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Abstract 

Perception results from our brain’s ability to make predictive models of sensory information. 

Recently, it has been proposed that psychotic traits may be linked to impaired predictive 

processes. Here, we examine the brain dynamics underlying prediction formation in a 

population of healthy individuals with a range of psychotic experiences. We designed a novel 

paradigm, which incorporated both stable and volatile sound sequences by manipulating their 

probability. We measured prediction error with electroencephalography and gauged prediction 

formation explicitly by behaviourally recording sensory ‘regularity’ learning errors. Critically, 

we show that top-down frontotemporal connectivity may be a neural mechanism by which 

impaired regularity learning influences psychotic experiences. These findings further our 

understanding of the neurobiological underpinnings of prediction formation and provide 

evidence for a continuum of psychosis in the healthy, non-clinical population. 

 

Keywords: prediction, volatility, psychotic, mediation, effective connectivity 

 

One Sentence Summary  

Healthy individuals with psychotic experiences have impaired sensory learning, mediated by 

reduced top-down frontotemporal connectivity.  
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In a stable environment, sensory perception is facilitated by prior beliefs about what is 

likely to happen next (1, 2). By estimating the probability of forthcoming events, we can form 

a predictive model about the world and its regularities (3). When circumstances are ‘volatile’, 

such that previously learnt regularities change, having a flexible predictive model is more 

advantageous (4-6). Previous literature has shown that healthy individuals are able to optimally 

estimate environmental volatility (6), adopting a greater learning rate in the face of ever 

changing, volatile circumstances (6, 7). This motivates exploratory behaviour and continuous 

updating, as well as suppression of top-down prior beliefs (8). However, this state of constant 

learning is inefficient as a long-term strategy in stable environments (9, 10). Stable 

environments allow for the development of a robust predictive model, which simultaneous 

enables an efficient encoding of sensory stimuli while minimising the spending of cognitive 

resources (5). Poor estimation of environmental volatility has been found to have negative 

consequences on social cognition and decision-making in individuals with autism, anxiety and 

schizophrenia (11-13). These patient groups have aberrant representations of volatility; either 

over-estimating it, leading to imprecise, weak predictive models, or under-estimating it, leading 

to rigid and maladaptive predictive models (14).  

Emerging theoretical accounts of psychosis postulate that psychotic experiences arise 

due to an impairment in the brain’s predictive ability to infer internal and external sensations 

(14-16). Individuals experiencing psychosis (such as schizophrenia) may misattribute saliency 

to irrelevant sensory information leading to the formation of unfounded odd beliefs. There are 

many converging lines of evidence that support the theory that psychosis arises due to an 

impaired predictive model (17, 18). The most robust and replicable empirical evidence for this 

arises from attenuated neurophysiological responses to surprising sounds embedded in a 

sequence of predictable sounds, in so-called oddball paradigms (19-21). This is thought to 

reflect a sensory prediction error deficit that results from a failure to form accurate predictions 
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about forthcoming predictable stimuli (15, 22, 23). Reduced prediction error (PE) response in 

schizophrenia has been linked to alterations in brain connectivity between the frontal and the 

temporal cortex as well as within the inferior frontal gyrus (IFG) and auditory cortex (24, 25). 

Alterations in the neurophysiology of PEs have been shown to increase as psychotic traits 

increase, suggesting that the degree of PE aberrancy aligns on a continuum of psychosis (26, 

27) – the idea that nonclinical individuals in the general healthy population may display a range 

of psychotic traits. However, the underlying brain networks, presumably also altered along the 

continuum remain unknown.  The psychosis continuum comprises the full spectrum of 

psychotic experiences, from healthy individuals who experience a range of psychotic-like 

experiences, to prodromal individuals with subclinical symptoms, and to those with florid 

psychosis at the very end of the spectrum (28, 29). One of the benefits of investigating 

psychosis in relation to neural dynamics (30) and PE response (31, 32) on the healthy end of 

the spectrum is the possibility to eschew the confounds of medication and illness severity.  

