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Abstract 26 

In this study, VISA cells carrying vraS and/or graR mutations were shown to be more 27 

resistant to oxidative stress. Caenorhabditis elegans infected with these strains in turn 28 

demonstrated lower survival. Altered regulation in oxidative stress response and virulence 29 

appears to be physiological adaptations associated with VISA phenotype in the Mu50 30 

lineage. 31 
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Bacterial antibiotic resistance has been reported to occur concurrently with changes in 51 

various cellular responses of the organism. In particular, altered virulence mechanism is 52 

common among antibiotic resistant strains. Acquisition of antibiotic resistance often imposes 53 

a fitness burden on bacterial cells (1); in most cases, increased resistance has been paralleled 54 

with decreased virulence, as reported in methicillin-resistant Staphylococcus aureus (2, 3) 55 

and vancomycin-intermediate S. aureus (VISA) (4, 5). Apart from virulence, the association 56 

between antibiotic resistance and oxidative stress response has also been reported. Different 57 

classes of antibiotics, regardless of their primary targets, have been shown to induce lethality 58 

through generation of reactive oxygen species (ROS) (6, 7). In response, the bacteria will try 59 

to reduce antibiotic killing via reduction of cellular hydroxyl radical accumulation (8-12). 60 

 61 

We previously employed a proteomic approach to determine underlying regulatory 62 

pathway(s) mediating transition of vancomycin-susceptible S. aureus (VSSA, strain Mu50Ω) 63 

to VISA (strain Mu50Ω-vraSm, harbouring a vraS T700A mutation; and strain Mu50Ω-64 

vraSm-graRm, harbouring both vraS T700A/graR A590G mutations compared to strain 65 

Mu50Ω) (13). In the study, unexpected features of up-regulated oxidized protein repair 66 

enzyme (MsrB) and down-regulated virulence-associated proteins (Spa, Rot, MgrA, SarA) in 67 

VISAs were observed. Functional categorization and differential proteomic profiles of total 68 

proteins extracted from the 3 isogenic strains are presented in Figure 1 and Figure 2, 69 

respectively. Consistent up-regulation of MsrB as well as down-regulation of virulence-70 

associated proteins in VISA strains lead us to suspect possible interplay between oxidative 71 

stress response, virulence and antibiotic resistance in VISA strains of the Mu50 lineage.   72 

 73 

Methionine sulfoxide reductases (Msr) are bacterial repair enzymes important for 74 

protection from oxidative killing (14-17). To determine if different MsrB expression levels in 75 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 8, 2018. ; https://doi.org/10.1101/297036doi: bioRxiv preprint 

https://doi.org/10.1101/297036


4 
 

the 3 study strains affect their responses towards oxidative stress, Mu50Ω, Mu50Ω-vraSm 76 

and Mu50Ω-vraSm-graRm were treated with 3 oxidizing agents [cumene hydroperoxide, 77 

tert-butyl hydroperoxide and hydrogen peroxide (H2O2)] at various concentrations prior 78 

determination of viable cell counts. Interestingly, Mu50Ω-vraSm and Mu50Ω-vraSm-graRm 79 

were shown to have greater survival when challenged with cumene hydroperoxide (Figure 3) 80 

and tert-butyl hydroperoxide (Figure 4) compared to Mu50Ω, indicating that VISA strains 81 

(with up-regulated MsrB) exhibited higher resistance towards oxidative damage. 82 

 83 

We postulate that in order to circumvent oxidative damage caused by vancomycin (6), 84 

VISA cells are primed to produce Msr proteins, which are the only known enzymes capable 85 

of reducing oxidized form of methionine, thereby restoring normal function of proteins (18). 86 

This cellular response is proposed to be mediated by VraSR system, since, in our previous 87 

study, up-regulation of MsrB proteins was identified in the VraS and VraS-GraR regulons, 88 

but not the GraR regulon (Figure 2). Accordingly, Pang et al.’s study demonstrated that 89 

complementation of S. aureus vraSR knockout mutant (ΔvraSR) restored its msrA1 90 

expression to a higher level compared with ΔvraSR (19).  91 

 92 

Nevertheless, a different survival trend was observed in H2O2-induced VISA cells. 93 

Although having lower MsrB expression, VSSA Mu50Ω displayed greater survival after 94 

H2O2 induction compared with VISA strains (Figure 5). Increased susceptibility to H2O2 95 

killing was previously reported to be associated with the lack of staphyloxanthin (carotenoid 96 

pigmentation) (20, 21). As suggested by Singh et al., msrB deletion reduced S. aureus 97 

susceptibility to H2O2, and this phenotype is accompanied by increased production of 98 

carotenoids in the mutant cells (22). In concordance, lower expression of MsrB in Mu50Ω 99 
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might have resulted in higher levels of cellular carotenoids and subsequent resistance to 100 

