
Heterogeneous Viral Strategies Promote Coexistence in Virus-Microbe Systems

Hayriye Gulbudak1, ∗ and Joshua S. Weitz2, 3

1 Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
2 School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA

3 School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
(Dated: April 7, 2018)

Viruses of microbes, including bacterial viruses (phage), archaeal viruses, and eukaryotic viruses,
can influence the fate of individual microbes and entire populations. Here, we model distinct modes
of virus-host interactions and study their impact on the abundance and diversity of both viruses
and their microbial hosts. We consider two distinct viral populations infecting the same microbial
population via two different strategies: lytic and chronic. A lytic strategy corresponds to viruses
that exclusively infect and lyse their hosts to release new virions. A chronic strategy corresponds to
viruses that infect hosts and then continually release new viruses via a budding process without cell
lysis. The chronic virus can also be passed on to daughter cells during cell division. The long-term
association of virus and microbe in the chronic mode drives differences in selective pressures with
respect to the lytic mode. We utilize invasion analysis of the corresponding nonlinear differential
equation model to study the ecology and evolution of heterogenous viral strategies. We first inves-
tigate stability of equilibria, and characterize oscillatory and bistable dynamics in some parameter
regions. Then, we derive fitness quantities for both virus types and investigate conditions for com-
petitive exclusion and coexistence. In so doing we find unexpected results, including a regime in
which the chronic virus requires the lytic virus for survival and invasion.

I. INTRODUCTION

Viruses shape the population and evolutionary dynam-
ics of microbes [1–7]. For example, microbes can evolve
resistance to infection and also acquire immunity to
infection via intracellular defense mechanisms including
resistance-modification, CRISPR-Cas, BREX and other
systems [9, 10]. The abundance and diversity of virus-
es, along with microbes whom they infect, are well doc-
umented. The interactions between viruses and their
microbial hosts play a central role in maintenance of
virus-microbial biodiversity and variation in functional
traits within virus-microbial communities [1, 12, 14].

Viruses can interact with microbial hosts given diver-
gent strategies, including lytic, lysogenic, and chronic
modes of infection. Virulent viruses reproduce exclusive-
ly by lysing their hosts. In contrast, temperate viruses
can lyse their hosts or integrate their genomes with that
of their hosts thereby forming a lysogen, i.e., replicating
with the same cell lineage [18, 19]. In some cases, a virus
can be temperate for one host and virulent for another
[20]. Despite there is a growing interest in filamentous
phage [17], the chronic infection mode is less well char-
acterized. In a chronic infection, the viral genome nei-
ther integrates into the host genome nor induces lysis.
Instead, the virus forms a persistent infection where
progeny may bud from the cell as the viral genome is
passed to daughter cells asymmetrically after division [1].

Differing viral infection modes can also influence host
fitness in distinct ways, which may in turn impact the
virus-microbe community composition. For example
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temperate viruses may enable infected cells to resist sub-
sequent infections via a mechanism of ’super infection
immunity’[11]. Yet, lysogenic modes of infection can also
have fitness costs for microbial hosts [31]. In contrast,
viruses that can only lyse their hosts act as predators of
microbes and can decrease overall host population fitness
[1]. However, the evolution of resistance to lytic viruses
by microbial hosts can incur fitness costs [8]. Chronic
infections may also prevent infected cells against subse-
quent lytic viral infection (via superinfection exclusion).
However such modes may also carry costs evidenced by
the variety of resistance mechanisms that hosts display
against them [1].

Mathematical models have provided some insights into
how distinct infection modes affect the dynamics of inter-
acting viral populations and, in turn, shape evolutionary
dynamics. In doing so, the bulk of evolutionary dynam-
ic models of virus-microbe interactions focus on the lytic
mode. Many studies have addressed how inter- and intra-
species interactions shape the evolution of virulent virus-
es and their microbial hosts [14, 22, 23]. For example,
researchers have studied the effect of limited resources
on the population dynamics of microbial or virus strains
in the paradigm of coexistence or exclusion of species
[24, 25]. Competing bacteria and viruses may persist
together as a result of predator-mediated coexistence
when multiple bacteria and viral species interact given
emergent variation in resistance and virulence [4, 26–28].
A few studies have expanded beyond this lytic paradigm
to address the question of why viruses evolve lysogeny in
the first place [32]. Recent models of evolution in fluctu-
ating environments suggest that the switch between lysis
and lysogeny may be shaped by long-term optimization
of fitness, leading to the evolution of bet-hedging like
strategies[21]. Recent discoveries of the chronic mode of
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infection raises a related class of questions: what are the
costs and benefits of lytic and chronic modes when virus-
es utilizing these heterogeneous strategies compete for a
common host?

In this paper, we analyze the population and evolu-
tionary dynamics of viruses and microbial hosts given
concurrent lytic and chronic modes of infection. To do
so, we develop a nonlinear model of interactions between
lytic and chronic viruses and a common host popula-
tion. We first analyze infection dynamics arising from
chronic infections, and identify the emergence of com-
plex bifurcations as the derived viral reproduction num-
ber varies. The reproduction number and bifurcations
are distinct from those in models of lytic infection dynam-
ics. The broader conceptual foundations underlying the
viral reproduction number analyzed for a spectrum of
viral strategies is presented in our companion work [29].
In this paper, we then focus on the system with lytic and
chronically infecting virus strains interacting together.
Through analytical and numerical methods, we deter-
mine the parameter regimes and underlying mechanisms
leading to coexistence or exclusion of the distinct virus
types, including a regime in which the chronic virus -
counterintuitively - requires the virulent lytic virus for
survival and invasion.

II. METHODS

Here we propose a model of virus-host interac-
tions. The model describes the dynamics of interactions
between multiple virus strains and one type host. In the
model, S(t), I(t), C(t) represent the number of suscepti-
ble, infected, chronically infected cells at time t, respec-
tively, and VL(t), VC(t) depict the density of free lytic
and chronically infecting virus particles, respectively. We
assume that during infective process, the lytic (or chron-
ically infecting) virus is absorbed and infects the suscep-

tible cells with a rate φ (or φ̃). If lytic infection takes
place, host cells lyse with a rate η and produce β viable
virions. If a chronic infection takes place, chronically
infecting viruses produce progeny, which are slowly bud-
ded off the cell with a rate α or passed down to daughter

cells and divide with a rate r̃(1 − N

K
). Chronic infec-

tions are assumed not to lead to direct cellular lysis as a
means to release virus particles. Cells die with a rate d
and viruses decay with a rate µ. We assume that chronic
infection is costly, i.e., such that chronically infected cells
die with a rate d̃(≥ d).