The aims of this study were three-fold. The first aim was to examine the relationship 

between regularity learning and sensory PE measured with electroencephalography (EEG). 

Secondly, we wanted to elucidate the neural dynamic underpinnings of prediction formation 

during regularity learning. For this purpose, we developed a novel auditory oddball task with 

either fixed sound probabilities (stable conditions) or varying sound probabilities (volatile 

conditions; see Figure 5). The third aim was to investigate whether aberrations in prediction 

formation are aligned on a continuum of psychosis. Specifically, we examined the relationship 

between regularity learning, PE responses and the brain networks engaged in prediction 

violations. We hypothesised that disruptions in intrinsic and top-down brain dynamics (24) 

mediate the influence of impaired prediction formation on increased psychotic experiences. 
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Results and Discussion 

Our first aim was to compare the strength of the predictive models established in stable 

and volatile in a regularity learning task. For this purpose we examined the event-related 

potential (ERP) recorded at frontocentral channel (Fz), and in line with the vast oddball 

literature we found that responses to deviant sounds were larger than responses elicited by 

standard sounds, regardless of volatility (F(1,30) = 45.33, p < 0.001, h2 = 0.60). Moreover, we 

found a significant interaction between PE response and volatility (F(1,30) = 11.06, p = 0.002, 

h2 = 0.27). Critically, a follow-up analysis revealed that PEs were larger under the stable 

compared to the volatile conditions, t(30)=−3.33, p = 0.002, d = -0.60 (see Figure 1a and 1b). 

Increased PEs in stable conditions, compared to volatile, have been identified in previous 

studies (33, 34). PEs signal a violation between what the brain predicts will happen and what 

is actually experienced. As such, PEs are fundamental teaching signals that drive updating of 

the brain’s predictive model of the sensed world (35, 36). Thus, greater PE responses to 

regularity violations indicate a stronger (i.e., more precise) prediction model in stable than 

volatile conditions (36, 37). 

We next examined differences in mean percentage errors in probability estimation 

(regularity learning error) and mean confidence ratings during stable and volatile conditions. 

The data show that participants had fewer errors in regularity learning during stable conditions 

(M = 9.30%, SE = 0.87), compared to volatile conditions (M = 12.38%, SE = 1.07), t(30) = -

2.40, p = 0.023, d = -0.43. In addition, participants had greater confidence in their probability 

estimates during stable conditions (M = 2.57, SE = 0.07), compared to volatile conditions (M 

= 2.19, SE = 0.05), t(30) = 4.78, p < 0.001, d = 0.86 (see Figure 1c). This shows that regularity 

learning and confidence are enhanced in stable, more predictable environments, than in more 

volatile, less predictable, environments. In addition, we asked whether regularity learning 

errors were related to the degree of PE response. Pearson’s correlations and Bayesian analysis 
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revealed a very strong, significant correlation between regularity learning errors and PEs (at 

the ERP level) in stable conditions (p = 0.003 (padjusted < 0.01), BF+0 = 33.99; see Figure 1d, 

Table S2), hence demonstrating that greater PEs in stable conditions are associated with better 

sensory regularity learning. Regularity learning is the process by which the brain learns the 

statistical structure in the environment and forms predictive models of what is likely to happen 

next (38-41). Previous studies have demonstrated that individuals are able to implicitly learn 

the statistical structure of sensory events in the environment (3, 23). Crucially, by 

simultaneously recording PE responses and behaviourally measuring regularity learning, we 

show for the first time that greater sensory PEs are associated with improved explicit ability to 

gauge the sensory regularities within one’s environment. 
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Fig. 1. Greater prediction errors and regularity learning indicate a more precise 
prediction model in stable than volatile conditions. A) Significant interaction between 
volatility (stable – blue – versus volatile – orange) and brain PE responses, B) Significant main 
effect of PE, showing brain responses evoked by standards (green, red) and deviants (purple 
and yellow) in the context of stable and volatile conditions. Solid lines represent mean and 
lighter shading represent standard error of the mean, C) Fewer regularity learning errors and 
greater confidence in stable (blue) than volatile (orange) conditions, D) Significant correlation 
between regularity learning errors and prediction errors in stable conditions. * p < 0.05; ** p < 
0.001. 
 

