1	Combination of tenofovir and emtricitabine with efavirenz does not moderate inhibitory
2	effect of efavirenz on mitochondrial function and cholesterol biosynthesis in human T
3	lymphoblastoid cell line
4	
5	Authors: Min Li ^a , Anuoluwapo Sopeyin ^a , and Elijah Paintsil ^{a,b,c, #}
6	Affiliation: ^a Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA;
7	^b Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut, USA;
8	^c Department of Epidemiology & Public Health, Yale School of Medicine, New Haven,
9	Connecticut, USA
10	#Correspondence to: Elijah Paintsil, MD., Departments of Pediatrics, Pharmacology & Public
11	Health, Yale School of Medicine, 464 Congress Avenue, New Haven, Connecticut 06520, USA.
12	Phone: 203-785-6101 Fax: 203-785-6961; email: elijah.paintsil@yale.edu
13	Conflicts of interest: No conflicts of interest declared by all authors
14	
15	Running Title: Efavirenz inhibits mitochondrial respiration
16	
17	
18	
19	

20 ABSTRACT

21 Efavirenz (EFV), the most popular non-nucleoside reverse transcriptase inhibitor, has been 22 associated with mitochondrial dysfunction in most in vitro studies. However, in real life the 23 prevalence of EFV-induced mitochondrial toxicity is relatively low. We hypothesized that the agents given in combination with EFV might moderate the effect of EFV on mitochondrial 24 25 function. To test this hypothesis, we cultured human T lymphoblastoid cell line (CEM cells) with 26 EFV alone and in combination with emtricitabine (FTC) and tenofovir disoproxil fumarate (TDF) 27 to investigate the effects on mitochondrial respiration and function and cholesterol biosynthesis. 28 There was a statistically significant concentration- and time-dependent apoptosis, reduction in mitochondrial membrane potential ($\Delta \Psi$), and increase production of reactive oxygen species 29 (ROS) in cells treated with either EVF alone or in combination with TDF/FTC. EFV treated 30 cells compared to DMSO treated cells had significant reduction in oxygen consumption rate 31 32 (OCR) contributed by mitochondrial respiration, ATP production-linked respiration, and spare 33 respiratory capacity (SRC). Treatment with EFV resulted in a decrease in mitochondrial DNA content, and perturbation of more coding genes (n=13); among these were 11 genes associated 34 with lipid or cholesterol biosynthesis. Our findings support the growing body of knowledge on 35 36 the effects of EFV on mitochondrial respiration and function and cholesterol biosynthesis. Interestingly, combining TDF/FTC with EFV did not alter the effects of EFV on mitochondrial 37 38 respiration and function and cholesterol biosynthesis. The gap between the prevalence of EFV-39 induced mitochondrial toxicity in vitro and in vivo studies may be explained by individual 40 differences in the pharmacokinetic of EFV.

41 Key words: Efavirenz, antiretroviral toxicity, mitochondria, respiration, cholesterol biosynthesis

43 INTRODUCTION:

44	Combination antiretroviral therapy (ART) has resulted in a decrease in AIDS-related
45	morbidity and mortality (1), though the therapeutic benefit of ART is often limited by delayed
46	toxicity (2). Although contemporary ART regimens compared to early ART regimens are less
47	toxic(3, 4), toxicity is still pervasive and affects a significant number of people living with HIV
48	(4, 5). <i>In vitro</i> studies demonstrated that inhibition of polymerase gamma (Pol- γ), enzyme
49	responsible for mitochondrial DNA replication, by nucleoside reverse transcriptase inhibitors
50	(NRTIs) leads to depletion of mitochondrial DNA (mtDNA) and subsequent mitochondrial
51	dysfunction(6, 7); the "Pol- γ inhibition" hypothesis. However, there is a growing body of
52	knowledge to suggest that ART-associated mitochondrial dysfunction cannot be explained solely
53	by Pol- γ inhibition(8, 9). For instance, other classes of ART such as protease inhibitors (PIs) and
54	non-nucleoside reverse transcriptase inhibitors (NNRTIs) do not inhibit Pol- γ and yet they cause
55	side effects akin to mitochondrial dysfunction(8, 10). Taken together, there must be alternative or
56	additional mechanisms by which ART impairs mitochondrial function.
57	Efavirenz (EFV), the most popular NNRTI and a key component of several ART
58	regimens, has been associated with metabolic disorders(11), hepatic toxicity (12, 13), diminished
59	bone density (14), neuropsychiatric symptoms(15, 16), and neurocognitive impairment (17).
60	Although the underlying cellular and molecular mechanisms of EFV-induced toxicity are still not
61	well understood, several in vitro and in vivo studies have implicated mitochondrial dysfunction
62	as the underlying mechanism. EFV affections on mitochondria include decrease in mitochondrial
63	membrane potential, inhibition of OXPHOS complex I enzymes, decrease in oxygen
64	consumption, and increase production of mitochondrial reactive oxygen species (ROS)(8, 18, 19).

65	With this litany of effects of EFV on mitochondria, one would have expected a much
66	higher incidence of EFV-associated toxicity in patients. The incidence of severe EFV-associated
67	neuropsychiatric symptoms is less than 2% of patients (15, 20); and severe hepatic toxicity is up
68	to 8% of patients (12, 13). In real life, EFV is given in combination with other antiretroviral
69	agents. We, therefore, hypothesized that the agents given in combination with EFV might
70	moderate the effect of EFV on mitochondrial function; hence, the relatively low incidence of
71	EFV-induced mitochondrial toxicity in patients. To test this hypothesis, we cultured human T
72	lymphoblastoid cell line (CEM cells) with EFV alone and in combination with emtricitabine
73	(FTC) and tenofovir disoproxil fumarate (TDF) to investigate the effects on mitochondrial
74	function and cholesterol biosynthesis.

75 **RESULTS**

76 EFV treatment decreased CEM cell growth

We treated CEM cells with EFV, TDF/FTC, or TDF/FTC/EFV at multiples of their respective C_{max} (i.e., 1x-, or 2x- C_{max}). Growth of cells treated with antiretroviral (ARV) drugs compared to DMSO-treated cells was monitored. All the ARVs tested affected CEM cell growth to a certain degree in a concentration- and time-dependent manner except for TDF/FTC combination (Figure 1A). At day 1, EFV treatment (1x-, and 2x- C_{max}) reduced cell growth more than TDF/FTC/EFV combination treatment. At day 2, the effect of treatment with EFV alone on cell growth was comparable to that of treatment with TDF/FTC/EFV combination.

84

85 EFV treatment increased proportion of apoptotic cells

86 Mitochondria are central to the process of cell apoptosis. We, therefore, investigated the effect of

87 exposure of CEM cells to EFV, TDF/FTC, or TDF/FTC/EFV on apoptosis. We determined cell

88	death/apoptosis using PI/Annexin-V flow cytometry at day 1 and day 2 (21). Figure 1B
89	illustrates the fold-change in apoptosis in ARV treated cells compared to DMSO treated cells.
90	We observed a statistically significant concentration- and time-dependent apoptosis in cells
91	treated with either EVF alone or in combination with TDF/FTC. There was no statistically
92	significant difference between cells treated with TDF/FTC at the two concentration and cells
93	treated with DMSO.
94	
95	EFV treatment decreased mitochondrial membrane potential in cell culture
96	We next investigated the effect of EFV, TDF/FTC, or TDF/FTC/EFV treatment on
97	mitochondrial membrane potential ($\Delta \Psi$) of CEM cells using TMRE (tetramethylrhodamine,
98	ethyl ester). Compared to cells treated with DMSO, cells treated with both concentrations of
99	EFV or TDF/FTC/EFV showed statistically significant higher proportion of cells with decreased
100	mitochondrial $\Delta \Psi$ after 1 and 2 days in culture in a dose- and time-dependent manner (Figure
101	2A). We did not observe any statistically significant difference between cells treated with
102	TDF/FTC at the two concentrations compared to cells treated with DMSO.

103 EFV treatment increased mitochondrial ROS production

104 Loss of mitochondrial $\Delta \Psi$ is associated with oxidative stress and, therefore, increased

105 mitochondrial production of ROS(22). We next investigated whether the decreased in

106 mitochondrial $\Delta \Psi$ in cells treated with EFV translated to an increase in production of ROS. ROS

- 107 production was determined using MitoSOXTM Red mitochondrial superoxide indicator. As
- 108 illustrated in Figure 2B, cells treated with EFV and TDF/FTC/EFV produced significantly higher
- 109 ROS compared to cells treated with DMSO in a time-dependent manner. There was no
- statistically significant production of ROS in cells treated with TDF/FTC combination on day 1.

111 EFV treatment reduced mitochondrial DNA (mtDNA) content

- 112 With the effect of EFV treatment alone and in combination with TDF/FTC on cell growth,
- apoptosis, mitochondrial $\Delta \Psi$, and ROS production presented above, we investigated whether
- these findings are associated with changes in mtDNA content. We determined the mtDNA
- 115 content on day 2 of CEM cells treated with EFV, TDF/FTC, or TDF/FTC/EFV compared to cells
- treated with DMSO (Figure 2C). We observed a statistically significant decrease in the mtDNA
- 117 of CEM cells treated with 1x-C_{max} of EFV and TDF/FTC/EFV. There was no significant change
- in mtDNA in cells treated with TDF/FTC compared to cells treated with DMSO.