A nonlinear differential equation system, describing
the interactions and the dynamics of host and virus pop-

ulations, can be written as follows:

Susceptible
dS

dt
=

logistic growth︷ ︸︸ ︷
rS(1− N

K
) −

absorption︷ ︸︸ ︷
S(φVL + φ̃VC)−

death︷︸︸︷
dS

Infected
dI

dt
=

infection︷ ︸︸ ︷
φSVL −

natural death︷︸︸︷
dI −

death due to lysis︷︸︸︷
ηI

Lytic virus
dVL
dt

=

virus production due to lysis︷︸︸︷
βηI −

absorption︷ ︸︸ ︷
φSVL

−
viral decay︷︸︸︷
µVL ,

Chro. Inf.
dC

dt
=

chro. inf. logistic growth︷ ︸︸ ︷
r̃C(1− N

K
) +

chronic inf.︷ ︸︸ ︷
φ̃SVC

−

natural death︷︸︸︷
d̃C

Chronic virus
dVC
dt

=

virus prod. due to budding︷︸︸︷
αC −

absorption︷ ︸︸ ︷
φ̃SVC

−
viral decay︷︸︸︷
µVC ,

(I)

where N is the total number of cells, N = S + I + C.

We do not consider co-infection or superinfection
due to cross immunity provided by each viral infection
against the other strain (superinfection exclusion). In
particular, we assume that when infection of a host
cell with two virus particles takes place, competition
between virus particles in a cell for a limited amount of
key enzyme more often results in exclusion of all but one
of them (key enzyme hypothesis [20]). The logistic term
in the cell growth rate depicts the competition between
infected and susceptible cells for limited resources with
carrying capacity K.

In this paper, we are interested in studying the
outcome of competing lytic and chronic strains on
virus-host ecology and evolution in model (I). To do
so, we first explore and summarize infection dynamics
under each type of virus infection mode separately in
next section (section (III)), which will also facilitate
analysis of the multi-strain model in Section IV.

III. INFECTION DYNAMICS

A. Lytic Infection Dynamics

First we reduce the system of equations (I) to a three-
dimensional system by taking VC(t) = 0 and C(t) = 0,
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FIG. 1: Dynamics of the lytic-subsystem (II) with susceptible host, S(t), lytic infected host, I(t), and lytic infecting free virus
population density, VL(t), at time t. a) Infection dies out and solutions converge to infection-free equilibrium E0. b) Solutions
converge to steady-state equilibrium E+L . c) Stable positive equilibrium, E+L , undergoes Hopf bifurcation and solutions present
sustainable oscillations, converging to a limit cycle. Common parameters for the dynamics are given in the Table IV. The
initial virus and host densities are V L0 = 0.04×S0 viruses/ml, S0 = 8.3× 108 hosts/ml. For part (a) φ = .0.1× 10−11, part (b)
φ = 0.1× 10−10 and part (c) φ = 0.55× 10−9.5 with η = 1.5.

in other words, we consider the following subsystem with
only lytic viral infection:

dS

dt
= rS(1− N

K
)− φSVL − dS

dI

dt
= φSVL − (d+ η)I

dVL
dt

= βηI − φSVC − µVL.

(II)

Previous results suggest that lytic virus-host inter-
actions results in three distinct asymptotic outcomes
(assuming r > d): virus clearance, steady state or oscilla-
tory dynamics [23]. Indeed, the lytic subsystem (II) has
an infection-free equilibrium,

E0 = (S0, 0, 0) , where S0 = K(1− d

r
), (1)

and persistence versus extinction depends upon the lytic
infection threshold RL

0 :

RL
0 =

φS0

φS0 + µ

βη

(η + d)
.

The reproduction number RL
0 is formulated differently

than the threshold derived in [23], but both formulas
are equivalent as threshold quantities. Here, the bio-
logical interpretation of RL

0 is the average number of
secondary cases (infected with lytic viruses) produced
by one infected cell (or virus) during its life span in a
wholly susceptible microbial cell population. The first

term
φS0

φS0 + µ
is the probability of a virus infecting a

cell before decaying and the second term
βη

(η + d)
quanti-

fies the average number of new viruses produced by one
infected cell in its lifetime. Berretta and Kuang [23] show

(in a rescaled version of (II)) the following: If RL
0 < 1,

the lytic virus population eventually dies out and the
susceptible cell population converges to the equilibrium
S0. Otherwise if RL

0 > 1, the virus (uniformly) persists
and the populations converge to the positive equilibrium
E+ = (S+

L , I
+
L , V

+
L ), with

S+
L =

µ(η + d)

φ(βη − (η + d))
, (2)

I+L =
µV +

L

(βη − (η + d))
, (3)

V +
L =

r(η + d)(φS0 + µ)(RL
0 − 1)

φ(µr +Kφ(βη − (η + d)))
. (4)

if it is locally asymptotically stable. Yet under certain
conditions, this equilibrium E+ loses its stability through
Hopf bifurcation, in which case both virus-hosts popula-
tions undergo sustained oscillations [23] (see Fig. 1).

