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Abstract 

Our perceptions result from the brain’s ability to make inferences, or predictive models, of 

sensory information. Recently, it has been proposed that psychotic traits may be linked to 

impaired predictive processes. Here, we examine the brain dynamics underlying sensory 

learning and inference in stable and volatile environments, in a population of healthy 

individuals (N=75) with a range of psychotic-like experiences. We measured prediction error 

responses to sound sequences with electroencephalography, gauged sensory inference 

explicitly by behaviourally recording sensory ‘regularity’ learning errors, and used dynamic 

causal modelling to tap into the underlying neural circuitry. We discuss the findings that were 

robust to replication across the two experiments (N=31 and N=44 for the discovery and the 

validation datasets, respectively). First, we found that during stable conditions, participants 

demonstrated a stronger predictive model, reflected in a larger prediction error response to 

unexpected sounds, and decreased regularity learning errors. Moreover, individuals with 

attenuated prediction errors in stable conditions were found to make greater incorrect 

predictions about sensory information. Critically, we show that greater errors in sensory 

learning and inference are related to increased psychotic-like experiences. These findings link 

neurophysiology to behaviour during sensory learning and prediction formation, as well as 

providing further evidence for the idea of a continuum of psychosis in the healthy, non-clinical 

population. 

 
Keywords: prediction error; volatility; psychosis continuum; sensory learning; inference 
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Significance Statement 
 
Whilst perceiving the world, we make inferences by learning the regularities present in the 

sensory environment. It has been argued that psychosis may emerge due to a failure to learn 

sensory regularities, resulting in an impaired representation of the world. Recently it has been 

proposed that psychosis exists on a continuum; however, there is conflicting evidence on 

whether sensory learning deficits align on the non-clinical end of the psychosis continuum. We 

found that sensory learning is associated with brain prediction errors, and critically, it is 

impaired in healthy people who report more psychotic-like experiences. We replicated these 

findings in an independent sample, demonstrating strengthened credibility to support that the 

continuum of psychosis extends into the non-clinical population.
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Introduction 

In a stable environment, sensory perception is facilitated by prior beliefs about what is 

likely to happen next 1, 2. By estimating the probability of events given the past history (i.e. 

inference based on a learnt regularity), we can form a predictive model about what is likely to 

happen next3. When circumstances are ‘volatile’, such that previously learnt regularities change 

erratically, it is advantageous to form more flexible predictive models 4, 5. Indeed, previous 

literature has shown that healthy individuals are able to estimate environmental volatility 5, 

adopting a greater learning rate in the face of ever changing, volatile circumstances 6. This 

motivates exploratory behaviour and continuous updating, as well as suppressing of top-down 

prior beliefs 7. However, the underlying brain dynamics involved during sensory learning in 

volatile environments, and that support volatility attuning, are currently not known. 

The state of constant learning is inefficient as a long-term strategy in environments that 

are stable 8, 9. Stable environments allow for the development of a robust predictive model, 

which simultaneously enables an efficient encoding of sensory stimuli while minimizing the 

demand on cognitive resources10. In these environments, healthy individuals form strong 

predictions about forthcoming sensory stimuli, and their brains consequently produce large 

prediction error (PE) responses to events that violate such predictions11-13. The PE response is 

commonly gauged using electroencephalography (EEG) and an auditory oddball paradigm 14, 

in which surprising sounds are embedded in a sequence of predictable sounds. PE responses 

are thought to signify implicit regularity learning ability: an individual’s accuracy in their 

inherent learning of the statistics of sensory events 15, 16. However, it has not as yet been 

addressed if PE responses scale with the accuracy in sensory learning and inference. 

Emerging theoretical accounts of psychosis postulate that psychotic experiences arise 

due to an impairment in the brain’s predictive ability to infer internal and external sensations 

17-19. Converging lines of evidence support the theory that psychosis arises due to an impaired 
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predictive model of sensory events 20, 21. The most robust and replicable empirical evidence for 

this arises from attenuated PE responses in psychosis 15, 17, 22, 23. Alterations in the 

neurophysiology of PEs have been shown to increase as psychotic traits increase, suggesting 

that the degree of PE aberrancy aligns on a continuum of psychosis 24, 25. However, the 

underlying brain networks, presumably also altered along the continuum, remain unknown.  