119 EFV altered mitochondrial respiratory function of CEM cells

- 120 We next used a more sensitive extracellular flux analysis to investigate the effect of EFV on
- 121 mitochondrial respiratory parameters (23) –basal respiration rate, ATP production-linked rate,
- 122 proton leakage rate, maximum respiratory capacity (MRC), spare respiratory capacity (SRC),
- and respiratory control ratio (RCR)—in CEM cells. Sequential addition of inhibitors of the
- 124 electron transport chain (ETC) –oligomycin, carbonyl cyanide-4-
- 125 (trifluoromethoxy)phenylhydrazone, FCCP, and a mixture of rotenone and antimycin—

126 was used to obtain data on the relative oxygen consumption rate (OCR) of different components

127 of mitochondrial respiratory function. The relative OCR was computed using the area under the

128 curve of each component of mitochondrial function as illustrated in Figure 3A. Treatment with

- 129 EFV at the two concentrations decreased mitochondrial respiration by about 22% (Figure 3B).
- 130 Treatment with TDF/FTC at $1xC_{max}$ had no effect on mitochondrial respiration, however,
- treatment with $2xC_{max}$ led to a 25% increase in mitochondrial respiration. EFV at $1xC_{max}$ and
- 132 2xC_{max} concentrations decreased the ATP production-linked respiration by 51% and 39%,
- 133 respectively. However, there was no significant effect of any of the combination treatment on

ATP-production-linked respiration. Treatment with TDF/FTC/EFV at 2xC_{max} reduced MRC by 134 27%%. All the treatment conditions resulted in significant decrease in SRC (ranging from 23% 135 to 44%) compared to DMSO treatment, except treatment with 1xC_{max} of TDF/FTC. We 136 computed the parameters in comparison to basal respiration, expressed as a percentage of basal 137 respiration (Figure 3C), where basal respiration is the combination of mitochondrial and non-138 139 mitochondrial respirations. In DMSO treated cells, about 70% of the basal respiration was used for ATP production, however, this percentage dropped to 50% with EFV treatment at the two 140 141 concentrations (Figure 3C). TDF/FTC treatment did not have an effect on the percentage of basal 142 respiration used to ATP production. Only treatment with 2xC_{max} TDF/FTC and 2xC_{max} TDF/FTC/EFV had significant decrease in the percentage of MRC used for basal respiration 143 (p<0.05). Treatment with 1xC_{max} EFV and 2xC_{max} TDF/FTC/EFV caused a significant increase 144 in proportion of proton leak contributing to basal respiration. All treatments tended to reduce the 145 relative contribution of SRC to basal respiration, however, only treatment with 1xCmax 146 TDF/FTC, 2xC_{max} TDF/FTC, and 2xC_{max} TDF/FTC/EFV led to statistically significant reduction 147 (p<0.05). Treatment with 1xC_{max} and 2xC_{max} EFV increased the contribution of non-148 mitochondrial respiration to basal respiration. The RCR is a sensitive indicator of mitochondrial 149 150 dysfunction that is influenced by all components of ETC (18). RCR was computed as the ratio between the maximal respiration and the respiration rate detected in the presence of oligomycin 151 152 (i.e., ATP production-linked respiration). All the treatment conditions tended to decrease RCR 153 compared to DMSO treatment, however, only treatment with 2xCmax of TDF/FTC/EFV resulted in a statistically significant decrease in RCR (Figure 3D). 154

155 Gene expression profiles of CEM cells treated with EFV, TDF, FTC, and TDF/FTC

156	We investigated the differential gene expression profiles of CEM cell treated with EFV (1x C_{max}),
157	TDF ($4xC_{max}$), FTC ($4xC_{max}$), and TDF/FTC ($4xC_{max}$) using Affymetrix GeneChip Human Gene
158	2.0 ST arrays. We used $4xC_{max}$ of TDF and FTC because at lower concentrations, there was no
159	significant differential gene expression. The number of genes expressed with at least 2-fold
160	difference over cells treated with DMSO are illustrated in Figure 4A. There were no genes
161	expressed at the 2-fold threshold with FTC treated cells. Total number of coding genes perturbed
162	by TDF/FTC treatment was 3. EVF treatment led to perturbation of more coding genes (n=13);
163	among these were 11 genes associated with lipid or cholesterol biosynthesis. Figures 4B and 4C
164	illustrate the genes that were either down- or up-regulated by EFV and TDF/FTC treatment,
165	respectively.
166	EFV treatment was associated with down-regulation of genes associated with cholesterol
	· · · · · · · · · · · · · · · · ·
167	biosynthesis
167 168	biosynthesis With the finding of downregulation of genes of cholesterol biosynthesis by EFV and previously
168	With the finding of downregulation of genes of cholesterol biosynthesis by EFV and previously
168 169	With the finding of downregulation of genes of cholesterol biosynthesis by EFV and previously reported effect of EFV on the lipogenic transcription factor sterol regulatory element binding
168 169 170	With the finding of downregulation of genes of cholesterol biosynthesis by EFV and previously reported effect of EFV on the lipogenic transcription factor sterol regulatory element binding protient-1c (SREBP-1c) (24), we sought to validate our microarray data with quantitative PCR
168 169 170 171	With the finding of downregulation of genes of cholesterol biosynthesis by EFV and previously reported effect of EFV on the lipogenic transcription factor sterol regulatory element binding protient-1c (SREBP-1c) (24), we sought to validate our microarray data with quantitative PCR (Figure 5). Relative gene expression in cells treated with antiretroviral drugs was compared to
168 169 170 171 172	With the finding of downregulation of genes of cholesterol biosynthesis by EFV and previously reported effect of EFV on the lipogenic transcription factor sterol regulatory element binding protient-1c (SREBP-1c) (24), we sought to validate our microarray data with quantitative PCR (Figure 5). Relative gene expression in cells treated with antiretroviral drugs was compared to gene expression in cells treated with DMSO. Cells treated with EFV had a significant reduction
168 169 170 171 172 173	With the finding of downregulation of genes of cholesterol biosynthesis by EFV and previously reported effect of EFV on the lipogenic transcription factor sterol regulatory element binding protient-1c (SREBP-1c) (24), we sought to validate our microarray data with quantitative PCR (Figure 5). Relative gene expression in cells treated with antiretroviral drugs was compared to gene expression in cells treated with DMSO. Cells treated with EFV had a significant reduction in 3-hydroxy-3-methylglutaryl-CoA synthases, HMGCS, (p<0.01) and 3-hydroxy-3-
168 169 170 171 172 173 174	With the finding of downregulation of genes of cholesterol biosynthesis by EFV and previously reported effect of EFV on the lipogenic transcription factor sterol regulatory element binding protient-1c (SREBP-1c) (24), we sought to validate our microarray data with quantitative PCR (Figure 5). Relative gene expression in cells treated with antiretroviral drugs was compared to gene expression in cells treated with DMSO. Cells treated with EFV had a significant reduction in 3-hydroxy-3-methylglutaryl-CoA synthases, HMGCS, (p<0.01) and 3-hydroxy-3-methylglutaryl-CoA reductase, HMGCR, (p<0.05) expressions (Figure 5A). Combination
168 169 170 171 172 173 174 175	With the finding of downregulation of genes of cholesterol biosynthesis by EFV and previously reported effect of EFV on the lipogenic transcription factor sterol regulatory element binding protient-1c (SREBP-1c) (24), we sought to validate our microarray data with quantitative PCR (Figure 5). Relative gene expression in cells treated with antiretroviral drugs was compared to gene expression in cells treated with DMSO. Cells treated with EFV had a significant reduction in 3-hydroxy-3-methylglutaryl-CoA synthases, HMGCS, (p<0.01) and 3-hydroxy-3-methylglutaryl-CoA reductase, HMGCR, (p<0.05) expressions (Figure 5A). Combination treatment with TDF/FTV/EFV also decreased the expressions of HMGCS (p<0.01) and HMGCR
168 169 170 171 172 173 174 175 176	With the finding of downregulation of genes of cholesterol biosynthesis by EFV and previously reported effect of EFV on the lipogenic transcription factor sterol regulatory element binding protient-1c (SREBP-1c) (24), we sought to validate our microarray data with quantitative PCR (Figure 5). Relative gene expression in cells treated with antiretroviral drugs was compared to gene expression in cells treated with DMSO. Cells treated with EFV had a significant reduction in 3-hydroxy-3-methylglutaryl-CoA synthases, HMGCS, (p<0.01) and 3-hydroxy-3-methylglutaryl-CoA reductase, HMGCR, (p<0.05) expressions (Figure 5A). Combination treatment with TDF/FTV/EFV also decreased the expressions of HMGCS (p<0.01) and HMGCR (p<0.05). TDF/FTC treatment did not have any significant effect on the expressions of HMGCS

expressions of sterol regulatory element binding protien-1 (SREBP1) (p<0.05) (Figure 5C), low
density lipoprotein receptor (LDLR) (p<0.05), and squalene epoxidase (SQLE) (p<0.05) (Figure
5D). None of the treatments compared to DMSO treatment had significant effect on the
expressions of AMP-activated protein kinase (AMPK) –PRKAA1, PRKAA2, and PRKAB
(Figure 5E).