To further investigate the sensory PEs evoked by regularity violations with fewer 

spatial and temporal constraints, we ran a general linear model for the whole spatiotemporal 

volume of brain activity. Firstly, we replicated previous auditory oddball findings by showing 

a significant main effect of PE response (standard sounds vs deviant sounds) peaking at 205 

ms (peak-level F = 170.92, pFWE < 0.001), 290 ms (peak-level F = 240.99, pFWE < 0.001; 

frontocentral and occipitoparietal channels), and 25 ms (right frontal channels; peak-level F = 

25.26, pFWE = 0.004). Moreover, we found a significant interaction between PE response and 

volatility, at 165 ms over occipitocentral channels (peak-level z = 4.27, pFWE = 0.015, see Figure 

2a). Next, we asked whether regularity learning errors were related to neuronal activity. To 

address this question, we conducted a spatiotemporal multiple regression analysis at the 

interaction between PEs and volatility (Stable PEs > Volatile PEs) with regularity learning 

error as the predictor variable. Our data show that a decrease in regularity learning errors 

significantly predicted an increase in brain activity at 165 ms (peak-level z = 3.64, cluster-level 

pFWE = 0.034, see Figure 2b). In order to determine where in the brain this effect came from we 

used source reconstruction techniques (42), which uncovered an increased activity in the right 

superior frontal gyrus (peak-level z = 2.19, puncorrected = 0.014) and the right fusiform gyrus 

(peak-level z = 1.89, puncorrected = 0.029, see Figure S2b). This finding demonstrates that the 

difference in PEs in stable and volatile environments (ability to attune to volatility) increases 

as regularity learning improves, associated with activity in right frontotemporal regions. This 

finding is concordant with the idea that healthy individuals are optimally attuned to different 
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environments, such that in volatile environments there is a greater reliance on local probability 

(smaller PE) (43), whereas stable environments enable stronger neuronal representations, or 

more precise predictive models (larger PE), of global regularities (44).  

Source-level analysis revealed that stable PEs engaged frontoparietal regions, such as 

the middle frontal gyrus (peak-level z = 4.23, pFWE = 0.02), the primary motor area (peak-level 

z = 4.45, pFWE = 0.009), and the inferior parietal lobule (peak-level z = 4.56, pFWE = 0.006). In 

comparison, volatile PEs engaged occipitoparietal regions, such as the precuneus (peak-level z 

= 5.05, pFWE = 0.001) and the middle occipital gyrus (peak-level z = 4.39, pFWE = 0.011, see 

Figure 2c). These results are in keeping with prior studies suggesting that higher hierarchical 

frontal regions (engaged for stable PEs) are associated with formation and representation of 

prior beliefs (45-47) and activity in inferior parietal regions is associated with the evaluation 

of prior beliefs (48, 49). In comparison, lower hierarchical occipital regions (engaged for 

volatile PEs) are associated with sensory processing (46), which drive prior belief updating.  
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Fig. 2. Brain responses underlying volatility attuning and regularity learning. A) 
Spatiotemporal univariate statistical analysis revealed a significant main effect of PE (left 
column) over frontal and occipitoparietal channels; and PE x volatility interaction (right 
column) over occipitocentral channels. B) Spatiotemporal multiple regression analysis 
revealed a negative relationship between regularity learning errors and spatiotemporal activity 
during the interaction (Stable PE > Volatile PE) at 165ms. C) Source reconstruction analysis 
revealed significant clusters for stable PEs in frontoparietal regions versus for volatile PEs in 
occipitoparietal regions. IPL = inferior parietal lobule; MFG = middle frontal gyrus; SPL = 
superior parietal lobule; MOG = middle occipital gyrus. All maps are displayed at p < 0.05, 
FWE whole-volume corrected.  
 