B. Chronic Infection Outcomes

Next, we consider the subsystem of the model (I),
where VL(t) = 0 and I(t) = 0, describing the interac-
tions and the dynamics of host and chronically infecting
virus populations:

dS

dt
= rS(1− N

K
)− φ̃SVC − dS

dC

dt
= r̃C(1− N

K
) + φ̃SVC − d̃C

dVC
dt

= αC − φ̃SVC − µVC ,

(III)

where N is the total number of cells, N = S + C.
Both lytic-only and chronic-only subsystems have the
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FIG. 2: Bistable dynamics displayed by chronic-only system (III). a) Phase plane of the system (III), where bistability occurs
with local stable chronic-only equilibrium Ec = (0, C0, Vc) and infection-free equilibrium E0 = (S0, 0, 0). b) Corresponding time
dependent solutions of the system (III). Chronically infected cells competitively exclude the susceptible cells when the initial
chronic virus density, V C0 , is high or vice versa for low initial virus density size V C0 . The parameter values are identical to the
ones in Table I, except φ̃ = 1.5 × 10−9 ml/hr, r̃ = 0.08 hrs −1, α = 1/27. The initial virus and host densities are S0 = 108

viruses/ml, C0 = 10 hosts/ml, V C0 = 103 hosts/ml (low density) and VC(0) = 109 hosts/ml (high density). c) Phase plane of
the system (III), where bistability occurs with infection free equilibrium E0 and positive equilibrium E+C = (S+

C , C
+
C , V

+
C ), where

susceptible and chronically infected cells coexist. d) Corresponding time dependent solutions of the system (III). Bistability
occurs with positive equilibrium (with high V C0 ) and infection free equilibrium (with low V C0 ). The parameter values are

identical to the ones in part (a)-(b), except φ̃ = 10−9 ml/hr. The initial virus and host densities are S0 = 2× 108 viruses/ml,

C0 = 105 hosts/ml, V C0 = 102 hosts/ml (low density) and V C0 = 5× 10(8) hosts/ml (high density).

same infection-free equilibrium, E0, characterized by S0,
the equilibrium level of susceptible cells in the absence
of infection. Utilizing the Next Generation Matrix
Approach (see Appendix B 1), we obtain the reproduc-
tion number of chronically infecting virus RC

0 :

RC
0 =

r̃

d̃
(1− S0

K
) +

φ̃S0

φ̃S0 + µ

α

d̃
.

The threshold, RC
0 , gives the average number of sec-

ondary chronically infected cells produced by one chroni-
cally infected cell during the life span in a wholly suscep-

tible cell population. The first term
r̃

d̃
(1−S0

K
) is the aver-

age number of offsprings produced by an average chron-
ically infected cell during its life span (through vertical

transmission) and the second term
φ̃S0

φ̃S0 + µ

α

d̃
describes

the average number of secondary chronically infected cas-
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FIG. 3: Distinct chronic infection regimes and complex bifurcation dynamics displayed by varying parameters. a)Distinct
chronic infection regimes when α = 1/21 b) Corresponding bifurcation diagram of the chronic subsystem (displayed in the

parameter region part (a)) when φ̃ = 1.6× 10−9 (See the vertical dashed red line). c) Distinct chronic infection regimes when

α = 1/28, (d) Corresponding bifurcation diagram when φ̃ = 2× 10−9. e) Distinct chronic infection regimes when α = 1/17, f)

Corresponding bifurcation diagram when φ̃ = 1.25× 10−9. The rest of the parameter values are identical to the ones in Table
I. Sustained oscillations, obtained via Hopf bifurcation, is shown with ?.

es produced by one chronically infected cell during its life span among completely susceptible cell population
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(through horizontal transmission). Notice the additional
first term compared with the lytic reproduction number
RC

0 . So even in the absence of horizontal chronic infec-

tion (φ̃ = 0), chronic viruses and infected cells can persist
so long as:

RC
0 =

r̃

d̃
(1− S0

K
) > 1.

The chronic subsystem (III) exhibits more possible
boundary equilibria than the lytic subsystem (II). There
is the infection-free equilibrium E0 as defined for the lytic
subsystem (1). In addition, there can be another bound-
ary equilibrium, namely a chronic-only equilibrium given
by

Ec = (0, C0, Vc), with C0 = K(1− d̃

r̃
) and Vc =

α

µ
C0,

(5)

which exists when d̃ < r̃. The chronic subsystem (III)
also can have one or two positive interior equilibria,

E+C,i = (S+
C,i, C

+
C,i, V

+
C,i), where (6)

S+
C,i =

−a1 ±
√
a21 − 4a0a3

2a0
,

C+
C,i = (B − r

r̃
)S+

C,i +
µ

φ̃S0

B, (7)

V +
C,i =

αC+
C,i

φ̃S+
C,i + µ

,

with

a0 = φ̃(B − r

r̃
+ 1)

a1 = (B − r

r̃
+ 1)µ+ φ̃(

µ

φ̃
B − C0 −

Kα

r̃
)

a2 = µ(
µ

φ̃
B − C0)

and B = (
r

Kα
(S0 − C0)) (for derivations, see Appendix

C 2). Finally, the trivial community collapse equilibrium,
E00 = (0, 0, 0), always exists, but is unstable as long

as R0
0 < 1, where R0

0 =
r

d
. For the rest of the paper,

we assume R0
0 > 1, which is a necessary and sufficient

condition for existence of the infection-free equilibrium
E0 = (S0, 0, 0).

Given all possible equilibria of the chronic subsystem,
the stability analysis of the system (III) provide us cru-
cial information for the complex dynamics displayed by
the system (III). First, if RC

0 < 1, then E0 is locally
asymptotically stable (Theorem B.1 in Appendix (B 1)).
Yet, this condition does not guarantee extinction of the

virus for all initial conditions. In particular, there are
parameter regimes with bistable dynamics or bistability,
which generally refers to a dynamical system containing
multiple stable equilibria and/or limit cycles with dis-
tinct basins of attraction [33]. In other words, the initial
virus or infected cell density affects to which attractor
the solution converges.