184 **DISCUSSION**

In this study, we sought to investigate whether combining EFV with TDF/FTC will 185 moderate reported EFV-associated mitochondrial dysfunction (8, 18, 25-27) and perturbation of 186 cholesterol biosynthesis (8, 28, 29). Most of the reported EFV-induced toxicities are from in 187 vitro studies where cells were treated with EFV alone. However, in real life, EFV is used in 188 189 combination with other ARVs such as TDF and FTC. Combination of TDF/FTC/EFV is one of the most popular ART regimens globally. We conducted comprehensive assessment of 190 mitochondrial function from mtDNA content to mitochondrial respiration -using extracellular 191 flux analysis, the gold standard for analyzing mitochondrial respiration in intact cells (18). EFV 192 treated cells compared to DMSO treated cells had significant reduction in OCR contributed by 193 mitochondrial respiration, ATP production-linked respiration, and SRC, increased apoptosis, 194 high proportion of cells with reduced mitochondrial $\Delta \Psi$, increased production of ROS, decreased 195 mtDNA content, and downregulation of genes involved in cholesterol biosynthesis in a dose- and 196 197 time-dependent manner. Interestingly, treatment of cells with TDF/FTC/EFV combination had similar effect on mitochondrial function and cholesterol biosynthesis to treatment with EFV 198 199 alone. Thus our findings do not support our hypothesis that agents given in combination with 200 EFV moderate the effect of EFV on mitochondrial function leading to less prevalence of EFV-

induced mitochondrial dysfunction in real time. If any, the effect of TDF and FTC on EFV-induced toxicity was marginal.

203 The threshold at which mitochondrial dysfunction will translate into toxic phenotype in a 204 cell is not well understood; it depends on the type and energy requirement of the cell (30). In CEM cells treated with EFV, we observed a reduction in mitochondrial respiration, ATP 205 206 production-linked respiration, and SRC (Figure 3B). These findings are consistent with effect of 207 EFV on mitochondrial respiratory parameters in human glioma, neuroblastoma, and HepG2 cell 208 lines (18, 31) and primary cultures of rat neurons and astrocytes (25) reported in previous studies. 209 In these studies, EVF was cultured with the cells for 1 h to 24 h, while we extended treatment for 210 48 hrs. The SRC of a cell translates into the ability of the cell to survive and function under high energy demanding conditions (18). Decrease in SRC has been associated with heart diseases, 211 neurodegenerative disorders and aging (32). Interestingly, the prevalence of these conditions is 212 213 on the rise in HIV treatment-experienced individuals(33, 34). We also observed an increase in 214 non-mitochondrial respiration with all treatment conditions (Figure 3B). Non-mitochondrial respiration accounts for other oxygen-consumption processes in the cell that do not involve the 215 216 ETC. The increase in non-mitochondrial respiration suggests mitochondria dysfunction leading 217 to a compromised ETC. Takemoto et al. recently reported that HIV-infected youth with insulin resistance had lower mitochondrial respiratory parameters and concluded that disordered 218 219 mitochondrial respiration may be a potential mechanism of insulin resistant in HIV-infected 220 youth (35).

Moreover, we investigated the effect of EFV on other functions of mitochondria. CEM cells treated with either EFV alone or in combination with TDF/FTC showed a higher proportion of non-viable cells (Figure 1A) and increased apoptosis (Figure 1B) in time- and dose-dependent

224 manner. These findings are consistent with other reports; EFV has been reported to decrease cell viability and increase apoptosis in different cell types -primary human hepatocytes and HepG2 225 cell line (8, 36), pancreatic cancer cell lines (37), human endothelial cell lines (38), human T 226 227 lymphocytes (Jurkat cell lines) (39), and PBMCs (39). Mitochondrial function depends on intact mitochondrial membrane (40). The loss of mitochondrial $\Delta \Psi$ is believed to be the first and 228 229 crucial step in mitochondrial dysfunction, which triggers a cascade of events leading ultimately to cell death(27, 41). It is, therefore, not surprising that the effect of EFV on mitochondrial $\Delta \Psi$ 230 (Figure 2A) paralleled the effect of EFV on apoptosis (Figure 1B). This is consistent with other 231 232 studies that reported that treatment with EFV led to reduced mitochondrial $\Delta \Psi$ in several cell types(25, 26). Mitochondrial dysfunction and compromise of ETC lead to increase production 233 234 of ROS. Treat with EFV alone and in combination with TDF/FTC resulted in a time-dependent 235 increase in ROS production. This finding is consistent with the effect of EFV on the production 236 of ROS in hepatocytes (8). Treatment with EFV also resulted in about 50% reduction in mtDNA compared to treatment with DMSO. Although, EFV does not inhibit Pol-y, we observed mtDNA 237 depletion in CEM cells treated with 1xC_{max} of EFV; this is consistent with previous report using 238 human hepatoma cells Huh 7.5 (27). Thus, EFV has several affections on mitochondria. In a 239 240 study comparing Hep3B cells with functional mitochondria (rho+) and Hep3B cells lacking functional mitochondria (rho°), cells with functional mitochondria were more sensitive to the 241 toxic effects of EFV (42). 242

Mitochondria play a role in cholesterol and lipid metabolism (43). In a microarray analysis, we observed a downregulation of the expression of cholesterol biosynthesis genes in CEM cells treated with EFV. We validated these data using qPCR assay to investigate the expression of genes involved in synthesis (HMGCS, HMGCR), regulation (SREBP1, SREBP2,

247	INSIG-1, INSIG-2, PARKAA1, PRKAA2, PRKAB), and uptake (LDLR, SQLE). EFV treatment
248	resulted in downregulation of HMGCS, HMGCR, INSIG-1, SREBP1, LDLR, and SQLE.
249	Intracellular cholesterol is tightly regulated by cholesterol uptake, de novo synthesis, and efflux
250	out of the cell (44). Our findings of downregulation of synthesis, uptake, and regulatory
251	cholesterol biosynthesis genes imply that EFV might result in accumulation of intracellular
252	cholesterol. These findings are consistent with the findings of Feeney et al. (44) in a case control
253	study of expression of cholesterol biosynthesis genes in monocytes of HIV treatment-
254	experienced, HIV treatment-naïve, and HIV-uninfected individuals. Blas-Garcia et al. also
255	reported that EFV treatment of Hep3B cells and primary human hepatocytes resulted in
256	intracellular accumulation of lipids (8). They concluded that EFV-induced mitochondrial
257	dysfunction resulted in the activation of AMPK leading to intracellular accumulation of lipids. In
258	our study, EFV did not have significant effect on AMPK (PRKAA1, PRKAA2, PRKAB) (Figure
259	5D). Moreover, we also observed that cells treated with EFV had decreased in the expression of
260	INSIG-1. Under normal regulation of cholesterol homeostasis, depletion of intracellular
261	cholesterol leads to increase expression of INSIG-1 (45). Our finding of decreased expression of
262	INSIG-1, therefore, supports the hypothesis that EFV treatment may lead to intracellular
263	accumulation of cholesterols. In contrast, Hadri et al. reported that treatment of human
264	adipocytes with EFV resulted in depletion of intracellular triglycerides and at the same time a
265	decrease in the expression of SREBP-1c (24). This differential effect of EFV on intracellular
266	lipids may be due to the different types of cells or duration of treatment used in these studies.
267	The C_{max} of EFV used in our experiments is about 12.7 μ M, which is within the range of the
268	plasma concentration of EFV in individuals receiving a daily dose of 600 mg of EFV (3.17 –
269	12.67 μ M) (46). There is marked individual variability in plasma concentration of EFV; certain

270	individuals can achieve plasma concentration over and above the $2xC_{max}$ used in our experiments.
271	Individuals with certain polymorphisms in the cytochrome P450 (CP450) gene could have
272	plasma concentrations ranging from $30 - 80 \ \mu M$ (47-50). The individual differences in EFV
273	plasma concentration may partly explain why certain patients on EFV-based therapy do not
274	experience effects of EFV on mitochondrial function. Ganta et al. detected EFV by HPLC in
275	purified mitochondrial lysate from Huh 7.5 and HepaRG cells after 12 h of treatment with 6.25
276	μ M (27). The investigators explained that since EFV is hydrophilic it can pass freely through the
277	outer mitochondrial membrane and initiate depolarization of the inner mitochondrial membrane
278	and subsequent mitochondrial dysfunction (27). This theory may be consistent with the
279	individual differences in the mitochondrial affections of EFV.
280	Our study, like all in vitro studies, has several limitations. First, we could not possibly
281	mimic or take into account all the complex biological pathways and processes that occur in vivo.
282	Second, the experiments were conducted using a cancer cell line whose cellular bioenergetics
283	may not be fully comparable to that of primary cells (18). We chose CEM cells because they can
284	be infected with HIV. Therefore, they can be used to tease out the relative contributions of HIV
285	infection and ART in mitochondrial dysfunction and cholesterol biosynthesis in future studies.
286	Third, one might argue that 2 days of culture may not be adequate to tease out the delayed effect
287	of EFV on mitochondria in real life. However, our duration is consistent with the duration used
288	in several in vitro studies of ART toxicity (51, 52) and the decrease in viability of CEM cells
289	with EFV treatment did not allow us to go beyond 48 h of culture.
290	In conclusion, EFV treatment resulted in reduction in mitochondrial respiratory
•	
291	parameters. Moreover, we observed increased apoptosis, high proportion of cells with reduced

mitochondrial $\Delta \Psi$, increased production of ROS, decreased mtDNA content, and downregulation

293	of genes involved in cholesterol biosynthesis in cells treated with EFV. Interestingly, combining
294	TDF/FTC with EFV did not alter the effects of EFV on mitochondrial function. The main
295	rationale of our study was to understand the gap between reported in vitro and in vivo EFV-
296	induced toxicity. This gap may be due to individual differences in the pharmacokinetic of EFV.
297	EFV can diffuse into the mitochondrial an initiate mitochondrial dysfunction (27). Thus,
298	individuals who achieve higher tissue concentrations of EFV may have a predilection for EFV-
299	induced mitochondrial dysfunction. Further studies are needed to elucidate the underlying
300	mechanisms.