The network architecture underlying PE response has been extensively studied 

previously (50, 51), with robust findings demonstrating that a three-level hierarchical brain 

model underlies the generation of PEs evoked in auditory oddball paradigms.  In the current 

study, we focused on the pattern of connections that best differentiates PE responses under 

stable and volatile environments. The high temporal resolution of EEG data enables improved 

estimation of the underlying neurobiological interactions, providing insights into the brain’s 
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effective connectivity (52, 53). Here, we were interested in, 1) the effect of contextual volatility 

on neuronal responses, and 2) the effective connectivity related to psychotic traits.  

Bayesian model comparison was performed on thirty-six different dynamic causal 

models (see Figure S3), which were based on the functional brain architecture shown to 

underlie PE responses (50, 51). Results from Bayesian model selection using random effects 

family-level analysis indicated that the best model included connections amongst six a priori 

defined regions, with inputs to left and right primary auditory cortex (A1); intrinsic connections 

within the A1; bilateral connections between: A1 and superior temporal gyri (STG), STG and 

inferior frontal gyri (IFG); as well as lateral connections between left A1 and right A1, and left 

STG and right STG (model 7; see Figure 3a). In the optimal model, larger PEs in stable 

compared to volatile blocks were caused by enhanced modulations in backward, forward and 

intrinsic connections (see Figure 3a). Forward connections are thought to convey PEs, whereas 

backward connections covey predictions (i.e., beliefs about sensory input), and intrinsic 

connections emulate local adaptation of neuronal responses and are thought to reflect the 

precision (strength) of neuronal representations (53, 54). This finding is in keeping with the 

predictive coding account of the mechanisms underlying perception of an auditory oddball 

sequence (55), and suggest that more precise models about sensory input are enabled by greater 

brain connectivity in stable than volatile PEs. 

In order to test the evidence for a continuum of psychosis, we examined the altered 

neural dynamics, behaviour and neurophysiology related to psychotic traits in the general 

healthy population. First, we examined brain connectivity estimates by applying Bayesian 

model averaging across all models (weighted by their probability) and participants. Critically, 

we found a strong, significant correlation between psychotic experiences and top-down 

connectivity from the right IFG to STG (frontotemporal) (p = 0.005 (padjusted < 0.05), BF-0 = 

18.28; see Table S3). This shows that a greater degree of psychotic traits in healthy people was 
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associated with weaker top-down connectivity from inferior frontal to superior temporal 

regions. Precisely the same connection has previously been found aberrant in patients with 

schizophrenia (24), as well as high-risk individuals with a genetic predisposition for 

schizophrenia (56), and is aligned with the dysconnectivity hypothesis for schizophrenia, 

observed particularly between frontotemporal regions (57, 58). Next, we asked if aberrations 

in behaviour (greater regularity learning errors) and neurophysiology (attenuated PE) are also 

aligned on the psychosis continuum. Pearson’s and Bayesian correlations were conducted on 

psychotic experiences, regularity learning errors, as well as PEs (at the ERP level) in stable and 

volatile conditions. We found a moderate, significant correlation between psychotic experience 

and errors in regularity learning (p = 0.028, BF+0 = 4.37; see Table S2), meaning that healthy 

individuals with greater psychotic experiences were worse at learning about sensory 

regularities.  