A necessary condition for occurrence of bistability can
be analytically expressed as a local condition at RC

0 =
1. Considering r̃ as a bifurcation parameter, backward
bifurcation occurs at the critical bifurcation point (r̃ =
r̃c, C

+
C = 0), where RC

0 (r̃c) = 1, if the following condition
satisfies:

µr
[
µr +Kφ̃(r + d̃)

]
(d− d̃) + (α− d̃)φ̃r2

[
φ̃(S0)2 +Kµ

]
(8)

+Kµφ̃d̃rd < 0

(for derivation, see Appendix (C 3)). This condition signals
the presence of an unstable positive interior equilibrium
when RC0 < 1, but sufficiently close to one, which will
intersect with the infection-free equilibrium E0 at RC0 = 1,
exchange stability and become negative when RC0 > 1. Note
that backward bifurcation refers to the slope of the positive
equilibrium at this transcritical bifurcation. Transcritical
bifurcation is a type of bifurcation, where at the critical value
of r̃c, the stability of two equilibria with one stable and one
unstable equilibrium, switches as they pass through at this
critical point. It is a backward bifurcation when the system
exhibits an unstable positive interior equilibrium along with
the stable infection-free equilibrium E0 (or stable chronic-only
equilibrium Ec). The unstable positive equilibrium (when
RC0 < 1), which satisfies one of the equations (6), forms part
of a separatix, separating basins of attraction of distinct
attractors. One of the attractors is E0, since RC0 < 1 is the
condition for local stability. Interestingly, the other attractor
can vary depending on parameter region, as model (III)
displays multiple types of bistable dynamics.

TABLE I: Lytic & Chronic Threshold Quantities

Reproduction numbers Expression

Community collapse R0
0 =

r

d

Lytic infection RL0 =
φS0

φS0 + µ

βη

(η + d)

Chronic infection RC0 =
r̃

d̃
(1− S0

K
) +

φ̃S0

φ̃S0 + µ

α

d̃

Susceptible invasion RC0
S =

S0

C0
− Kφ̃α

rµ

Invasion quantities Expression

Lytic invasion RLinv =
βη

η + d

φS+
C

φS+
C + µ

Chronic invasion RCinv =
r̃

d̃
(1− N+

L

K
) +

φ̃S+
L

φ̃S+
L + µ

α

d̃

One form of bistability in model (III) occurs when both
the infection-free equilibrium E0 and the chronic-only equilib-
rium Ec are locally stable, and thus are both attractors. The
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TABLE II: Lytic & Chronic Equilibria & Stability Conditions

Equi. (Lytic-E∗) S∗ I∗ V ∗ Stability conditions

E00 0 0 0 R0
0 < 1

E0 S0 0 0 RL0 < 1

E+L
(∗) S+

L I+L V +
L See [23]

Equi. (Chronic-E∗) S∗ C∗ V ∗ Stability conditions

E00 0 0 0 r < d

E0 S0 0 0 RC0 < 1

Ec 0 C0 Vc RC0
S < 1

E+C,i
(∗),(∗∗) S+

C,i C+
C,i V +

C,i See Section (C 4)

(∗) It can undergo Hopf bifurcation.
(∗∗) Existence of one or both of these positive interior equi-

libria when RC0 < 1 indicates bistability.

condition for local asymptotic stability of Ec (Theorem C.2 in
Appendix (C 1)) is given by

S0

C0
− 1 <

kφ̃α

rµ
. (9)

We define the susceptible invasion reproduction number (cal-
culated at the chronic-only equilibrium) as:

RC0
S =

S0

C0
− Kφ̃α

rµ
.

If the threshold quantity RC0
S < 1, the chronic-only equi-

librium Ec is locally asymptotically stable, and otherwise if
RC0
S > 1, then Ec is unstable. Again considering r̃ as a bifur-

cation parameter, there is a transcritical bifurcation point
(r̃ = r̃b, C

+
C = C0), where RC0

S (r̃b) = 1. Here the chronic-
only equilibrium Ec exchanges stability with a positive interi-
or equilibrium and the S component of this equilibrium, S+

C ,
becomes negative. Considering r̃ as a bifurcation parameter,
backward bifurcation occurs at the critical bifurcation point
(r̃ = r̃b, C

+
C = C0), where RC0

S (r̃b) = 1, if the following con-
dition satisfies:

µ2r2 + αKµφ̃r + φ̃2αK2(d− r)
(d− d̃)

[
µ2r +Kµαφ̃

]
+ (α− d̃)Kµφ̃r +Kφ̃

[
Kα2φ̃+ dd̃µ

] > 0

(for derivation, see Theorem C20 in Appendix).
If r̃b < r̃c, then both transcritical bifurcations at
(r̃ = r̃b, C

+
C = C0), and (r̃ = r̃c, C

+
C = 0) are “backward”. In

this case, if r̃b < r̃ < r̃c, or equivalently RC0
S < 1 and RC0 < 1,

then the fates of the chronic and susceptible host populations
depends on the initial size of chronically infected host-virus
concentration as shown in Figure (2)(a)-(b). Numerically,
we observe that if the initial virus or chronically infected cell
concentration is low, then the virus goes extinct; however,
for large enough initial concentrations, the system converges
to the equilibrium state, Ec, where only chronically infected
cells survive. The biological intuition is that for certain
parameter regimes, higher chronically infected cell densities
allow the chronically infected cells to outcompete susceptible

cells. So in an environment, where chronic cell/virus density
is large, even if RC0 < 1, virus can change the fate of the
cell population in such a way that chronically infected cells
are sustained. We might observe bistability for the case:
r̃ < r̃b & r̃ < r̃c as well, since in the parameter region,
where r̃ < r̃b & r̃ < r̃c, the system has none, one or two
positive interior equilibria, E+C,i for i = 1, 2 (Theorem C.5d in
Appendix). The Fig. 3(c) shows the parameter region where
this type of bistable dynamics occurs. The corresponding
region in the bifurcation diagram, Fig. 3(d), shows that
in addition to the stable infection-free equilibrium, E0, and
stable chronic-only equilibrium, Ec, there is one unsta-
ble positive equilibrium E+C (in certain cases there can be
two unstable interior equilibria; see Fig. E.5(h) in Appendix).

The other type of bistability consists of the infection-free
equilibrium E0 and a positive interior coexistence equilib-
rium, E+C,i, given by (7)) or a positive periodic solution as
attractors. In this case, condition (8) holds, along with r̃ < r̃b
and r̃s < r̃ < r̃c, where r̃s is the location of a saddle-node
bifurcation. Saddle-node bifurcation is a type of bifurcation,
where at a critical value of r̃s, the bifurcation diagram
branch out two equilibria with one stable equilibrium and
one unstable equilibrium. We observe this type of bifurcation
in Fig. 3(b)-(d). Fig. 2(c) depicts the phase plane diagram of
this scenario. The corresponding time-dependent solutions of
model variables S(t), C(t), and VC(t) are shown in Fig.2(d)
for multiple initial conditions (S0, C0, V

C
0 ). These figures

show that larger initial chronic virus concentration V C0 results
in coexistence of chronic and susceptible cells, yet when the
initial chronic virus concentration, V C0 , is small, susceptible
cells competitively exclude the chronic cell population.