301 METHODS AND MATERIALS

302 Antiretroviral gents

303 EFV was obtained from the NIH AIDS Reagent Program (Germantown, MD, USA). FTC and
304 TDF were purchased from Selleckchem (Houston, TX, USA). All the drugs were dissolved in

dimethyl sulfoxide (DMSO). DMSO was purchased from Sigma-Aldrich (St. Louis, Missouri, USA).

306 Cell culture and cell viability

307 Human T lymphoblastoid cell line (CEM cells) was cultured in RPMI 1640 supplemented with

308 10% dialyzed fetal calf serum (Thermo Fisher Scientific, NY, USA). Cells were incubated at

309 37°C in a 5% CO₂ humidified environment. 3 x 10^4 /ml cells (total volume of 40 ml) were

incubated with EFV, FTC, or TDF at multiples of plasma peak concentration, e.g., $1xC_{max}$, or

 $311 \quad 2xC_{max}$. The cells were collected for cell count and the experiments described below each day.

Aliquots of cells were stained with Trypan blue to distinguish live cell from dead cells and the

number of live cells was counted using hemocytometer. For each treatment condition at least

three cell culture experiments were conducted on different occasions.

315 Apoptosis assay

Apoptosis was assessed by staining with an FITC Annexin V Apoptosis Detection Kit I (BD, San 316 317 Jose, CA) according to the manufacturer's instructions. In brief, the cells cultured with various 318 concentrations of EFV, TDF/FTC, or TDF/FTC/EFV (1x-, or 2x-C_{max}) were harvested at day 1 and 2 and then 1×10^6 cells were washed with ice-cold PBS. The early apoptotic cells (Annexin 319 320 V+/PI-) or late apoptotic cells (Annexin V+/PI+) were evaluated by double staining with annexin V-FITC and PI and then run on BD LSR II flow cytometer and analyzed with BD FACSDiva 321 software (San Jose, CA). Each experiment was done in triplicates and repeated on at least three 322 occasions. 323

324 Mitochondrial membrane potential ($\Delta \Psi$)

Mitochondrial function depends on intact mitochondria membranes that can maintain an 325 electrochemical potential generated by the electron transport chain, therefore, mitochondrial $\Delta \Psi$ 326 327 is a good measure of mitochondrial functional capacity. Mitochondrial $\Delta \Psi$ was analyzed using TMRE-Mitochondrial Membrane Potential Assay Kit (Abcam, Cambridge, MA) according to the 328 manufacturer's instructions. TMRE (tetramethylrhodamine, ethyl ester) is a cell permeant, 329 330 positively-charged, red-orange dye that readily accumulates in active mitochondria due to their relative negative charge. Depolarized or inactive mitochondria have decreased membrane 331 potential and fail to sequester TMRE. At day 1 and 2 of treatment, cells were collected and 332 stained with 200 nM TMRE respectively for 20 min at room temperature. The reaction was 333 stopped by adding 300 µl of PBS and immediately analyzed on BD LSR II flow cytometer (BD, 334 San Jose, CA) and with BD FACS Diva software. Each experiment was done in triplicates and 335 repeated on at least three occasions. 336

337 Mitochondrial reactive oxygen species production

Production of ROS by mitochondria was determined using MitoSOXTM Red mitochondrial superoxide indicator, a novel fluorogenic dye for highly selective detection of superoxide in the mitochondria of live cells, accordingly to manufacturer's instructions. Treated cells were washed once with wash buffer before incubation with 5 μ M MitoSOXTM reagent working solution at room temperature for 10 min. The cells were then washed and run on LSRII flow cytometry (Beckman Coulter). Each experiment was done in triplicates and repeated on at least three occasions.

345 Mitochondrial DNA quantification

- To assess mtDNA content, genomic DNA was extracted from CEM cells treated with EFV,
- 347 TDF/FTC, or TDF/FTC/EFV using TRIzol® Reagent according to manufacturer's instructions.
- 348 Fragment of MT-TL1gene (encodes tRNA leucine 1) and 18 S rRNA nuclear gene were
- amplified using quantitative RT-PCR as previously described (53). The primers for
- 350 mitochondrial fragment (MIT) and 18S were (MIT Forward, 5'
- 351 AGGACAAGAGAAATAAGGCC and MIT Reverse, 5'
- 352 TAAGAAGAGGAATTGAACCTCTGACTGTAA) and (18S Forward, 5' TAC CTG GTT GAT
- 353 CCT GCC AGT and 18S Reverse, 5' GAT CCT TCC GCA GGT TCA CCT AC), respectively.
- Each experiment was done in duplicate and repeated on at least three occasions. The relative
- 355 mtDNA content was determined as the ratio of mtDNA to nuclear DNA. Final data for each
- treatment condition represent the mean and standard deviation (SD) from at least three cell
- 357 culture experiments.

358 Mitochondrial respiratory function

359 Mitochondrial respiratory function was determined using the Seahorse XF-96 Extracellular Flux Analyzer (Agilent Technologies, Inc., Wilmington, DE, USA) according to manufacturer's 360 instructions (www.agilent.com/en-us/products/cell-analysis-(seahorse)/basic-procedures-to-run-361 an-xf-assay) and as previously published (18, 35). In brief, the Agilent Seahorse uses modulators 362 of respiration that target components of the electron transport chain. The compounds 363 364 (oligomycin, FCCP, and a mix of rotenone and antimycin A) were serially injected to measure ATP production, maximal respiration, and non-mitochondrial respiration, respectively. Proton 365 366 leak and spare respiration capacity (SRC) were then calculated using these parameters and basal respiration. Treated CEM cells were seeded at a density of 1.2×10^5 cells per well in triplicate in 367 a 1% gelatin treated 96 -well plate. Then, the sensor cartridge was load with oligomycin, FCCP, 368 and a mixture of rotenone and antimycin A in ports A, B, and C, respectively. The cell culture 369 370 plate was then inserted into the analyzer and programed to ensure a homogenous environment. 371 For each phase, measurements were performed in triplicate, totaling 12 points per trace. To allow 372 for comparison between different experiments, the data obtained for each condition were normalized to the cell number per well and expressed as the oxygen consumption rate (OCR) in 373 pmol/min. The experiment was repeated three times. No significant inter-assay differences were 374 375 detected between the three repeats with regard to appearance and viability of cell or the values of 376 OCR that were obtained.

377

378 Microarray gene expression assay

Total RNA was extracted from cell pellets using TRIzol (Life Technologies, Rockville, MD)
according to manufacturer's instructions. Contaminated genomic DNA was removed by treating
RNA samples with Ambion RNase-free DNase (Thermo Fisher Scientific) for 20 min at 37 C.

382	RNA quantity and quality were assessed by micro-volume spectrophotometry on an Infinite 200
383	PRO plate reader (Tecan, Männedorf, Switzerland) and by on-chip capillary electrophoresis on a
384	Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA), respectively. Absorbance ratio at
385	260 and 280 nm was \geq 1.9 and the RNA integrity number (RIN) was >8 for all the samples.
386	100 ng of total RNA was amplified and labeled using the Whole-Transcript Sense Target
387	Labeling Protocol by Affymetrix (Santa Clara, CA) without ribosomal RNA reduction.
388	Affymetrix GeneChip Human Gene 2.0 ST arrays were hybridized with 11 μ g of labeled sense
389	DNA, washed, stained, and scanned on an Affymetrix 7G Scanner according to the
390	manufacturer's protocols. Each experiment was repeated on at least three occasions. Affymetrix
391	Transcriptome Analysis Console TAC 3.1 was used to analyze the result. One-Way ANOVA
392	was used and significance was achieved when fold change was ≥ 2 and a p-value of < 0.05 .
393	
393 394	Quantitative real-time polymerase chain reaction for expression of cholesterol biosynthesis
	Quantitative real-time polymerase chain reaction for expression of cholesterol biosynthesis genes
394	
394 395	genes
394 395 396	genes RNA was extracted from aliquots of EFV-, TDF/FTC-, or TDF/FTC/EFV-treated cells using
394 395 396 397	genes RNA was extracted from aliquots of EFV-, TDF/FTC-, or TDF/FTC/EFV-treated cells using TRIzol Reagent (ThermoFisher Scientific, Carlsbad, CA) according to the manufacturer's
394 395 396 397 398	genes RNA was extracted from aliquots of EFV-, TDF/FTC-, or TDF/FTC/EFV-treated cells using TRIzol Reagent (ThermoFisher Scientific, Carlsbad, CA) according to the manufacturer's instructions and used in quantitative real-time PCR as previously described (54). Melting curve
394 395 396 397 398 399	genes RNA was extracted from aliquots of EFV-, TDF/FTC-, or TDF/FTC/EFV-treated cells using TRIzol Reagent (ThermoFisher Scientific, Carlsbad, CA) according to the manufacturer's instructions and used in quantitative real-time PCR as previously described (54). Melting curve analysis was performed after the completion of PCR to assess the possibility of false-positive
 394 395 396 397 398 399 400 	genes RNA was extracted from aliquots of EFV-, TDF/FTC-, or TDF/FTC/EFV-treated cells using TRIzol Reagent (ThermoFisher Scientific, Carlsbad, CA) according to the manufacturer's instructions and used in quantitative real-time PCR as previously described (54). Melting curve analysis was performed after the completion of PCR to assess the possibility of false-positive results. All of the samples were run in duplicate in at least three independent experiments. The
 394 395 396 397 398 399 400 401 	genes RNA was extracted from aliquots of EFV-, TDF/FTC-, or TDF/FTC/EFV-treated cells using TRIzol Reagent (ThermoFisher Scientific, Carlsbad, CA) according to the manufacturer's instructions and used in quantitative real-time PCR as previously described (54). Melting curve analysis was performed after the completion of PCR to assess the possibility of false-positive results. All of the samples were run in duplicate in at least three independent experiments. The genes of interest were HMGCS, HMGCR, SREBP-1 and -2, INSIG-1 and -2, LDLR, SQLE) and