H2O2.      101 

 102 

In addition to increased resistance to oxidative stress, down-regulation of virulence-103 

related proteins is also observed in the Mu50Ω-vraSm and Mu50Ω-vraSm-graRm VISAs 104 

(Figure 2) (13). We subsequently used a Caenorhabditis elegans survival assay to determine 105 

our study strains’ virulence (23). Forty L4 nematodes of pos-1-silenced C. elegans N2 strain 106 

were fed with the study strains of Mu50Ω, Mu50Ω-vraSm and Mu50Ω-vraSm-graRm, 107 

respectively; worm survival (quantity of live and dead worms) for every strain was then 108 

scored every 24 hours for 14 days and plotted on a Kaplan-Meier survival plot (Figure 6). 109 

The experiment showed that VISA strains exhibited higher nematocidal activity via complete 110 

killing of all 40 C. elegans on the 3
rd

 (Mu50Ω-vraSm-graRm) and 8
th

 (Mu50Ω-vraSm) day of 111 

the assay. On the other hand, killing of C. elegans fed with VSSA was gradual and surviving 112 

worms were still observed at the end of the 14-days assay.  113 

 114 

C. elegans exhibits specific immune response towards different infective 115 

microorganisms; transcription profiles of C. elegans exposed to Candida albicans has been 116 

shown to be different from those infected with Pseudomonas aeruginosa or S. aureus (24). 117 

Both living and heat-killed S. aureus have been reported to be capable of triggering C. 118 

elegans responses (25). These studies suggest that C. elegans distinguish infections from 119 

different pathogens via recognition of specific bacterial pathogen-associated molecular 120 

patterns (PAMPs). Spa, a S. aureus cell wall surface protein, has been reported to be one of 121 

the PAMPs found in this Gram-positive bacterium (26). In our study, we postulate that down-122 

regulation of Spa protein in VISA strains diminished the capability of C. elegans innate 123 

immune system to identify the bacteria, allowing VISA to achieve immune evasion. 124 
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Consequently, VISA infections of C. elegans were found to be more lethal compared with 125 

VSSA. Even though C. elegans produces ROS in response to S. aureus infection (27), as 126 

VISA strains in this study were found to be more resistant to oxidative killing due to higher 127 

expression of MsrB enzymes, the strains had a survival edge from the ROS attack of C. 128 

elegans compared to VSSA. This allows VISA strains to bypass C. elegans defence 129 

mechanisms, resulting in expedited killing of the hosts.  130 

 131 

Taking into consideration the results from our previous (13, 28) and current studies, 132 

we propose the interplay between cellular metabolism, oxidative stress response and 133 

virulence in VISA strains of Mu50 lineage (Figure 7). The vraS and graR gene mutations in 134 

VISA strains activate arginine catabolism to supply substrates for cell wall biosynthesis (28), 135 

while oxidative stress response was triggered to neutralize oxidative damages induced by 136 

vancomycin. These metabolic alterations subsequently impose a fitness burden on VISA 137 

cells, causing a trade-off between bacterial resistance and virulence.       138 

 139 
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Figure Legends 264 

Figure 1: Voronoi mapping of total proteins extracted from Mu50Ω (panel A), Mu50Ω-265 

vraSm (panel B) and Mu50Ω-vraSm-graRm (panel C). Each cell in the voronoi treemap 266 

represents one protein. Colour intensity of each cell is proportional to its protein abundance 267 

while cell size is relative to protein chain length. Total proteins have been categorized into 5 268 

groups, with the majority of proteins found to be involved in cellular metabolism and genetic 269 

information processing.      270 

 271 
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Figure 2: Comparative proteomic profiling of Mu50Ω, Mu50Ω-vraSm and Mu50Ω-vraSm-272 

graRm revealed differential protein expression profiles regulated by the VraS, GraR and 273 

VraS-GraR regulons (comparison of protein profiles between Mu50Ω-vraSm and Mu50Ω, 274 

Mu50Ω-vraSm-graRm and Mu50Ω-vraSm, and between Mu50Ω-vraSm-graRm and Mu50Ω, 275 

respectively) (13). Virulence-related proteins (Spa, Rot, MgrA, SarA), MsrB and ArcB 276 

(proteins in text boxes) are the proteins of interest selected for further investigation of their 277 

association with vancomycin resistance as they were found to be differentially expressed in 278 

VISAs compared to VSSA.    279 

 280 

Figure 3: Cumene hydroperoxide oxidative stress test on Mu50Ω, Mu50Ω-vraSm and 281 