The psychosis continuum comprises the full spectrum of psychotic experiences, from healthy 

individuals who experience a range of psychotic-like experiences, to prodromal individuals 

with subclinical symptoms, and to those with florid psychosis at the very end of the spectrum 

26, 27. In this study, we zoom in to the non-clinical population, as there is conflicting evidence 

whether PEs are also reduced on the healthy end of the continuum 28, 29. One of the benefits of 

investigating psychotic-like experiences 30, 31 in the non-clinical end of the spectrum is the 

possibility to eschew the confounds of medication and illness severity.  

The aims of this study were three-fold. Firstly, we wanted to elucidate the neural 

underpinnings of sensory learning in different volatility contexts. For this purpose, we 

developed a novel auditory oddball task with either fixed sound probabilities (stable 

conditions) or varying sound probabilities (volatile conditions; see Figure 2). The second aim 

was to examine the relationship between regularity learning behaviour, sensory PEs and the 

brain’s ability to attune to volatility. The third aim was to investigate whether aberrations in 

sensory learning and the underlying effective connectivity are aligned on the non-clinical 

continuum of psychosis. In our discovery study we found significant findings supportive of all 

our hypotheses described above. However, in response to the current replication crisis in the 

field, we sought to corroborate these findings in an independent sample. In so doing, we hoped 

to assess the robustness of our initial findings, using the same methodology in an unbiased 

manner. To this end, we report our findings side-by-side, for the discovery and the validation 

samples, and discuss the implications of findings that were replicated. 
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Methods and Materials 

Participants 

The total sample from both the discovery study and the replication included seventy-

five healthy adults. The discovery study included thirty-one participants (age range: 19 to 38 

years; mean age: 24.65 years, SD = 4.85; 14 males and 17 females) and the replication study 

included forty-four participants (age range: 18 to 39 years; mean age: 24.27 years, SD = 5.13; 

22 males and 22 females). All participants were recruited through the Psychology Research 

Participation Scheme (SONA), an online newsletter to staff and students across the University 

of Queensland and Gumtree. Prior screening confirmed that all participants did not have a 

history of psychiatric or neurological disorders, and were not currently taking medication or 

using any illicit drugs. The highest level of education, smoking habits and alcohol consumption 

were recorded. Participants also completed the 92 Item - Prodromal questionnaire (PQ), which 

measures positive and negative symptoms and is typically used to assess psychotic experiences 

in healthy individuals 32. For further information on the demographics of the sample and the 

PQ scores per participant, as well as the positive and negative symptom frequencies, please see 

Figure 1, and in the supplementary materials Table S1. Participants provided written informed 

consent for taking part in our study after reading and understanding the information sheet, 

which included a full description of the study and procedure. Participants received monetary 

reimbursement for their time. Participant recruitment and data collection for the discovery and 

validation samples were conducted by independent researchers in the same lab using the same 

methodology.  This research was approved by the University of Queensland Human Research 

Ethics. 
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Fig. 1. Prodromal questionnaire (PQ) scores for discovery and validation samples. A) 
Frequency of a subset of positive psychotic experiences (purple to orange) and negative 
psychotic experiences (blue to green), B) Frequency of psychotic experiences, displaying 
positive psychotic experiences (purple to orange) and negative psychotic experiences (blue to 
green), C) PQ scores weighted by frequency, displaying total PQ weighted scores (grey), 
negative weighted scores (green) and positive weighted scores (orange), D) Log transformed 
PQ weighted scores. 
 

Materials and Procedure 

Reversal oddball task. An auditory ‘duration’ oddball paradigm was modified so that 

the probability of different sounds varying in duration was either stable or volatile (adapted 
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from Weber and colleagues33). In a stable experimental run, a particular sound was always 

more likely than another sound (e.g. short sounds had 80% probability and long sounds had 

20% probability). In volatile experimental runs, a particular sound, which was more likely in 

the first block, was then less likely in the second block, with four blocks and three reversals of 

probability in total (the stable experimental runs only included one block). The Reversal 

oddball task is represented in Figure 2. 