405	for each treatment condition. The fold-change in gene expression was calculated as $2^{\Delta\Delta CT}$; where
406	$\Delta\Delta CT = \Delta CT_{(treated)} - \Delta CT_{(control)}; \Delta CT_{(treated)} = (CT_{(gene of interest)} - CT_{(GAPDH)}); \Delta CT_{(control)} = (CT_{(gene of interest)} - CT_{(gene of interest)}); \Delta CT_{(gene of interest)} = (CT_{(gene of interest)} - CT_{(gene of interest)}); \Delta CT_{(gene of interest)} = (CT_{(gene of interest)} - CT_{(gene of interest)}); \Delta CT_{(gene of interest)} = (CT_{(gene of interest)} - CT$
407	$_{interest)} - CT_{(GAPDH)}$).
408	Data and statistical analysis
409	All statistical analyses were performed with GraphPad Prism software with the Student's t-test.
410	Data are expressed as means \pm SD and significance was achieved when p value was <0.05.
411	
412	Acknowledgements
413	This study was supported by grants from the National Institutes of Health (KO8AI074404 and
414	R01 HD074252 to EP). AS was supported by an IDSA Medical Scholar Award.
415	
416	
417	
418	
419	
420	
421	
422	

REFERENCES

425	1.	Collaboration H-C, Ray M, Logan R, Sterne JA, Hernandez-Diaz S, Robins JM, Sabin C,
426		Bansi L, van Sighem A, de Wolf F, Costagliola D, Lanoy E, Bucher HC, von Wyl V,
427		Esteve A, Casbona J, del Amo J, Moreno S, Justice A, Goulet J, Lodi S, Phillips A, Seng
428		R, Meyer L, Perez-Hoyos S, Garcia de Olalla P, Hernan MA. 2010. The effect of
429		combined antiretroviral therapy on the overall mortality of HIV-infected individuals.
430		AIDS 24:123-137.
431	2.	Gardner K, Hall PA, Chinnery PF, Payne BA. 2013. HIV Treatment and Associated
432		Mitochondrial Pathology: Review of 25 Years of in Vitro, Animal, and Human Studies.
433		Toxicol Pathol doi:10.1177/0192623313503519.
434	3.	Di Biagio A, Cozzi-Lepri A, Prinapori R, Angarano G, Gori A, Quirino T, De Luca A,
435		Costantini A, Mussini C, Rizzardini G, Castagna A, Antinori A, d'Arminio Monforte A,
436		Group IFS. 2016. Discontinuation of Initial Antiretroviral Therapy in Clinical Practice:
437		Moving Toward Individualized Therapy. J Acquir Immune Defic Syndr 71:263-271.
438	4.	Gonzalez-Serna A, Chan K, Yip B, Chau W, McGovern R, Samji H, Lima VD, Hogg RS,
439		Harrigan R. 2014. Temporal trends in the discontinuation of first-line antiretroviral
440		therapy. J Antimicrob Chemother 69:2202-2209.
441	5.	Cicconi P, Cozzi-Lepri A, Castagna A, Trecarichi EM, Antinori A, Gatti F, Cassola G,
442		Sighinolfi L, Castelli P, d'Arminio Monforte A, Group ICFS. 2010. Insights into reasons
443		for discontinuation according to year of starting first regimen of highly active
444		antiretroviral therapy in a cohort of antiretroviral-naive patients. HIV Med 11:104-113.
445	6.	Lewis W, Dalakas MC. 1995. Mitochondrial toxicity of antiviral drugs. Nat Med 1:417-
446		422.

447	7.	Chen CH, Cheng YC. 1989. Delayed cytotoxicity and selective loss of mitochondrial
448		DNA in cells treated with the anti-human immunodeficiency virus compound 2',3'-
449		dideoxycytidine. J Biol Chem 264:11934-11937.
450	8.	Blas-Garcia A, Apostolova N, Ballesteros D, Monleon D, Morales JM, Rocha M, Victor
451		VM, Esplugues JV. 2010. Inhibition of mitochondrial function by efavirenz increases
452		lipid content in hepatic cells. Hepatology 52:115-125.
453	9.	Apostolova N, Blas-Garcia A, Esplugues JV. 2011. Mitochondrial interference by anti-
454		HIV drugs: mechanisms beyond Pol-gamma inhibition. Trends Pharmacol Sci 32:715-
455		725.
456	10.	Deng W, Baki L, Yin J, Zhou H, Baumgarten CM. 2010. HIV protease inhibitors elicit
457		volume-sensitive Cl- current in cardiac myocytes via mitochondrial ROS. J Mol Cell
458		Cardiol 49:746-752.
459	11.	Haubrich RH, Riddler SA, DiRienzo AG, Komarow L, Powderly WG, Klingman K,
460		Garren KW, Butcher DL, Rooney JF, Haas DW, Mellors JW, Havlir DV, Team
461		ACTGAS. 2009. Metabolic outcomes in a randomized trial of nucleoside, nonnucleoside
462		and protease inhibitor-sparing regimens for initial HIV treatment. AIDS 23:1109-1118.
463	12.	Rivero A, Mira JA, Pineda JA. 2007. Liver toxicity induced by non-nucleoside reverse
464		transcriptase inhibitors. J Antimicrob Chemother 59:342-346.
465	13.	Neukam K, Mira JA, Ruiz-Morales J, Rivero A, Collado A, Torres-Cornejo A, Merino D,
466		de Los Santos-Gil I, Macias J, Gonzalez-Serrano M, Camacho A, Parra-Garcia G, Pineda
467		JA, Infecciosas SHSTotGHdlSAdE. 2011. Liver toxicity associated with antiretroviral
468		therapy including efavirenz or ritonavir-boosted protease inhibitors in a cohort of
469		HIV/hepatitis C virus co-infected patients. J Antimicrob Chemother 66:2605-2614.

- 470 14. Dave JA, Cohen K, Micklesfield LK, Maartens G, Levitt NS. 2015. Antiretroviral
- 471 Therapy, Especially Efavirenz, Is Associated with Low Bone Mineral Density in HIV-
- 472 Infected South Africans. PLoS One 10:e0144286.
- 473 15. Cavalcante GI, Capistrano VL, Cavalcante FS, Vasconcelos SM, Macedo DS, Sousa FC,
- 474 Woods DJ, Fonteles MM. 2010. Implications of efavirenz for neuropsychiatry: a review.
- 475 Int J Neurosci 120:739-745.
- 476 16. Kenedi CA, Goforth HW. 2011. A systematic review of the psychiatric side-effects of
 477 efavirenz. AIDS Behav 15:1803-1818.
- 478 17. Wang Z, Zheng Y, Liu L, Shen Y, Zhang R, Wang J, Lu H. 2013. High prevalence of
- 479 HIV-associated neurocognitive disorder in HIV-infected patients with a baseline CD4
 480 count </= 350 cells/muL in Shanghai, China. Biosci Trends 7:284-289.
- 481 18. Funes HA, Blas-Garcia A, Esplugues JV, Apostolova N. 2015. Efavirenz alters
- 482 mitochondrial respiratory function in cultured neuron and glial cell lines. J Antimicrob
 483 Chemother 70:2249-2254.
- 484 19. Anonymous. Panel on Antiretroviral Guidelines for Adult and Adolescents. Guidelines
- for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department
- 486 of Health and Human Services. January 29, 2008; 1-128. Accessed 09/25/08.
- 487 20. Scourfield A, Zheng J, Chinthapalli S, Waters L, Martin T, Mandalia S, Nelson M. 2012.
- 488 Discontinuation of Atripla as first-line therapy in HIV-1 infected individuals. AIDS
 489 26:1399-1401.
- 490 21. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. 1995. A novel assay for
- 491 apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic
- 492 cells using fluorescein labelled Annexin V. J Immunol Methods 184:39-51.

- 493 22. Ly JD, Grubb DR, Lawen A. 2003. The mitochondrial membrane potential (deltapsi(m))
 494 in apoptosis; an update. Apoptosis 8:115-128.
- 495 23. Brand MD, Nicholls DG. 2011. Assessing mitochondrial dysfunction in cells. Biochem J
 496 435:297-312.
- 497 24. El Hadri K, Glorian M, Monsempes C, Dieudonne MN, Pecquery R, Giudicelli Y,
- Andreani M, Dugail I, Feve B. 2004. In vitro suppression of the lipogenic pathway by the
 nonnucleoside reverse transcriptase inhibitor efavirenz in 3T3 and human preadipocytes
 or adipocytes. J Biol Chem 279:15130-15141.
- 501 25. Funes HA, Apostolova N, Alegre F, Blas-Garcia A, Alvarez A, Marti-Cabrera M,
- 502 Esplugues JV. 2014. Neuronal bioenergetics and acute mitochondrial dysfunction: a clue
- to understanding the central nervous system side effects of efavirenz. J Infect Dis
- 504 210:1385-1395.
- 505 26. Apostolova N, Gomez-Sucerquia LJ, Moran A, Alvarez A, Blas-Garcia A, Esplugues JV.
- 506 2010. Enhanced oxidative stress and increased mitochondrial mass during efavirenz-
- induced apoptosis in human hepatic cells. Br J Pharmacol 160:2069-2084.
- 508 27. Ganta KK, Mandal A, Chaubey B. 2017. Depolarization of mitochondrial membrane
- 509 potential is the initial event in non-nucleoside reverse transcriptase inhibitor efavirenz
- 510 induced cytotoxicity. Cell Biol Toxicol 33:69-82.
- 511 28. Gibellini L, De Biasi S, Nasi M, Carnevale G, Pisciotta A, Bianchini E, Bartolomeo R,
- 512 Polo M, De Pol A, Pinti M, Cossarizza A. 2015. Different origin of adipogenic stem cells
- 513 influences the response to antiretroviral drugs. Exp Cell Res 337:160-169.