To study the local stability of a positive interior equi-
librium, E+C , we evaluate the Jacobian Matrix around
this equilibrium and study the sign of the real part of
the eigenvalues, which are the roots of the characteristic
equation derived from the Jacobian Matrix. Analytical and
numerical results suggest that in certain cases a positive
interior equilibrium can lose its stability via Hopf Bifurcation
(section C 4 in Appendix). Hopf bifurcation is a bifurcation
type, where as r̃ increases (or decreases) the stable interior
equilibrium loses its stability at a critical point and displays
sustained oscillations. For example, Fig. C.2 in Appendix
C 4, shows the interval of r̃, on which the sign of the complex
eigenvalues switch its sign from negative (the case E+C is
locally stable) to positive (E+C is unstable) or vice-versa.
At the critical point, where the real part of the complex
eigenvalues become zero, the equilibrium E+C undergoes Hopf
bifurcation. We obtain Hopf bifurcation in Fig. 3(b)-(d)-(e)
in different settings. In Fig. 3(a), the stable “upper” interior
equilibrium undergoes Hopf Bifurcation at a critical value
of r̃ in a bistable region (when RC0 < 1). In Fig.3 (a), the
system also displays Hopf bifurcation when RC0 > 1 as the
unique interior equilibrium stabilizes and limit cycle ceases
to exist. Other parameter regimes where Hopf bifurcation of
an interior equilibrium occurs are displayed in Fig.3 (d) and
(f), including the case where the “lower” interior equilibrium
undergoes the Hopf bifurcation.

While there can be two positive interior equilibria when
RC0 < 1, there is at most one positive interior equilibri-
um when RC0 > 1. In particular, if r̃c < r̃ < r̃b (or
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FIG. 4: Infection, invasion and mutual invasion parameter regimes of chronically & lytic infecting viruses. On the x-axis, we
vary the chronic infection rate, φ̃, and on the y-axis, we vary chronic cell growth rate, r̃. Given the lytic parameter values on
this map, we have RL0 > 1. The contour map displays in what parameter regime chronically (lytic) infecting virus invade lytic
(chronic) virus population and when it fails to do so. Mutual invasion regimes provide the coexistence region. The parameter
values are identical to the ones in Table I. The analytical conditions, providing these regimes, are given in Table V.

equivalently RC0
S > 1 and RC0 > 1), then the system has

a unique positive interior equilibrium, E+C (Theorem C.5 in
Appendix). As r̃ increases above r̃b, there are no interior
equilibria (Theorem C.5(a) in Appendix) and the chronic-
only equilibrium Ec appears to become globally asymptoti-
cally stable. This occurs when RC0 > 1 and the Ec becomes
locally stable (RC0

S < 1). Here, the transcritical bifurcation
at r̃ = r̃b results in the stable interior equilibrium intersecting
with Ec, exchanging stability and becoming negative through
the boundary S = 0. In addition to that we observe that
Fig. 3(b)-(d) exhibits all sort of bifurcation dynamics such as
saddle-node, transcritical bifurcation (in particular backward)
and Hopf bifurcation as r̃ varies.

Distinct bifurcation dynamics displayed by the chronic sub-
system (III) are undoubtedly very interesting. We remark
that there are even further distinct stability scenarios for
equilibria, although they have similar qualitative dynamics
to some of the cases described throughout this section (see
Fig. E.5 in Appendix.). The different bifurcations depict how
the nature of chronic infection mode can significantly change
the interactions and population dynamics of viruses and their
hosts (see Fig.E.4). As seen in Fig. 3, the varying magnitude

of the chronic cell growth rate, r̃, and chronic infection rate,φ̃,
can result in many distinct complex population dynamics out-
comes, resulting in significant change in the abundance and
the dynamics of host cells and their viruses.

IV. MULTI-STRAIN MODEL: INVASION
DYNAMICS

Next, we move to the full multi-strain model (I) in order
to investigate how interaction of lytic and chronic viruses

with a common microbial host can result in distinct ecological
outcomes. Competition between two species or population
variants results in competitive exclusion or coexistence.
Two species often cannot occupy the same niche, with the
more fit species driving the other to extinction. Howev-
er, heterogeneous strategies can allow for two species to
both exploit a common resource and coexistence becomes
a possible outcome. The starting point for analyzing
competition between two species is to determine when
each species can establish their population in the presence
of the other resident species. In this section, we study
under what conditions the lytic (chronic) virus type can
successfully invade a resident chronic (lytic) virus population.

First, we formulate invasion fitness quantities of both virus
types. An invasion fitness quantity is a threshold value,
allowing us to infer whether a virus type can invade a distinct
resident virus population.

Assuming that by the time at which lytic virus is intro-
duced, the resident chronic virus population is at its equi-
librium E†+ = (S+

C , 0, 0, C
+
C , V

+
C ), where positive components

are given by (7), we obtain the lytic invasion fitness quantity
RLinv as follows:

RLinv =
βη

η + d

φS+
C

φS+
C + µ

It can be interpreted as the reproduction number of lytic
cells at the boundary equilibrium E†+, analogous to the

basic reproduction number RL0 , which is calculated at the
infection-free equilibrium E0 instead.

Analytical results suggest that a subpopulation of lytic
viruses invade the chronic resident population if RLinv > 1.
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In more mathematical terms, the boundary chronic infection
equilibrium, E†+ = (S+

C , 0, 0, C
+
C , V

+
C ), is unstable with respect

to invasion if RLinv > 1 (see Appendix D). If RLinv < 1, then

E†+ is locally asymptotically stable when the chronic-infection

equilibrium E+C = (S+
C , C

+
C , V

+
C ) is stable in the chronic sub-

system (III). Note that in the parameter region where the
resident chronic population is oscillating (at a stable limit
cycle) upon arrival of lytic viruses, then the invasion depends
on a linear periodic system (given by the Next-Generation
matrix at the limit cycle) [36].