 

Fig. 2. Reversal oddball task. A schematic diagram showing an example of a stable and 
volatile run. In the stable run depicted here, the short sound (50 ms) was more probable (80%) 
throughout, whereas in the volatile run the long sound (100 ms) was more probable in the first 
block, then the short sound was more probable in the second block, with eight blocks and seven 
reversals of probability in total. Participants were asked to listen to the sounds and estimate the 
probability (top Q) of the most frequent sound and rate their confidence on this judgment, every 
2:08 min. 
 

Auditory stimuli and experimental design. The Reversal oddball paradigm consisted of 2000 

pure tones played over eight experimental runs (2:08 min each; four stable and four volatile 
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runs). The tones varied in duration such that short tones lasted 50 ms and long tones lasted 100 

ms. All tones had an identical frequency of 500 Hz and a smooth rise and fall periods of 5ms. 

The tones were presented in a pseudorandom order, with each presentation of 5 tones including 

a deviant tone in a randomly assigned position; the deviant tones were always separated by at 

least one standard tone. The tones were delivered binaurally via insert earphones for ~2 min 

every 500 ms. Sound intensity was kept constant between participants at a comfortable level. 

The order of stable and volatile runs was counterbalanced across participants. 

 

Procedure. During the Reversal oddball task participants were seated on a comfortable chair 

in front of a desk and computer screen, in a dimly lit Faraday cage testing room. Prior to the 

experiment, the participants were familiarized with the different sound types and trained with 

two short practice runs of the task. Participants were asked not to move while the sounds were 

played and to look at a fixation cross at the centre of the screen. The participants were instructed 

to pay attention to the sounds in order to judge the proportion of different sound types and rate 

their confidence on this judgment. Participants were required to make these estimates every 

2:08 min using a computer keyboard and a mouse. The total duration of the Reversal oddball 

task was approximately 20 minutes (including short breaks). 

 

EEG Recording and Pre-processing 

A Biosemi Active Two system recorded continuous electroencephalography (EEG) 

data from 64 scalp electrodes at a sampling rate of 1024Hz. Electrodes were arranged according 

to the international 10-20 system for electrode placement (Oostenveld, R. & Praamstra, P, 

2001). Standard pre-processing and data analysis were performed with SPM12 

(http://www.fil.ion.ucl.ac.uk/spm/). Full details regarding the pre-processing steps can be 

found in the supplementary materials.  
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Data Analysis  

In the current study we employed both frequentist and Bayesian approaches to our 

analyses. A brief explanation of the Bayesian approach can be found in the supplementary 

materials. The Bayesian analyses were conducted using the JASP package (https://jasp-

stats.org/). The frequentist analyses were conducted using the SPSS package (IBM Corp, 

2012); multiple correlations were corrected using the Šidák method 34. In the validation study 

we excluded 2 participants in the neuroimaging analyses due to EEG trigger failure and high 

impendence ( > ±50 Ω). Further, 1 participant was removed from the ERP analyses, and 1 

participant from the PQ analyses, as they were an outlier (z-score > ±3). 

We conducted single-channel event-related potential (ERP), whole-channel 

spatiotemporal, source level, and effective connectivity analyses in order to assess the effect of 

environment (Stable vs. Volatile) on neuronal activity. In addition, we  conducted behavioural 

analyses to investigate regularity learning in the different volatility contexts, and its 

associations with psychotic-like experiences and neural dynamics.  Full details regarding the 

single-channel and behavioural analyses, as well as the spatiotemporal, source reconstruction, 

and dynamic causal modelling analysis can be found in the supplementary materials. Finally, 

we conducted Pearson’s and Bayesian correlations to assess the association between psychotic-

like experiences and the effective connectivity estimates. In the discovery study, the top-down, 

right frontotemporal (right IFG to right STG) connection demonstrated a strong, significant 

association with psychotic experiences (p = 0.005, BF-0 = 18.28; see Table S3). The association 

was followed up with a mediation analysis using Preacher and Hayes 35 bootstrap method 

(PROCESS in SPSS) to directly investigate whether top-down connectivity was a mechanism 

by which regularity learning influenced the severity of psychotic-like experiences 36. 
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Results  

Our first aim was to compare the strength of the predictive models established in stable 

and volatile contexts in a regularity learning task. For this purpose we examined the event-

related potential (ERP) recorded at frontocentral channel (Fz). In line with the vast oddball 

literature we consistently found that responses to deviant sounds were larger than responses 

elicited by standard sounds, regardless of volatility for both the Discovery (F(1,30) = 45.33, p 

< 0.001, h2 = 0.60) and the Validation datasets (F(1,40) = 88.14, p < 0.001, h2 = 0.69). 