514	29.	Rodriguez de la Concepcion ML, Yubero P, Domingo JC, Iglesias R, Domingo P,
515		Villarroya F, Giralt M. 2005. Reverse transcriptase inhibitors alter uncoupling protein-1
516		and mitochondrial biogenesis in brown adipocytes. Antivir Ther 10:515-526.
517	30.	Chacko BK, Kramer PA, Ravi S, Johnson MS, Hardy RW, Ballinger SW, Darley-Usmar
518		VM. 2013. Methods for defining distinct bioenergetic profiles in platelets, lymphocytes,
519		monocytes, and neutrophils, and the oxidative burst from human blood. Lab Invest
520		93:690-700.
521	31.	Wang R, Novick SJ, Mangum JB, Queen K, Ferrick DA, Rogers GW, Stimmel JB. 2015.
522		The acute extracellular flux (XF) assay to assess compound effects on mitochondrial
523		function. J Biomol Screen 20:422-429.
524	32.	Desler C, Hansen TL, Frederiksen JB, Marcker ML, Singh KK, Juel Rasmussen L. 2012.
525		Is There a Link between Mitochondrial Reserve Respiratory Capacity and Aging? J
526		Aging Res 2012:192503.
527	33.	Weber R, Ruppik M, Rickenbach M, Spoerri A, Furrer H, Battegay M, Cavassini M,
528		Calmy A, Bernasconi E, Schmid P, Flepp M, Kowalska J, Ledergerber B, Swiss HIVCS.
529		2013. Decreasing mortality and changing patterns of causes of death in the Swiss HIV
530		Cohort Study. HIV Med 14:195-207.
531	34.	Neuhaus J, Angus B, Kowalska JD, La Rosa A, Sampson J, Wentworth D, Mocroft A,
532		Insight S, groups Es. 2010. Risk of all-cause mortality associated with nonfatal AIDS and
533		serious non-AIDS events among adults infected with HIV. AIDS 24:697-706.
534	35.	Takemoto JK, Miller TL, Wang J, Jacobson DL, Geffner ME, Van Dyke RB,
535		Gerschenson M, Pediatric HCS. 2017. Insulin resistance in HIV-infected youth is
536		associated with decreased mitochondrial respiration. AIDS 31:15-23.

537	36.	Bumpus NN. 2011. Efavirenz and 8-hydroxyefavirenz induce cell death via a JNK- and
538		BimEL-dependent mechanism in primary human hepatocytes. Toxicol Appl Pharmacol
539		257:227-234.
540	37.	Hecht M, Erber S, Harrer T, Klinker H, Roth T, Parsch H, Fiebig N, Fietkau R, Distel LV.
541		2015. Efavirenz Has the Highest Anti-Proliferative Effect of Non-Nucleoside Reverse
542		Transcriptase Inhibitors against Pancreatic Cancer Cells. PLoS One 10:e0130277.
543	38.	Faltz M, Bergin H, Pilavachi E, Grimwade G, Mabley JG. 2017. Effect of the Anti-
544		retroviral Drugs Efavirenz, Tenofovir and Emtricitabine on Endothelial Cell Function:
545		Role of PARP. Cardiovasc Toxicol 17:393-404.
546	39.	Pilon AA, Lum JJ, Sanchez-Dardon J, Phenix BN, Douglas R, Badley AD. 2002.
547		Induction of apoptosis by a nonnucleoside human immunodeficiency virus type 1 reverse
548		transcriptase inhibitor. Antimicrob Agents Chemother 46:2687-2691.
549	40.	Ricci JE, Waterhouse N, Green DR. 2003. Mitochondrial functions during cell death, a
550		complex (I-V) dilemma. Cell Death Differ 10:488-492.
551	41.	Gottlieb E, Armour SM, Harris MH, Thompson CB. 2003. Mitochondrial membrane
552		potential regulates matrix configuration and cytochrome c release during apoptosis. Cell
553		Death Differ 10:709-717.
554	42.	Polo M, Alegre F, Funes HA, Blas-Garcia A, Victor VM, Esplugues JV, Apostolova N.
555		2015. Mitochondrial (dys)function - a factor underlying the variability of efavirenz-
556		induced hepatotoxicity? Br J Pharmacol 172:1713-1727.
557	43.	Ribas V, Garcia-Ruiz C, Fernandez-Checa JC. 2016. Mitochondria, cholesterol and
558		cancer cell metabolism. Clin Transl Med 5:22.

559	44.	Feeney ER, McAuley N, O'Halloran JA, Rock C, Low J, Satchell CS, Lambert JS,
560		Sheehan GJ, Mallon PW. 2013. The expression of cholesterol metabolism genes in
561		monocytes from HIV-infected subjects suggests intracellular cholesterol accumulation. J
562		Infect Dis 207:628-637.
563	45.	Yang T, Espenshade PJ, Wright ME, Yabe D, Gong Y, Aebersold R, Goldstein JL,
564		Brown MS. 2002. Crucial step in cholesterol homeostasis: sterols promote binding of
565		SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell
566		110:489-500.
567	46.	Staszewski S, Morales-Ramirez J, Tashima KT, Rachlis A, Skiest D, Stanford J, Stryker
568		R, Johnson P, Labriola DF, Farina D, Manion DJ, Ruiz NM. 1999. Efavirenz plus
569		zidovudine and lamivudine, efavirenz plus indinavir, and indinavir plus zidovudine and
570		lamivudine in the treatment of HIV-1 infection in adults. Study 006 Team. N Engl J Med
571		341:1865-1873.
572	47.	Kwara A, Lartey M, Sagoe KW, Court MH. 2011. Paradoxically elevated efavirenz
573		concentrations in HIV/tuberculosis-coinfected patients with CYP2B6 516TT genotype on
574		rifampin-containing antituberculous therapy. AIDS 25:388-390.
575	48.	Carr DF, la Porte CJ, Pirmohamed M, Owen A, Cortes CP. 2010. Haplotype structure of
576		CYP2B6 and association with plasma efavirenz concentrations in a Chilean HIV cohort. J
577		Antimicrob Chemother 65:1889-1893.
578	49.	Burger D, van der Heiden I, la Porte C, van der Ende M, Groeneveld P, Richter C,
579		Koopmans P, Kroon F, Sprenger H, Lindemans J, Schenk P, van Schaik R. 2006.
580		Interpatient variability in the pharmacokinetics of the HIV non-nucleoside reverse

581	transcriptase	e inhibitor	efavirenz:	the effect of	gender, rad	ce, and CYP2B	6 pol	ymorpl	hism
-----	---------------	-------------	------------	---------------	-------------	---------------	-------	--------	------

582 Br J Clin Pharmacol 61:148-154.

- 583 50. Gounden V, van Niekerk C, Snyman T, George JA. 2010. Presence of the CYP2B6 516G>
- 584 T polymorphism, increased plasma Efavirenz concentrations and early neuropsychiatric
- side effects in South African HIV-infected patients. AIDS Res Ther 7:32.
- 586 51. Lund KC, Peterson LL, Wallace KB. 2007. Absence of a universal mechanism of
- 587 mitochondrial toxicity by nucleoside analogs. Antimicrob Agents Chemother 51:2531588 2539.
- 589 52. Birkus G, Hitchcock MJ, Cihlar T. 2002. Assessment of mitochondrial toxicity in human
- 590 cells treated with tenofovir: comparison with other nucleoside reverse transcriptase

591 inhibitors. Antimicrob Agents Chemother 46:716-723.

- 592 53. McComsey GA, Kang M, Ross AC, Lebrecht D, Livingston E, Melvin A, Hitti J, Cohn
- 593 SE, Walker UA. 2008. Increased mtDNA levels without change in mitochondrial
- 594 enzymes in peripheral blood mononuclear cells of infants born to HIV-infected mothers
- on antiretroviral therapy. HIV Clin Trials 9:126-136.
- 596 54. Lu L, Katsaros D, Wiley A, Rigault de la Longrais IA, Puopolo M, Yu H. 2007.

597 Expression of MDR1 in epithelial ovarian cancer and its association with disease

- 598 progression. Oncol Res 16:395-403.
- 599
- 600
- 601

603	
604	
605	
606	
607	
608	
609	
610	
611	
612	
613	Figure Legends
614	Figure 1. Effect of efavirenz on cell viability and apoptosis in of CEM cells
615	Human T lymphoblastoid cell line (CEM cells) was treated with multiplicities of the plasma peak
616	concentrations (1x-, or 2xC _{max}) of Efaverinz (EFV), Tenofovir and Emtricitabine (TDF/FTC),
617	and TDF/FTC/EFV. A. Each day, aliquots of the cell culture were collected and live cells were
618	counted with Trypan blue staining using hemocytometer, percentage of live cells was compared
619	with DMSO-treated control cells. B. Apoptosis was assessed by staining with an FITC Annexin
620	V Apoptosis Detection Kit I. Bar graphs represent proportion of apoptotic cells after 1 and 2

621 days of treatment compared to DMSO-treated cells. Data represent at least 3 independent

experiments and plotted as mean \pm SD. P-values are two sided and considered significant if <0.05 (*), <0.01 (**), or <0.001 (***).