We can also formulate the threshold quantity providing
whether chronic cells or viruses can invade the resident lytic
population, when at the equilibrium E+L = (S+

L , I
+
L , V

+
L , 0, 0),

where positive components are given by (2). The chronic
invasion fitness quantity, RCinv, is defined as

RCinv =
r̃

d̃
(1− N+

L

K
) +

φ̃S+
L

φ̃S+
L + µ

α

d̃
,

where N+
L = S+

L + I+L . When a resident lytic type is at
its equilibrium E+L = (S+

L , I
+
L , V

+
L , 0, 0), rare (a small initial

density of) chronically infecting viruses can only invade if
RCinv > 1. Otherwise if RCinv < 1, analogous conclusions hold
as in the case of lytic invading chronic.

Having both invasion threshold quantities,Riinv, along with
basic reproduction numbers, Ri0, where i ∈ {L,C}, we can
study distinct under what conditions invasion of one type or
infection take place. Table V in Appendix gives distinct cell
and virus fates under distinct values of these invasion and
infection thresholds when the initial chronic virus or cell den-
sity is sufficiently low. Fig.4 shows distinct parameter regimes
where outcomes of interactions varies such that chronic virus
can substitute the lytic viruses (R.VI), while fails to invade
in another region (R.IX). Chronic invasion can also result
in coexistence (R.IV & R.VIII) and exclusion of both types
(R.V), which will be further discussed in the next section.

V. COMPETITION & COEXISTENCE OF
LYTIC AND CHRONIC VIRUSES

A. Heterogeneous viral strategies promote
coexistence

The multi-strain system (I) can have a unique coexistence

equilibrium E† = (S†, I†, V †L , C
†, V †C), derived as

S† =
µ(d+ η)

φ(βη − (d+ η))
,

I† =

(
K

r̃

[
φ̃αS†

φ̃S† + µ

]
+ C0

)
− (S† +A(S†))

(1−B(S†))
,

V †L =
(d+ η)I†

φS†
,

C† = A(S†)− I†B(S†),

V †C =
αC†

φ̃S† + µ
,

where

A(S†) =
(S0 − S†)
W (S†)

,

B(S†) =

K(d+ η)

rS†
+ 1

W (S†)
,

with

W (S†) = 1 +
K

r

φ̃α

φ̃S† + µ
.

(see Appendix E). The expressions for E† are too complicat-
ed in order to analytically determine the conditions for its
positivity. However, numerical results show that equilibrium

E† can be positive in certain parameter regions, in particular
when both invasion conditions Riinv, i ∈ {L,C} are greater
than one (discussed further below). Therefore, the system
can have a unique coexistence equilibrium for certain param-
eter regimes. In Figure (5), solutions tend to this coexistence
equilibrium asymptotically. The coexistence equilibrium E†
can lose its stability via Hopf bifurcation, in which case both
virus densities oscillate and converge to a limit cycle as shown
in Figure 5(d).

There are parameter regions where both invasion conditions
Riinv, i ∈ {L,C} are greater than one, which suggests persis-
tence of both lytic and chronic virus for these parameters.
There are two distinct scenarios where Riinv > 1, i ∈ {L,C}
as shown in Table V. In particular, Region IV depicts an
interesting scenario where RC0 < 1 but Riinv > 1, i ∈ {L,C},
so that chronic can be wiped out in the absence of lytic virus,
yet both viruses persist together in the multi-strain model
(this scenario is discussed further in Section V B). The other
case of coexistence is where all thresholdsRi0,Riinv are greater
than one (see Fig. 4).

In either case of coexistence, the heterogeneity of the viral
strategies is critical for the persistence of both virus strains.
Indeed if r̃ = 0, i.e. the chronic virus only reproduces through
standard viral replication (budding or bursting of infected
cells, as in the case of lytic virus), then there is no coex-
istence equilibrium except in the case RL0 = RC0 . In addi-
tion, when r̃ = 0, the invasion fitness quantities reduce to

Riinv =
Ri0

Rj0
, i 6= j (shown in Appendix E.3); thus it is not

possible for both invasion conditions to be greater than one.
Therefore, in our study coexistence of the two virus types
hinges upon the additional replication technique displayed by
the chronic virus; namely being long-lived and passing on to
the microbial host daughter cells after cell division.
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TABLE III: Multi-strain Equilibria & Stability Conditions

Multi-strain-E S† I† V †I C† V †C Stability conditions

E00 0 0 0 0 0 R0
0 < 1

E0 S0 0 0 0 0 Ri0 < 1, i ∈ {L,C}
E+L (∗) S+

L I+L V +
L 0 0 E+L stable, & RCinv < 1

Ec 0 0 0 C0 Vc Ec stable

E+C,i (∗),(∗∗) S+
C,i 0 0 C+

C,i V +
C,i E

+
C,i stable, & RLinv < 1

E† (∗) S† I† V †I C† V †C See Section (E 2)

(∗) It can undergo Hopf bifurcation.
(∗∗) Existence of one or both of these positive interior equi-

libria when RC0 < 1 indicates bistability.

B. Lytic Virus Facilitates Persistence of Chronic
Virus

Lytic infection can alter the dynamics between the distinct
reproducing cell types (chronic and susceptible) by reducing
cell competition through lysing susceptible cells, thereby facil-
itating the persistence of chronically infected cells. However
this potential (indirect) beneficial interaction goes in conflict
with the competition between virus types for common micro-
bial hosts.