Our final analysis explored if the top-down frontotemporal connection, which was 

weaker in individuals with more psychotic experiences, was the underlying mechanism by 

which regularity learning errors influenced psychotic traits. For this purpose, we employed a 

mediation analysis, which seeks to establish the mechanism that enables a predictor to 

influence an outcome (59). Multiple regressions were conducted to asses each component of 

the mediation analysis (see Figure 3c). The results demonstrated that regularity learning error 

was a significant predictor of top-down frontotemporal connectivity (b = -0.009, p = 0.02), and 

that top-down frontotemporal connectivity was a significant predictor of psychotic experience 

(b = -4.98, p = 0.04), supporting the mediation hypothesis. Regularity learning was no longer 

a significant predictor of psychotic experiences after controlling for the mediator, top-down 

frontotemporal connectivity (b = 0.08, p = 0.17), consistent with a full mediation (see Figure 

3b). The results indicate a significant indirect effect (ab = total effect - direct effect) of 

regularity learning on psychotic experience through top-down frontotemporal connectivity (ab 
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= 0.05, Bias Corrected and Accelerated Bootstrap (BCA) CI [0.004, 0.14], PM = 0.38 - percent 

mediation: percent of the total effect accounted for by the indirect effect). Critically, these 

findings identify top-down frontotemporal connectivity as a potential mechanism by which 

poorer regularity learning influences increased severity of psychotic experiences in healthy 

people. 

 

 

 
Fig. 3. Top-down frontotemporal connectivity mediates the relationship between 
regularity learning errors and severity of psychotic experiences in healthy people. A) 36 
competing connectivity models tested the modulation of connections for stable > volatile PEs. 
The winning model architecture had connections between all six regions bilaterally (model 7), 
and included volatility-dependent (stable > volatile) modulations in forward, backward and 
intrinsic connections, B) The mediation analysis revealed a significant full mediation, with an 
indirect effect of regularity learning on psychotic experience through top-down frontotemporal 
connectivity, C) Regression plots, demonstrating that regularity learning errors predict top-
down frontotemporal connectivity (green) and psychotic experiences (orange), and that top-
down frontotemporal connectivity predicts psychotic experiences (purple). 
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In the current study, we explored the brain dynamics underpinning regularity learning 

under uncertainty, and the relationship between disruptions to predictive processes and 

psychotic experiences in healthy individuals. We found that individuals learn better and their 

brain PE responses are greater during stable than volatile conditions. At the neural level, there 

is a greater engagement of higher hierarchical regions, such as the middle frontal gyrus, as well 

as greater modulation of intrinsic, forward and backward connections. Importantly, our data 

show that aberrations in the brain’s predictive model are aligned on a continuum of psychosis, 

in the sense that healthy people with more psychotic traits have poorer regularity learning 

abilities, mediated by weaker top-down frontotemporal connectivity. Our findings have 

implications for understanding the neurobiological underpinnings of impaired prediction 

formation, with the potential to inform the application of neuromodulation therapies for 

psychosis targeting the frontotemporal network. 

 

Methods 

Participants 

Thirty-one, healthy adults were recruited through the Psychology Research 

Participation Scheme (SONA) and online newsletter to staff and students across the University 

of Queensland. Prior screening confirmed that all participants did not have a history of 

psychiatric or neurological disorders, and were not currently taking medication or using any 

illicit drugs. The highest level of education, smoking habits and alcohol consumption were 

recorded. Participants also completed the 92 Item - Prodromal questionnaire (PQ), which 

measures positive and negative symptoms and is typically used to assess psychotic experiences 

in healthy individuals (60). The PQ scores were weighted by the frequency of the psychotic 

experience (i.e. “Daily” scored 4; “A few times per week” scored 3; “Once a week” scored 2; 

“1-2 times” scored 1; “Never” scored 0), in all the analyses we used the log transformed, 
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weighted PQ scores. For further information on the demographics of the sample and the 

weighted PQ scores per participant, as well as the positive and negative symptom frequencies, 

please see Table S1, Figure 4 and Figure S1. Participants provided written informed consent 

for taking part in our study after reading and understanding the information sheet, which 

included a full description of the study and procedure. Participants received monetary 

reimbursement for their time. This research was approved by the University of Queensland 