624

625 Figure 2. Effect of efavirenz treatment on mitochondrial membrane potential, ROS production and mitochondrial DNA content. Human T lymphoblastoid cell line (CEM cells) was treated 626 627 with multiplicities of the plasma peak concentrations $(1x-, or 2xC_{max})$ of Efavirenz (EFV), 628 Tenofovir and Emtricitabine (TDF/FTC), and TDF/FTC/EFV. A. At day 1 and 2 the cells were 629 harvested and interrogated for mitochondrial membrane potential ($\Delta \Psi$) using TMRE-630 Mitochondrial Membrane Potential Assay Kit with Flow cytometry. Inactive mitochondria had decreased membrane potential and failed to sequester TMRE. The bar graph represents the 631 relative decrease of mitochondrial $\Delta \Psi$ in cells treated with antiretroviral drugs compared to 632 DMSO-treated control cells. B. Production of ROS was determined using MitoSOX[™] assay. 633 The cells were washed once with wash buffer before incubation with 5 µM MitoSOXTM reagent 634 635 working solution at room temperature for 10 min. The cells were then washed once before running on LSRII flow cytometry (Beckman Coulter). The bar graph represents the fold change 636 in ROS production in cells treated with antiretroviral drugs compared to DMSO-treated control 637 638 cells. C. The relative mtDNA content was determined on day 2 of culture as the ratio of mtDNA to nuclear DNA using quantitative PCR. Data represent at least 3 independent experiments and 639 640 plotted as mean \pm SD. P-values are two sided and considered significant if <0.05 (*), < 0.01 (**), or < 0.001 (***). 641

642

643 Figure 3. Effect of efavirenz treatment on mitochondrial respiratory function.

Human T lymphoblastoid cell line (CEM cells) was treated with multiplicities of the plasma peak

645 concentrations (1x-, or 2xC_{max}) of Efaverinz (EFV), Tenofovir and Emtricitabine (TDF/FTC), and TDF/FTC/EFV for 2 days. The cells were counted and washed with the calibration medium 646 and 1.2×10^5 cell were added to each of 1% gelatin coated 96 wells in triplication. A sequential 647 addition of specific inhibitors to mitochondria complex I, II, III and IV: 2 mM oligomycin (I), 648 0.6 mM FCCP (II), 0.4 mM FCCP (III) and 1 mM rotenone plus 1 mM antimycin A were done 649 650 according to manufacturer's instructions. A. Graphical representation of the OCR measurement over time. To estimate the proportion of OCR coupled to ATP synthesis, oligomycin (an 651 inhibitor of ATP synthase—Complex V) was injected. To determine the maximal OCR, the 652 653 proton ionophore (uncoupler) carbonylcyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) was injected, which stimulates respiration as the mitochondrial inner membrane becomes 654 655 permeable to protons and electron transfer is no longer constrained by the proton gradient. 656 Maximal OCR is controlled by ATP turnover (primarily involving the adenine nucleotide translocase, phosphate transporter and ATP synthase) and substrate oxidation-substrate uptake, 657 processing enzymes, relevant ETC complexes, pool sizes of ubiquinone and cytochrome c, and 658 O2 concentration. Finally, the high-affinity ETC inhibitors rotenone and antimycin A were added 659 to inhibit the electron flux through Complex I and Complex III, respectively. The remaining 660 661 OCR corresponds to the non-mitochondrial (or extramitochondrial) oxygen O_2 consumption. B. Quantification of the mean OCR in CEM cells exposed to different treatment is shown for 662 respiration under basal conditions (basal) and after the addition of oligomycin (proton leak) and 663 664 FCCP (maximal respiration). The basal respiration rate minus the respiration rate recorded with oligomycin provides a measure of OCR due to ATP turnover whereas the respiration rate 665 666 obtained with FCCP minus the basal O_2 consumption values represents the reserve respiratory 667 capacity. Non-mitochondrial respiration (rotenone plus antimycin A) was subtracted from each

668 condition. C, Relative parameters of mitochondrial respiratory function and basal respiratory. The histograms show several parameters where data are expressed as the percentage of basal 669 670 respiration (mitochondrial respiration plus non-mitochondrial respiration). D. Representation of the mean RCR. The RCR was calculated as the ratio between the maximal uncoupled 671 mitochondrial respiration and mitochondrial respiration. Data (mean \pm SD; n=3) were compared 672 673 with DMSO treated cells and analyzed by Student's t-test. P-values are two sided and considered significant if <0.05 (*), < 0.01 (**), or < 0.001 (***). 674 675 676 Figure 4. Effect of Efavirenz treatment on global gene expression. Human T lymphoblastoid cell line (CEM cells) was treated with 1xC_{max} of Efavirenz (EFV), 677 4xC_{max} of Tenofovir (TDF), or Emtricitabine (FTC) alone or in combination (TDF/FTC) for two 678 days. The cells were collected and total RNA was extracted using TRIzol reagent. 100 ng of total 679 RNA was amplified and labeled using the Whole-Transcript Sense Target Labeling Protocol. 680 681 Affymetrix Gene Chip Human Gene 2.0 ST arrays were hybridized and scanned for signals. Each experiment was repeated on at least three occasions. Affymetrix Transcriptome Analysis 682 Console TAC 3.1 was used to analyze the result. One-Way ANOVA was used and significance 683 684 was achieved when fold change was ≥ 2 or ANOVA p-value < 0.05. A. The number of differentially expressed genes. B. Genes perturbed by treatment of CEM cells with EVF. C. 685 Genes perturbed by treatment of CEM cells with TDF/FTC. 686 687 Figure 5. Effect of Efavirenz treatment on the expression of cholesterol biosynthesis. 688 689 Human T lymphoblastoid cell line (CEM cells) was treated with multiplicities of the plasma peak 690 concentrations (1x-, or 2xC_{max}) of Efavirenz (EFV), Tenofovir and Emtricitabine (TDF/FTC), At

- day 2, the cells were harvested and RNA were extracted. Real-time RT-PCR of selected genes
- 692 whose expression levels were normalized to the expression of housekeeping gene-GAPDH. Data
- (mean \pm SD, n = 3), are represented as fold change in expression compared with cells treated
- with DMSO. A. Fold change in expressions of HMGCS and HMGCR; B. Fold change in
- expressions of INSIG-1 and INSIG-2; C. Fold change in expressions of SREBP1 and SREBP2;
- D. Fold change in expressions of LDLR and SQLE; and E. Fold change in expressions of
- 697 PRKAA1, PRKAA2, and PRKAB. Data represent at least 3 independent experiments and plotted
- as mean \pm SD. P-values are two sided and considered significant if <0.05 (*), < 0.01 (**), or <
- 699 0.001 (***).

700

Figure 1

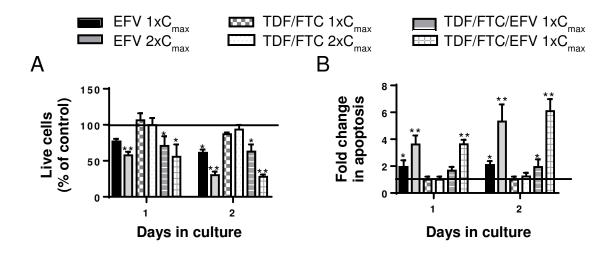


Figure 1. Effect of efavirenz on cell viability and apoptosis in of CEM cells Human T lymphoblastoid cell line (CEM cells) was treated with multiplicities of the plasma peak concentrations (1x-, or $2xC_{max}$) of Efaverinz (EFV), Tenofovir and Emtricitabine (TDF/FTC), and TDF/FTC/EFV. A. Each day, aliquots of the cell culture were collected and live cells were counted with Trypan blue staining using hemocytometer, percentage of live cells was compared with DMSO-treated control cells. B. Apoptosis was assessed by staining with an FITC Annexin V Apoptosis Detection Kit I. Bar graphs represent proportion of apoptotic cells after 1 and 2 days of treatment compared to DMSO-treated cells. Data represent at least 3 independent experiments and plotted as mean \pm SD. P-values are two sided and considered significant if <0.05 (*), < 0.01 (**), or <0.001 (***).