How the lytic and chronic virus interactions modulate
the biodiversity of the virus-microbe system depends on the
parameter regimes upon which the fitness quantities change.
A dramatic instance of lytic virus benefiting chronic virus is
in the regime IV , where the chronic virus requires the lyt-
ic virus for survival and invasion. For this case, the chronic
virus population will not become established in the absence of
lytic virus, yet if lytic virus is present in the system, then the
chronic virus will persist (See Fig.5). The biological reasoning
behind this unexpected result is the following: In a wholly sus-
ceptible population without lytic virus, chronically infecting
cells face higher cell competition due to larger total micro-
bial cell density, whereas if lytic virulent viruses are present,
the amount of cells is decreased through lysis, reducing cell
competition, which increases net reproduction of chronical-
ly infected cells, allowing for chronic invasion (See Fig.6).
Indeed, analytically we observe that a virulent lytic virus type
reduces total cell population N+

L = S+
L + I+L , which increases

the average chronic offsprings produced,
r̃

d̃
(1 − N+

L

K
), above

what it would be in the absence of infection. In particular,
for parameter values in regime IV , we obtain RCinv > 1 > RC0
(see Fig.4b).

We also notice that this beneficial interaction only goes one
way as lytic infection can not be “rescued” by chronic viruses.
Lytic viruses are more apt to persist without chronic infec-
tion since they can access a larger amount of susceptible cells
(higher RL0 ), and there is no reverse effect of cell competition
on their growth. Analytically, we see that

RL0 =
βη

η + d

φS0

φS0 + µ
>

βη

η + d

φS+
C

φS+
C + µ

= RLinv

since S0 is always greater than S+
C .

It is interesting that in the regime IV , chronically infected
cells not only are rescued from extinction by the lytic virus,
the chronically infected population can persist at the top of
the cell abundance hierarchy (infected or susceptible). Indeed,
observe Fig.5(d), where we show how the final size of abun-
dance of susceptible, chronically and lytic infected host popu-
lation at their equilibrium changes with varying lysis rate, η.
If lytic virus were removed from the system or become extinct
due to sensitivity to stochastic fluctuations, susceptible cells
replenish again and as a result of host competition, the chroni-
cally infected cells would face extinction again. So chronically
infected cells benefit from the mutual relationship with lyt-
ic virus. This coexistence mechanism which favors survival
and large chronically infecting virus abundance may explain
both the observed virus diversity and could suggest a means
to explain findings of intracellular persistence of viruses in
natural systems.

VI. CONCLUSIONS

Virus-microbe interactions are characterized by distinct
adaptations, infection modes, and life cycles. Understanding
microbial and virus evolutionary strategies requires an under-
standing of how infection modes couple to population and evo-
lutionary dynamics. In this study, we introduced a model of
distinct viral infection strategies (lytic & chronic) interacting
with a common microbial host population. In doing so we find
that chronic virus infections affect microbial host dynamics,
and can induce more complex dynamics than in the case of
lytic infections. In addition, in environments where lytic and
chronic viruses compete, the heterogeneity in their infection
modes promotes the coexistence of the two virus species. Sur-
prisingly, we find that the presence of lytic viruses can benefit
chronic viruses, even causing the persistence of chronic infec-
tions that would not otherwise be sustainable. Finally, we
observe that enhanced virulence of lytic viruses can be more
beneficial for persistence chronic infection, which in turn can
be detrimental for the lytic virus abundance.

The enhancement of chronic infections due to viral infec-
tions warrants elaboration. Our analysis suggests that lytic
viruses directly modulate niche competition amongst cells.
Hence, inclusion of lytic viruses can decrease susceptible cell
populations which, in turn, decreases competition with cells
infected by a chronic viruses. Because part of the fitness of
chronically infecting viruses derives from vertical reproduc-
tion, then lytic viruses can increase chronic virus fitness. The
consequences of this phenomena are evident in those exam-
ples in which a chronic virus population cannot survive in
the absence of lytic viruses. In essence, lytic modulated cell
competition changes the fate of cell and virus populations in
a complex community.

As was noted, chronic infection can have substantial effects
on the dynamics of microbial host abundances. In cer-
tain parameter regions, chronic infections give rise to similar
dynamics to lytic infections: when Ri0 < 1, i ∈ {L,C}, the
virus population dies out; otherwise if Ri0 > 1, i ∈ {L,C},
both virus and cell populations persists at an endemic equi-
librium or at a sustained oscillation, when the positive equi-
librium loses its stability via a Hopf Bifurcation. Yet, the
fate of chronically infecting viruses or infected hosts might
also depend on the initial chronic virus density; i.e. the sys-
tem presents bistable dynamics, where the initial conditions
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FIG. 5: The dynamics displayed by chronic virus before and after lytic virus introduced. a) ”Rescue” of chronically infecting
viruses by lytic viruses (η = 0.0526). b)Changing microbial host cell population dynamics after lytic virus introduction.
b)Microbial host-virus population dynamics before and after introduction of lytic viruses. The initial virus and host densities
are S0 = 1010 viruses/ml, V C0 = 0.04× S0 hosts/ml, C0 = I0 = V L0 = 0 hosts/ml. d) Fraction of asymptotic cell density with
respect to virulence rate η. The solid vertical lines display the sustained limit cycles with their magnitudes. The parameter
values are identical to the ones in Table I.

alter ecological trajectories of both microbial hosts and their
viruses. Here, the system contains multiple attractors: the
infection-free equilibrium and either a positive interior equi-
librium, a positive periodic solution or the boundary chronic-
only equilibrium. In each bistable case, chronic viruses can
persist even when their reproduction number is less than one,
in contrast with lytic viruses.

The results of our analysis raises a question: what is the
expected evolution of quantitative traits associated with each
infection mode? In the virus-microbe systems we have ana-
lyzed, increasing virulence (η) decreases the life span of infect-
ed microbial hosts (1/η), which may in return decrease the
amount of virus particles releases during lysis because of phys-
iological limits, but here we assume the burst size β remains
constant. Our results suggest that the evolution of virulence

of lytic viruses can be influenced by the competing chronic
virus species. Numerically and analytically, we observe that
lytic virus abundance drastically decreases upon the lysis rate
η increasing past the critical value where chronically infection
virus invade and coexist (see Fig.7). Conversely, less virulent
viruses can draw the chronic virus to the extinction. Thus
in an environment, where susceptible cells can sustain them-
selves in high abundance, the lytic virus might evolve toward
being less virulent, thereby outcompeting the chronic virus
population and persisting at much higher abundance. This
hypothesis may be suitable for future work, e.g,. extending
these arguments by studying evolutionarily stable strategies
in this mode or in an extended version with mixed strategies,
i.e. one type virus display both type infection modes.