Moreover, we found a significant interaction between PE response and volatility in the 

Discovery dataset (F(1,30) = 11.06, p = 0.002, h2 = 0.27), which was replicated in the 

Validation dataset (F(1,40) = 12.26, p = 0.001, h2 = 0.24). Critically, a follow-up analysis 

revealed that PEs were larger under the stable compared to the volatile conditions again for 

both the Discovery (t(30)=−3.33, p = 0.002, d = -0.60) and the Validation sets (t(40)=−3.74, p 

= 0.001, d = -0.61; see Figure 3a and 3b).  

We next examined differences in mean percentage errors in probability estimation 

(regularity learning error) and mean confidence ratings during stable and volatile conditions. 

The data showed that participants had fewer errors in regularity learning during stable 

conditions (Discovery: M = 9.30%, SE = 0.87; Validation: M = 8.62%, SE = 0.87), compared 

to volatile conditions (Discovery: M = 12.38%, SE = 1.07; Validation: M = 13.54%, SE = 0.97), 

Discovery: t(30) = -2.40, p = 0.023, d = -0.43; Validation: t(43) = -4.21, p < 0.0001, d = -0.81. 

In addition, participants had greater confidence in their probability estimates during stable 

conditions (Discovery: M = 2.57, SE = 0.07; Validation: M = 2.53, SE = 0.06), compared to 

volatile conditions (Discovery: M = 2.19, SE = 0.05; Validation: M = 2.08, SE = 0.07), 

Discovery: t(30) = 4.78, p < 0.001, d = 0.86; Validation: t(43) = 6.98, p < 0.0001, d = 1.00 (see 

Figure 3c).  
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We then asked whether regularity learning errors were related to the degree of PE 

response. Pearson’s correlations and Bayesian analysis revealed a significant correlation 

between regularity learning errors and PEs (at the ERP level) in stable conditions (Discovery: 

p = 0.003 (padjusted < 0.01), BF+0 = 33.99; Validation: p = 0.036, BF+0 = 3.14; see Figure 3d, 

Table S2), which had very strong evidence in the discovery dataset and moderate evidence in 

the validation dataset.  

 

Fig. 3. Prediction errors relate to regularity learning ability indicating a stronger 
prediction model in stable conditions. A) Significant interaction between volatility (stable – 
blue,  versus volatile – orange) and brain PE responses, B) Significant main effect of PE, 
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showing brain responses evoked by standards (green and red) and deviants (purple and yellow) 
in the context of stable and volatile conditions, C) Fewer regularity learning errors and greater 
confidence in stable (blue) than volatile (orange) conditions, D) Significant correlation between 
regularity learning errors and PEs in stable conditions. SS = Stable standard; SD = Stable 
deviant; VS = Volatile standard; VD = Volatile deviant. * p < 0.05; ** p < 0.001, *** p < 
0.0001. All of these findings were replicated across the discovery and the validation datasets. 
 

To further investigate the sensory PEs evoked by regularity violations with fewer 

spatial and temporal constraints, we ran a general linear model for the whole spatiotemporal 

volume of brain activity. Firstly, we supported previous auditory oddball findings by showing 

a significant main effect of PE response (standard sounds vs deviant sounds) peaking at 290 

ms (peak-level F = 240.99, pFWE < 0.001) and 205 ms (peak-level F = 170.92, pFWE < 0.001) 

in central and occipitoparietal channels, and 25 ms (right frontal channels; peak-level F = 

25.26, pFWE = 0.004) in frontal channels. We also replicated our own findings by showing main 

effects of PE response in the validation dataset that peaked at similar time points: 300 ms (peak-

level F = 176.59, pFWE < 0.001), 210 ms (peak-level F = 77.44, pFWE < 0.001) and 185 ms 

(peak-level F = 68.76, pFWE < 0.001) in central and occipitoparietal channels (note: 25 ms was 

not replicated). We originally found a significant interaction between PE response and 

volatility, at 165 ms over occipitocentral channels (peak-level z = 4.27, pFWE = 0.015, see Figure 

4a); however, this did not replicate in the validation set.  