Human Research Ethics. 
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Fig. 4. Prodromal questionnaire (PQ) scores. A) Frequency of a subset of positive psychotic 
experiences (purple to orange) and negative psychotic experiences (blue to green) in the 
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sample, for the full list of positive and negative psychotic experiences please see Figure S1, B) 
Frequency of psychotic experiences for each participant, displaying positive psychotic 
experiences (purple to orange) and negative psychotic experiences (blue to green), C) PQ 
scores weighted by frequency for each participant, displaying total PQ weighted scores (grey), 
negative weighted scores (green) and positive weighted scores (orange), D) Log transformed 
PQ weighted scores for each participant. 
 

Materials and Procedure 

Volatility task. An auditory ‘duration’ oddball paradigm was modified so that the 

probability of different sounds varying in duration was either stable or volatile (adapted from 

Weber and colleagues (61)). In a stable experimental run, a particular sound was always more 

likely than another sound (e.g. short sounds had 80% probability and long sounds had 20% 

probability). In volatile experimental runs, a particular sound, which was more likely in the 

first block, was then less likely in the second block, with eight blocks and eight reversals of 

probability in total. The Volatility task is represented in Figure 5. 

 

 
Fig. 5. Volatility task. A schematic diagram showing an example of a stable and volatile run. 
In the stable run the short sound (50 ms) was more probable (80%) throughout, whereas in the 
volatile run the long sound (100 ms) was more probable in the first block, then the short sound 
was more probable in the second block, with eight blocks and eight reversals of probability in 
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total. Participants were asked to listen to the sounds and estimate the probability (top Q1) of 
the most frequent sound and rate their confidence on this judgment, every 2:08 min. 
 

Auditory stimuli and experimental design. The Volatility paradigm consisted of 2000 

pure tones played over eight experimental blocks (2:08 min each). The tones varied in duration 

such that short tones lasted 50 ms and long tones lasted 100 ms. All tones had an identical 

frequency of 500 Hz and a smooth rise and fall periods of 5ms. The tones were presented in a 

pseudorandom order, with each presentation of 5 tones including a deviant tone in a randomly 

assigned position; the deviant tones were always separated by at least one standard tone. The 

tones were delivered binaurally via insert earphones for ~2 min every 500 ms. Sound intensity 

was kept constant between participants at a comfortable level. The order of stable and volatile 

blocks was counterbalanced across participants. 

Procedure. During the Volatility task participants were seated on a comfortable chair 

in front of a desk and computer screen, in a dimly lit Faraday cage testing room. Prior to the 

experiment, the participants were familiarised with the different sound types and trained with 

two short practice runs of the task. Participants were asked not to move while the sounds were 

played and to look at a fixation cross at the center of the screen. The participants were instructed 

to pay attention to the sounds in order to judge the proportion of different sound types and rate 

their confidence on this judgment. Participants were required to make these estimates every 

2:08 min using a computer keyboard and a mouse. The total duration of the Volatility task was 

approximately 20 minutes (including short breaks).  

 

EEG recording and preprocessing 

A Biosemi Active Two system recorded continuous electroencephalography (EEG) 

data from 64 scalp electrodes at a sampling rate of 1024Hz. Electrodes were arranged according 

to the international 10-10 system for electrode placement (Oostenveld, R. & Praamstra, P, 

2001). Pre-processing and data analysis were performed with SPM12 
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(http://www.fil.ion.ucl.ac.uk/spm/). Data were referenced to standard BioSemi reference 

electrodes, down-sampled to 200Hz and high-pass filtered at 0.5 Hz using the Butterworth 

filter. Eye blinks were detected and marked using the VEOG channel at an eyeblink threshold 

of 4, the Berg method was used to correct for eye blinks. The data were epoched offline with a 

peri-stimulus window of -100 to 400ms. Further artefact rejection was performed by 

thresholding all channels at 100uV, robustly averaging across trials (62), applying a low-pass 

Butterworth filter of 40 Hz, and baseline correcting between -100 to 0 ms. We analysed event-

related potentials from the onset of standard and oddball tones, separately for stable and volatile 

conditions. 