Figure 2

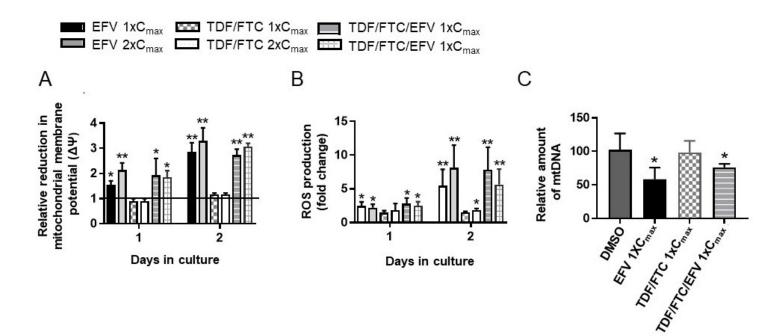


Figure 2. Effect of efavirenz treatment on mitochondrial membrane potential, ROS production and mitochondrial DNA content. Human T lymphoblastoid cell line (CEM cells) was treated with multiplicities of the plasma peak concentrations (1x-, or $2xC_{max}$) of Efavirenz (EFV), Tenofovir and Emtricitabine (TDF/FTC), and TDF/FTC/EFV. A. At day 1 and 2 the cells were harvested and interrogated for mitochondrial membrane potential ($\Delta\Psi$) using TMRE-Mitochondrial Membrane Potential Assay Kit with Flow cytometry. Inactive mitochondria had decreased membrane potential and failed to sequester TMRE. The bar graph represents the relative decrease of mitochondrial $\Delta\Psi$ in cells treated with antiretroviral drugs compared to DMSO-treated control cells. B. Production of ROS was determined using MitoSOXTM assay. The cells were washed once with wash buffer before incubation with 5 μ M MitoSOXTM reagent working solution at room temperature for 10 min. The cells were then washed once before running on LSRII flow cytometry (Beckman Coulter). The bar graph represents the fold change in ROS production in cells treated with antiretroviral drugs compared to DMSO-treated control cells treated with antiretroviral drugs compared to DMSO-treated control cells treated with antiretroviral drugs compared to DMSO-treated control cells treated with antiretroviral drugs compared to DMSO-treated control cells treated with antiretroviral drugs compared to DMSO-treated control cells. C. The relative mtDNA content was determined on day 2 of culture as the ratio of mtDNA to nuclear DNA using quantitative PCR. Data represent at least 3 independent experiments and plotted as mean ± SD. P-values are two sided and considered significant if <0.05 (+), < 0.01 (++), or <0.001 (++).

Figure 3

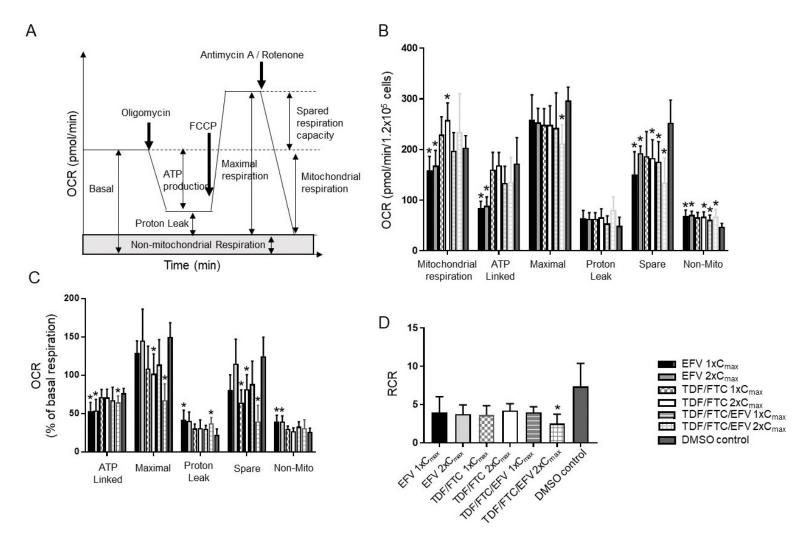


Figure 3. Effect of efavirenz treatment on mitochondrial respiratory function. Human T lymphoblastoid cell line (CEM cells) was treated with multiplicities of the plasma peak concentrations (1x-, or 2xC_{max}) of Efaverinz (EFV), Tenofovir and Emtricitabine (TDF/FTC), and TDF/FTC/EFV for 2 days. The cells were counted and washed with the calibration medium and 1.2x10⁵ cell were added to each of 1% gelatin coated 96 wells in triplication. A sequential addition of specific inhibitors to mitochondria complex I, II, III and IV: 2 mM oligomycin (I), 0.6 mM FCCP (II), 0.4 mM FCCP (III) and 1 mM rotenone plus 1 mM antimycin A were done according to manufacturer's instructions. A. Graphical representation of the OCR measurement over time. To estimate the proportion of OCR coupled to ATP synthesis, oligomycin (an inhibitor of ATP synthase—Complex V) was injected. To determine the maximal OCR, the proton ionophore (uncoupler) carbonylcyanide-4-

(trifluoromethoxy)phenylhydrazone (FCCP) was injected, which stimulates respiration as the mitochondrial inner membrane becomes permeable to protons and electron transfer is no longer constrained by the proton gradient. Maximal OCR is controlled by ATP turnover (primarily involving the adenine nucleotide translocase, phosphate transporter and ATP synthase) and substrate oxidation-substrate uptake, processing enzymes, relevant ETC complexes, pool sizes of ubiquinone and cytochrome c, and O2 concentration. Finally, the high-affinity ETC inhibitors rotenone and antimycin A were added to inhibit the electron flux through Complex I and Complex III, respectively. The remaining OCR corresponds to the non-mitochondrial (or extramitochondrial) oxygen O₂ consumption. B. Quantification of the mean OCR in CEM cells exposed to different treatment is shown for respiration under basal conditions (basal) and after the addition of oligomycin (proton leak) and FCCP (maximal respiration). The basal respiration rate minus the respiration rate recorded with oligomycin provides a measure of OCR due to ATP turnover whereas the respiration rate obtained with FCCP minus the basal O₂ consumption values represents the reserve respiratory capacity. Non-mitochondrial respiration (rotenone plus antimycin A) was subtracted from each condition. C, Relative parameters of mitochondrial respiratory function and basal respiratory. The histograms show several parameters where data are expressed as the percentage of basal respiration (mitochondrial respiration plus non-mitochondrial respiration). D. Representation of the mean RCR. The RCR was calculated as the ratio between the maximal uncoupled mitochondrial respiration and mitochondrial respiration. Data (mean \pm SD; n=3) were compared with DMSO treated cells and analyzed by Student's t-test. P-values are two sided and considered significant if <0.05 (*), < 0.01 (**), or <0.001 (***).

Figure 4

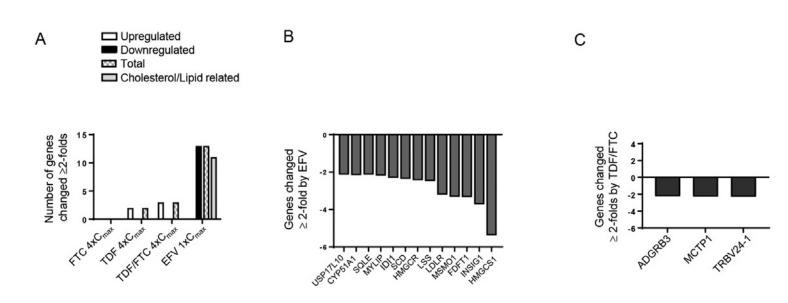


Figure 4. Effect of Efavirenz treatment on global gene expression.

Human T lymphoblastoid cell line (CEM cells) was treated with $1xC_{max}$ of Efavirenz (EFV), $4xC_{max}$ of Tenofovir (TDF), or Emtricitabine (FTC) alone or in combination (TDF/FTC) for two days. The cells were collected and total RNA was extracted using TRIzol reagent. 100 ng of total RNA was amplified and labeled using the Whole-Transcript Sense Target Labeling Protocol. Affymetrix Gene Chip Human Gene 2.0 ST arrays were hybridized and scanned for signals. Each experiment was repeated on at least three occasions. Affymetrix Transcriptome Analysis Console TAC 3.1 was used to analyze the result. One-Way ANOVA was used and significance was achieved when fold change was ≥ 2 or ANOVA p-value < 0.05. A. The number of differentially expressed genes. B. Genes perturbed by treatment of CEM cells with EVF. C. Genes perturbed by treatment of CEM cells with TDF/FTC.

Figure 5

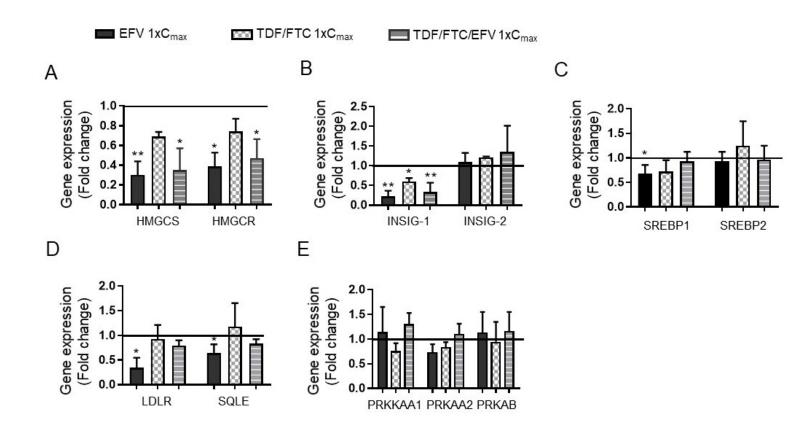


Figure 5. Effect of Efavirenz treatment on the expression of cholesterol biosynthesis.

Human T lymphoblastoid cell line (CEM cells) was treated with multiplicities of the plasma peak concentrations (1x-, or $2xC_{max}$) of Efavirenz (EFV), Tenofovir and Emtricitabine (TDF/FTC), At day 2, the cells were harvested and RNA were extracted. Real-time RT-PCR of selected genes whose expression levels were normalized to the expression of housekeeping gene-GAPDH. Data (mean ± SD, n = 3), are represented as fold change in expression compared with cells treated with DMSO. A. Fold change in expressions of HMGCS and HMGCR; B. Fold change in expressions of INSIG-1 and INSIG-2; C. Fold change in expressions of SREBP1 and SREBP2; D. Fold change in expressions of LDLR and SQLE; and E. Fold change in expressions of PRKAA1, PRKAA2, and PRKAB. Data represent at least 3 independent experiments and plotted as mean ± SD. P-values are two sided and considered significant if <0.05 (*), < 0.01 (**), or <0.001 (***).