Next, we asked whether regularity learning errors were related to the neuronal 

correlates of volatility attuning. To address this question, we conducted a spatiotemporal 

multiple regression analysis of the interaction between PEs and volatility (Stable PEs > Volatile 

PEs) with regularity learning error as the predictor variable. Our data in the discovery study 

showed that a decrease in regularity learning errors significantly predicted an increase in brain 

activity at 165 ms (peak-level z = 3.64, cluster-level pFWE = 0.034, see Figure 4b). However, 

this result did not replicate, even after conducting a spatiotemporal volume of interest analysis 

(based on the result from the discovery study) for the multiple regression. 
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In the discovery study, source-level analysis revealed that stable PEs engaged the 

middle frontal gyrus (peak-level z = 4.23, pFWE = 0.02), primary motor area (peak-level z = 

4.45, pFWE = 0.009), and inferior parietal lobule (peak-level z = 4.56, pFWE = 0.006). In 

comparison, volatile PEs engaged precuneus (peak-level z = 5.05, pFWE = 0.001) and middle 

occipital gyrus (peak-level z = 4.39, pFWE = 0.011). However, we were not able to replicate 

these findings in the independent validation sample. None of the voxels survived FWE 

correction, nor did the uncorrected clusters correspond with the discovery study (see Figure 

4c). 
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Fig. 4. Brain responses underlying main effect of prediction error. A) Spatiotemporal 
univariate analysis revealed a significant main effect of PE (left column; this was replicated); 
and PE x volatility interaction (right column; this was not replicated); B) Spatiotemporal 
multiple regression analysis revealed a negative relationship between regularity learning errors 
and activity during the interaction (Stable PE > Volatile PE); however, this result was not 
replicated at FWE corrected significance, even after a region of interest analysis; C) Source 
reconstruction analysis revealed significant clusters for stable PEs versus volatile PEs; 
however, these results were not replicated. IPL = inferior parietal lobule; MFG = middle frontal 
gyrus; SPL = superior parietal lobule; MOG = middle occipital gyrus. Except where otherwise 
specified, all maps are displayed at p < 0.05, FWE whole-volume corrected.  
 

The network architecture underlying PE response has been extensively studied 

previously 37, 38. Here, we were interested in, 1) the effect of contextual volatility on neuronal 

PE responses, and 2) the effective connectivity underpinning psychotic traits and sensory 

learning.  

Bayesian model comparison was performed on thirty-six different dynamic causal 

models (see Figure S3), which were based on the functional brain architecture previously 

shown to underlie PE responses 37, 38. Here, PEs in stable blocks were compared to volatile 

blocks. Results from Bayesian model selection using random effects family-level analysis (in 

both the discovery and validation datasets) indicated that the best model included connections 

amongst six a priori defined regions, with inputs to left and right primary auditory cortex (A1), 

intrinsic connections within the A1, bilateral connections between A1 and superior temporal 

gyri (STG) and between STG and inferior frontal gyri (IFG), as well as lateral connections 

between left and right A1, and left and right STG (model 7; see Figure 5a). The optimal model, 

which had greater modulation in backward, forward and intrinsic connections, was replicated 

across both the discovery and the validation datasets (see Figure 5a). 