 

Data Analysis  

In the current study the analyses conducted followed both a frequentist approach and a 

Bayesian approach. As well as applying the Bayesian approach for model comparison and 

model averaging to investigate brain connectivity (explained in more detail in the Dynamic 

Causal Modelling section), we also calculated Bayes factors for the correlation analyses. Bayes 

factors were used to explore the robustness and the strength of evidence for the associations, 

and as they are resistant to multiple comparisons (63). Briefly, Bayes factors are based on 

Bayes’ rule, displayed in the equation below. The observed data (the posterior; 

p(H1|data)/p(H0|data)), equals the prior odds- the odds of the null and alternative hypotheses 

(p(H1)/p(H0)) before the data is observed, multiplied by the Bayes factor 

(p(data|H1)/p(data|H0)) or the change (update) from prior to the posterior (64). 

 

    The Posterior     The Prior    Bayes factor BF10 
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The subscript ‘10’ in BF10 indicates that in the equation H1 (the alternative hypothesis) 

is in the numerator and H0 (the null hypothesis) is in the denominator, and subscript ‘01’ 

indicates the reverse. In the current study, Bayesian factors were computed using BF10, which 

indicates testing the alternative hypothesis over null hypothesis. The Bayesian analyses were 

conducted using the JASP package (https://jasp-stats.org/). The frequentist analyses were 

conducted using the SPSS package (IBM Corp, 2012), multiple correlations were corrected 

using the Šidák method (65). 

 

Single-channel and behavioral analyses 

Single-channel analysis. We conducted a full factorial 2x2 within subjects ANOVA 

design on mean ERP values with Environment (Stable and Volatile) and PE (Standard and 

Deviant) as factors. Mean ERP values were obtained by averaging across the preselected time 

window of interest, which is typical for PE latency: 150 – 250 ms, over a frontocentral channel 

(Fz), in which PE responses are typically seen in oddball paradigms (66). We contrasted evoked 

responses to deviant and standard sounds, under stable and volatile conditions. Significant 

interactions were further analyzed using paired-samples t-tests. 

Behavioural analysis. We conducted paired t-tests on mean percentage errors in 

probability estimation (a proxy for regularity learning) and mean confidence in probability 

estimation, in stable vs. volatile conditions. This was done in order to assess the effect of 

environment (Stable vs. Volatile) on regularity learning and confidence in estimating 

probabilities. Next, we computed Pearson’s and Bayesian correlations to assess the association 

between psychotic experience, regularity learning errors, and PEs in stable and volatile 

conditions (see Table S2).  
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Spatiotemporal maps and Source Reconstruction 

Three-dimensional spatiotemporal images were generated from averaged ERP data for 

each participant and condition. A two-dimensional matrix, corresponding to the scalp electrode 

space was produced, for each time bin from 0 to 400ms in steps of 5ms. The images were 

assembled according to their peristimulus temporal order, which resulted in a three-

dimensional spatiotemporal image (32 × 32 × 81) per participant. These images were then 

smoothed at full width half maximum of 12 mm × 12 mm × 20 ms. In addition, we performed 

source reconstruction of the spatiotemporal image volumes in order to make inferences about 

the cortical regions that generated the scalp data. We co-registered the sensor data with a single 

sphere head model in order to obtain the source estimates on the individuals’ cortical mesh. 

Next, we conducted forward computations of the effect each dipole on the cortical mesh has 

on the sensors. Finally, we inverted the forward computations with the multiple sparse priors 

algorithm under group constraints (67, 68), these inverse reconstructions were summarized as 

images (smoothed at 8mm3) for each of the four conditions in every participant. 