Mu50Ω-vraSm-graRm. Both VISA strains showed higher resistance to oxidative stress 282 

compared to VSSA. 283 

 284 

Figure 4: Tert-butyl hydroperoxide oxidative stress test on Mu50Ω, Mu50Ω-vraSm and 285 

Mu50Ω-vraSm-graRm. Both VISA strains were more resistant to oxidative killing compared 286 

to VSSA.  287 

 288 

Figure 5: Hydrogen peroxide oxidative stress test on Mu50Ω, Mu50Ω-vraSm and Mu50Ω-289 

vraSm-graRm. Mu50Ω was more resistant to oxidative stress from hydrogen peroxide 290 

induction compared to VISA strains. 291 

 292 

Figure 6: Kaplan-Meier survival plot for C. elegans fed with Mu50Ω, Mu50Ω-vraSm and 293 

Mu50Ω-vraSm-graRm. A significant decrease in survival of C. elegans infected with VISA 294 

strains Mu50Ω-vraSm (p < 0.05) and Mu50Ω-vraSm-graRm (p < 0.05) was observed 295 

compared to those infected with VSSA strain Mu50Ω. Pairwise comparison also 296 
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demonstrated a significant reduction in the survival of Mu50Ω-vraSm-graRm-infected C. 297 

elegans compared with Mu50Ω-vraSm-infected worms (p < 0.05). 298 

 299 

Figure 7: VraSR- and GraSR-mediated regulatory pathways associated with intermediate 300 

vancomycin resistance in Staphylococcus aureus of the Mu50 lineage: (1) contribution of 301 

arginine catabolism (arginine deiminase, ADI) pathway to cell wall thickening, (2) MsrB-302 

associated oxidative stress resistance, and (3) fitness-compensatory response.    303 

 304 
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Figure 1: Voronoi mapping of total proteins extracted from Mu50Ω (panel A), Mu50Ω-vraSm 

(panel B) and Mu50Ω-vraSm-graRm (panel C). Each cell in the voronoi treemap represents 

one protein. Colour intensity of each cell is proportional to its protein abundance while cell 

size is relative to protein chain length. Total proteins have been categorized into 5 groups, with 

the majority of proteins found to be involved in cellular metabolism and genetic information 

processing.      
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Figure 2: Comparative proteomic profiling of Mu50Ω, Mu50Ω-vraSm and Mu50Ω-vraSm-

graRm revealed differential protein expression profiles regulated by the VraS, GraR and VraS-

GraR regulons (comparison of protein profiles between Mu50Ω-vraSm and Mu50Ω, Mu50Ω-

vraSm-graRm and Mu50Ω-vraSm, and between Mu50Ω-vraSm-graRm and Mu50Ω, 

respectively) (13). Virulence-related proteins (Spa, Rot, MgrA, SarA), MsrB and ArcB 

(proteins in text boxes) are the proteins of interest selected for further investigation of their 

association with vancomycin resistance as they were found to be differentially expressed in 

VISAs compared to VSSA. 
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Figure 3: Cumene hydroperoxide oxidative stress test on Mu50Ω, Mu50Ω-vraSm and Mu50Ω-

vraSm-graRm. Both VISA strains showed higher resistance to oxidative stress compared to 

VSSA. 
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Figure 4: Tert-butyl hydroperoxide oxidative stress test on Mu50Ω, Mu50Ω-vraSm and 

Mu50Ω-vraSm-graRm. Both VISA strains were more resistant to oxidative killing compared 

to VSSA.   
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Figure 5: Hydrogen peroxide oxidative stress test on Mu50Ω, Mu50Ω-vraSm and Mu50Ω-

vraSm-graRm. Mu50Ω was more resistant to oxidative stress from hydrogen peroxide 

induction compared to VISA strains. 
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Figure 6: Kaplan-Meier survival plot for C. elegans fed with Mu50Ω, Mu50Ω-vraSm and 

Mu50Ω-vraSm-graRm. A significant decrease in survival of C. elegans infected with VISA 

strains Mu50Ω-vraSm (p < 0.05) and Mu50Ω-vraSm-graRm (p < 0.05) was observed 

compared to those infected with VSSA strain Mu50Ω. Pairwise comparison also demonstrated 

a significant reduction in the survival of Mu50Ω-vraSm-graRm-infected C. elegans compared 

with Mu50Ω-vraSm-infected worms (p < 0.05). 
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Figure 7: VraSR- and GraSR-mediated regulatory pathways associated with intermediate 

vancomycin resistance in Staphylococcus aureus of the Mu50 lineage: (1) contribution of 

arginine catabolism (arginine deiminase, ADI) pathway to cell wall thickening, (2) MsrB-

associated oxidative stress resistance, and (3) fitness-compensatory response.    
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