In order to test the evidence for a continuum of psychosis, we examined the altered 

neural dynamics, behaviour and neurophysiology related to psychotic traits in the general non-

clinical population. First, we examined brain connectivity estimates by applying Bayesian 

model averaging across all models (weighted by their probability) and participants. In the 
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discovery dataset, we found a strong, significant negative correlation between psychotic 

experiences and top-down connectivity from the right IFG to STG (frontotemporal) (p = 0.005 

(padjusted < 0.05), BF-0 = 18.28; see Table S3). However, this was not replicated. Next, we asked 

if aberrations in behaviour (greater regularity learning errors) and neurophysiology (attenuated 

PE) were also aligned on the psychosis continuum. Pearson’s and Bayesian correlations were 

conducted on psychotic experiences, regularity learning errors, as well as PEs (at the ERP 

level) in stable and volatile conditions. We found a significant correlation between psychotic 

experience and errors in regularity learning that was replicated across both datasets (Discovery: 

p = 0.028, BF+0 = 4.37; Validation: p = 0.035, BF+0 = 2.55; see Table S2). This showed that 

healthy individuals with greater psychotic experiences were worse at learning about sensory 

regularities. The fact this was replicated provides strong support for behavioural alterations in 

sensory inference aligning on the non-clinical end of the psychosis continuum.  

Our final analysis explored if the top-down frontotemporal connection, which was 

weaker in individuals with more psychotic experiences in the discovery study, mediated the 

relationship between regularity learning errors and psychotic traits. For this purpose, we 

employed a mediation analysis 36. Multiple regressions were conducted to asses each 

component of the mediation analysis (see Figure 5c). In the discovery dataset, we found that 

regularity learning error was a significant predictor of top-down frontotemporal connectivity 

(b = -0.009, p = 0.02), and that top-down frontotemporal connectivity was a significant 

predictor of psychotic experience (b = -4.98, p = 0.04). We found a significant indirect effect 

(ab = total effect - direct effect) of regularity learning on psychotic experience through top-

down frontotemporal connectivity (ab = 0.05, Bias Corrected and Accelerated Bootstrap 

(BCA) CI [0.004, 0.14], PM = 0.38 - percent mediation: percent of the total effect accounted 

for by the indirect effect). Regularity learning was no longer a significant predictor of psychotic 

experiences after controlling for the mediator: top-down frontotemporal connectivity (b = 0.08, 
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p = 0.17), consistent with a full mediation (see Figure 5b). However, the mediation hypothesis 

was only supported (and conducted) in the discovery dataset as we failed to replicate the 

previously observed significant relationships between top-down connectivity and regularity 

learning errors as well as between top-down connectivity and psychotic experiences.  

 

 

Fig. 5. Regularity learning errors predict severity of psychotic-like experiences in the non-
clinical population. A) The winning model architecture, replicated across both datasets, had 
connections between all six regions bilaterally (model 7), included volatility-dependent 
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modulations in forward, backward and intrinsic connections; B) Regression plots for regularity 
learning errors and top-down frontotemporal connectivity (in green; not replicated); regularity 
learning errors and psychotic-like experiences (in orange; replicated); and top-down 
frontotemporal connectivity and psychotic experiences (in purple; not replicated); C) The 
mediation analysis revealed a significant full mediation in the discovery sample, with an 
indirect effect of regularity learning on psychotic experience through top-down frontotemporal 
connectivity; however, this finding was not replicated in the validation sample. 
 

Discussion 

The aims of the current study were to investigate and replicate the neural mechanisms 

that underpin sensory learning and volatility attuning in healthy individuals with a range of 

psychotic-like experiences. We measured individuals’ regularity learning abilities (by asking 

them to estimate the probabilities of sounds) in stable and volatile conditions while recording 

their brain activity using EEG. We pursued these goals in two independent datasets and in turn 

discuss the findings that did replicate across both. During stable conditions, compared to 

volatile, regularity learning improved, prediction errors increased, and there was greater 

modulation of intrinsic, forward and backward connections. For the first time, we showed that 

regularity learning (behaviourally assessed) relates to prediction errors. Moreover, we were 

able to replicate the finding that a greater degree of psychotic-like experiences in healthy 

individuals is associated with impaired sensory regularity learning ability, providing strong 

evidence for the existence of a continuum of psychosis in the non-clinical population. 

PE responses, regularity learning and confidence were enhanced in stable, more 

predictable environments, than in more volatile, less predictable, environments. Increased PEs 

in stable (compared to volatile) conditions have been identified in previous studies 39, 40. PEs 

signal a violation between what the brain predicts will happen and what is actually experienced. 