For both spatiotemporal and source level, data were analysed using a mass-univariate 

general linear model method. We conducted a full factorial analysis, with factors: Environment 

(Stable and Volatile) and PE (Standards and Deviants). We computed contrast images for main 

effects, interactions and t-tests, in order to gauge the differential effect between deviants and 

standards during stable and volatile conditions. In addition, we conducted multiple regression 

analyses with regularity learning error as the predictor and activity at the scalp and source level 

as the outcome. This was done to relate regularity learning ability to PE response at the neural 

level. Age was added into all models as a covariate, since attenuation in PE response occurs 

with age (69). The order of volatile and stable conditions was also included as a covariate as it 

has been shown to influence PE responses (33, 34). Finally, psychotic experience was added 

as a covariate in order to exclude any potential differences in volatile and stable conditions due 
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to psychotic symptoms. All statistical maps are reported at a threshold of p < 0.05 family-wise 

error (FWE) corrected for multiple comparisons for the spatiotemporal peak/volume or source 

region. 

 

Dynamic Causal Modelling 

Dynamic causal modelling (DCM) was employed, which similarly to source 

reconstruction also uses a spatial forward model. However, in addition to this, DCM 

incorporates a biologically informed temporal forward model, which places empirically-

derived constraints on the inversion and allows inferences about the source connectivity (70).  

In the model specification, we defined the brain architecture based on previous robust 

findings (50, 51), demonstrating that a three-level hierarchical brain model underlies the 

generation of PE responses evoked in auditory oddball paradigms. This model included: 

bilateral primary auditory cortices (A1; MNI coordinates: left [-42, -22, 7] and right [46, -14, 

8]; chosen as the cortical input sources), bilateral superior temporal gyri (STG; left [-61, -32, 

8] and right [59, -25, 8], and bilateral inferior frontal gyri (IFG; left [-46, 20, 8] and right [46, 

20, 8]). We considered nine competing model architectures that differed in source regions and 

the pattern of intrinsic, backward, and forward connections (See Figure S3). In order to model 

the effect of environment on effective connectivity, we examined the differences in PE 

response for stable versus volatile conditions. For this, the ERPs for each condition (Stable 

Standard, Stable Deviant, Volatile Standard, Volatile Deviant) were merged into either Stable 

PE (Stable Deviant – Stable Standard) or Volatile PE (Volatile Deviant – Volatile Standard). 

The full details of the model specification have been described by Garrido, Friston, Kiebel, 

Stephan, Baldeweg and Kilner (55). Briefly, we modelled each source region with a single 

equivalent current dipole; an input time delay with a prior mean of 60 ms; drift was modelled 
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with a direct cosine transform of 1, and eight modes were selected for the 0 to 400 ms peri-

stimulus time window, over stable PE and volatile PE trials. 

The explanatory models were grouped by families based on the modulations placed on 

intrinsic and extrinsic connectivity, i.e. (I) Forward and Intrinsic family; (II) Forward and 

Backward family; (III) Forward, Backward and Intrinsic family; and (IV) Null family (no 

modulation in connectivity). We conducted Bayesian model selection, with a random-effects 

approach at both the model and family levels (71). We computed both expected and exceedance 

probabilities for the different families of models. The exceedance probability for a model 

indicates how well this model explains the data in comparison to the other models. We also 

conducted Bayesian model averaging in order to determine the strength of the effective 

connectivity at each connection, weighted by the likelihood of all models, and across all 

participants.  

We conducted Pearson’s and Bayesian correlations to assess the association between 

psychotic traits and the effective connectivity estimates. Only the top-down, right 

frontotemporal (right IFG to right STG) connection demonstrated a strong, significant 

association with psychotic experiences (p = 0.005, BF-0 = 18.28; see Table S3). The association 

was followed up with a mediation analysis using Preacher and Hayes (72) bootstrap method 

(PROCESS in SPSS) to directly investigate whether top-down connectivity was a mechanism 

by which regularity learning influenced the severity of psychotic experiences (59).  
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