	index	is,	the	better	performance	of	a	method.	
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Figure	2.	The	boxplots	of	the	100	estimated	Jaccard	indices	based	on	the	100	simulated	datasets	in	SimII.	The	closer	to	one	
the	Jaccard	index	is,	the	better	performance	of	a	method	is.	
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Figure	3.	The	boxplots	of	the	100	estimated	Jaccard	indices	based	on	the	100	simulated	datasets	in	SimIII.	The	cloer	to	one	
the	Jaccard	index	is,	the	better	performance	of	a	method	is.	
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Figure	4.	The	boxplots	of	the	100	estimated	Jaccard	indices	based	on	the	100	simulated	datasets	in	SimIV.	The	closer	to	one	
the	Jaccard	index	is,	the	better	performance	of	a	method	is.	
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Supplementary Material 

A concise description for each supplementary material file is shown in the table below: 

File Description 

suppl_document_MMDvariance3cat.pdf Details about the gs model and its parameter 

estimation via the EM algorithm 

TableA1.csv Supplemental Table 1: The list of the 157 DE-only 

microRNAs 

TableA2.csv Supplemental Table 2: The list of the 60 DE-and-DE 

microRNAs 

TableA3.csv Supplemental Table 3: The list of the 1,639 genes 

targeted by the 7 microRNAs in 𝑆!"#$%& 

TableA4.csv Supplemental Table 4: The list of the 8,141 genes 

targeted by the 157 microRNAs in 𝑆!"#$%& 

TableA5.csv Supplemental Table 5: The list of the 6,893 genes 

targeted by the 60 microRNAs in 𝑆!"#! 

TableA6.csv Supplemental Table 6: The list of the 6 KEGG 

pathways enriched by the 1,639 genes targeted by the 

7 microRNAs in 𝑆!"#$%& 

TableA7.csv Supplemental Table 7: The list of the 1 KEGG 

pathway enriched by the 8,141 genes targeted by the 

157 microRNAs in 𝑆!"#$%& 

TableA8.csv Supplemental Table 8: The list of the 2 KEGG 

pathways enriched by the 6,893 genes targeted by the 

60 microRNAs in 𝑆!"#! 

FigsA1_A2.docx A MS WORD file includes Fig A1 (Supplemental 

Figure 1) and Fig A2 (Supplemental Figure 2). 

 

Fig A1. The plot of percentiles of log2 expression 

levels across arrays. Left panel: GSE67138; Right 

panel: GSE67139. 
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Fig A2. The	plot	of	the	first	and	second	principal	

components.	Left	panel:	GSE67138;	Right	panel:	

GSE67139. 

FigA3.pdf Supplemental Figure 3: Parallel boxplots of the 7 

validated DV-only microRNAs. Left panel: 

GSE67138; Right panel: GSE67139 

FigA4.pdf Supplemental Figure 4: Parallel boxplots of the 157 

validated DE-only microRNAs. Left panel: 

GSE67138; Right panel: GSE67139 

FigA5.pdf Supplemental Figure 5: Parallel boxplots of the 60 

validated DV-and-DE microRNAs. Left panel: 

GSE67138; Right panel: GSE67139 

FigA6.pdf Supplemental Figure 6: Histograms and QQ plots for 

a simulated dataset in each of the 4 simulation 

scenarios 

FigA7.pdf Supplemental Figure 7: Histograms and QQ plots for 

the two real datasets 
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