As such, PEs are fundamental teaching signals that drive updating of the brain’s predictive 

model of the sensed world 41, 42. Thus, greater PE responses to regularity violations indicate a 

stronger (i.e., more precise) prediction model in stable than volatile conditions 42, 43. Indeed, 

PEs in stable conditions were found to be associated with better sensory regularity learning in 
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the current study. Regularity learning is the process by which the brain learns the statistical 

structure in the environment and forms predictive models of what is likely to happen next 44-46. 

Previous studies have demonstrated that individuals are able to implicitly learn the statistical 

structure of sensory events in the environment 3, 15. Crucially, by simultaneously recording PE 

responses and behaviourally measuring regularity learning, we showed, for the first time and 

across both the discovery and the validation samples, that greater sensory PEs are associated 

with improved explicit ability to gauge the sensory regularities within one’s environment. This 

was specifically found for PEs in stable rather than volatile conditions, suggesting that PE’s 

(i.e. MMN) may not relate to the long-term rule updates (i.e. global regularities) that influence 

regularity learning in the volatile conditions. 

At the neural level, we found differences in the pattern of connections underlying PE 

response in stable compared to volatile conditions. Larger PEs in stable compared to volatile 

conditions were produced by enhanced modulations in backward, forward and intrinsic 

connections. Forward and backward connections are thought to convey PEs and predictions 

(i.e., beliefs about sensory input), respectively. Intrinsic connections emulate local adaptation 

of neuronal responses and are thought to reflect the precision (strength) of neuronal 

representations 47. This finding is in keeping with the predictive coding account of the 

mechanisms underlying perception of an auditory oddball sequence 48, and suggest that more 

precise predictive models about sensory input are enabled by greater brain connectivity in 

stable than volatile PEs.  

We did not find consistent associations between alterations in the neurophysiology or 

brain connectivity and psychotic-like experiences in our non-clinical samples. While, in our 

discovery sample we found weaker top-down frontotemporal connectivity in people that 

reported more psychotic-like experiences, we failed to replicate this finding in the validation 

sample. It is possible that these brain alterations are not as robust in the healthy population that 
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experience mild, psychotic-like experiences. Indeed, there is conflicting evidence regarding 

attenuation of PEs (such as MMN and P300) in the non-clinical psychosis continuum. A recent 

study has found reductions in sensory PEs 29; while others have reported a lack of/mixed 

evidence for an association 28, 49, 50. Further research looking at the full continuum including a 

range of psychiatric groups may elucidate whether or not a relationship between psychotic 

experiences and brain alterations does exists; and if so, whether it also extends into the non-

clinical, healthy population.  

Critically, in our study we uncovered the behavioural aberrations underlying predictive 

processing that are aligned on the non-clinical continuum of psychosis. Previous research 

investigating behaviours such as force-matching, associative learning and reversal learning 

have failed to replicate the relationship between altered behaviour and psychotic-like 

experiences in the general population 51. In response to the recent replication crisis in the field, 

we decided to collect two independent samples for discovery and validation of our findings. 

Indeed, we were able to replicate that psychotic-like experiences are associated with impaired 

regularity learning (measured behaviourally). Therefore, we show, with strengthened 

credibility, that there exists a continuum of psychosis, even in the non-clinical end of the 

spectrum, that manifests on a declining ability in regularity learning. 

 

Conclusion 

In the current study, we explored the brain dynamics underpinning regularity learning 

under uncertainty, as well as the relationship between disruptions to predictive processes and 

psychotic-like experiences in healthy individuals. We originally investigated these processes 

in a discovery dataset and then sought to replicate the findings in an independent validation 

dataset. We found that individuals learn better and their brain PE responses are greater during 

stable than volatile conditions. There is greater modulation of intrinsic, forward and backward 
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connections in stable conditions, when a more precise model of the sensed environment is 

represented in the brain. In addition, we were able to show that individuals with stronger stable 

PE responses had improved sensory regularity learning behaviour. Importantly, we were able 

to replicate that aberrations in predictive processes are aligned on a non-clinical continuum of 

psychosis, in the sense that healthy people with more psychotic-like experiences have poorer 

regularity learning ability.  
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