There are many ways by which virus interactions can
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FIG. 6: Schematic representation of the outcome of interactions when a rare chronic virus (red) introduced in the absence
(upper fig.) or existence of a lytic infecting virus (orange) population (lower fig.). The chronic infection can persist only when
lytic infection is already established among the susceptible host population.
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FIG. 7: How virulent lytic virus effects invasiveness of chronic virus. a) Invasiveness of chronic virus vs. lytic virus virulence.
As lytic virus become more virulent, it decreases the total cell density, N+

L = S+
L + I+L , at the equilibrium and increases the

invasion fitness, RCinv, of chronic virus. If RCinv > 1, chronic can invade the lytic resident population; otherwise, if RCinv < 1, it
dies out. b) The final cell density fraction with respect to varying lysis rate η. The dashed line represents the fraction of lytic
and susceptible cell densities at steady state in the absence of chronic infection. The solid lines display the fraction of cells
densities at the equilibrium after chronic infection is introduced. The chronic infection can only persist, when lytic virulence,
η, is large enough. The parameter values are identical to the ones in Table I, except r̃ = 0.1, φ = 0.25× 10−10 and β = 15.

affect the ecology and evolution of virus-microbe systems [3].
Distinct physiological states, life strategies and adaptations
emerge in response to the frequent interactions between virus-
es and microbes. For example, bacteria have evolved adap-
tive immunity[10], and may also display bet-hedging hetero-
geneous susceptibility to viruses[15, 16]. Viruses can also
exhibit distinct strategies as they interact with microbial
hosts[21, 24]. The present study has examined the conse-
quences of heterogeneous viral strategies by analyzing a mod-
el of competition between lytic and chronic modes of infec-
tion. The present model may also serve as a suitable basis

for extensions to cases where viruses display mixed strategies
or to the study of the evolution of infection-associated traits.
If we are to predict host and virus evolutionary trajectories,
it is important to first understand the complex interactions,
individual population dynamics and the outcomes of interac-
tions in an ecological setting. Future work linking ecological
dynamics and evolutionary trajectories will be necessary to
improve our understanding of the complexity and structure
of virus-microbe systems.
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Appendix A: Parameter Estimations

Gulbudak and Weitz [16] estimate the virus absorption
rate φ = 2.2 × 10−9 ml/hr from a recent experimental
study of Bautista et al [15], in which the interactions takes
place between the archaeon Sulfolobus islandicus and the
dsDNA fusellovirus Sulfulobus spindle shaped virus (SSV9).
S. islandicus is a globally distributed archaeon, commonly
found in hot spring ecosystems. Host growth rate and carry-
ing capacity in the absence of viruses are also estimated as
r = 0.3 hrs−1 and K = 9 × 108 cells/ml, respectively. Here
we consider these parameters values to be r = 0.339 hrs−1,
K = 8.947 × 108 cells/ml, and φ = 0.88 × 10−10 ml/hr. The

chronic virus absorption rate is also fixed as φ̃ = 0.2× 10−10

ml/hr. The cell decay rate, d, is estimated as d = 1/24 hrs−1

in [16]. Despite the fact that the chronic infection is not viru-
lent, it might reduce the life span of chronically infected cells
due to the infection cost. Hence we fixed the value of chronic
cell death rate, d̃ to be 1/20 hrs−1. Similarly, virus decay rate
is estimated from free virus data in [15] as µ = 0.0866 hrs−1.
In addition,Beretta and Kuang [23] estimates virus replica-
tion factor number in the range of 10 to 100 mature virus
particles per day. Assuming that not all viral particles pro-
duced are infectious, we consider β to be the effective burst
size and fixed as β = 20. Beretta and Kuang [23] also estimate
the lysis rate, η to be η = 3.3/24 (≈ 0.138) hrs−1. Here we
fixed this value as η = 0.33. Although the value of chronic
infection parameters, r̃, φ̃, α have varied, through this study,
for multiple simulations, when not varied, we chose the value
of chronic cell growth rate to be r̃ = 0.2, smaller than suscep-
tible growth rate r, and the chronic cell virus budding off rate
to be α = 1/10. We can find the average number of infectious
viruses produced by one chronically infected cell by multiply-
ing the budding off rate α with cell division doubling time

τ, which can be estimated by C(t) = C(0)e
r̃(1−

S0

K
)t
. This

estimation gives us the average number of infectious viruses
produced by one chronically infected cell as ατ ≈ 2.8.

Appendix B: Chronic Infection Dynamics Analysis

1. Finding RC0 by using Next-Generation approach

The system has an infection-free equilibrium E0 = (S0, 0, 0)

with S0 = K(1 − d

r
). Let the entries of the matrix F be the

rates of appearance of new chronic infections, and the entries
of the transition matrix V be the rates of transfer of individ-
uals into or out of compartments such as death, infection, or
absorption. Then the Jacobian matrix J evaluated at the
infection-free equilibrium E0 = (S0, 0, 0) is JE0 = (F −V)|E0 :

FE0 =


r̃(1− S0

K
) φ̃S0

0 0

 ,VE0 =


d̃ 0

−α (φ̃S0 + µ)


Then by Next Generation Matrix approach [38–40], the spec-
tral radius of Next Generation Matrix FV−1|E0 gives basic
chronic reproduction number, RC0 :

TABLE IV: Estimated parameter values of model (I)

Parameter (Host) Fixed Value Source Unit

r 0.339 [16] hrs−1

K 8.947× 108 [16] cells/ml

d 1/24 [16] hrs−1

Parameter (Lytic) Fixed Value Source Unit

φ 0.88× 10−10 [16] ml/hr

β 20 [23]

η 0.33 [23], [20]

µ 0.0866 [16] hrs−1

Parameter (Chronic) Fixed Value Source Unit

r̃ 0.2 present
study

hrs −1

φ̃ 0.2× 10−10 [16] ml/hr

α 1/10 present
study

d̃ 1/20 present
study

hrs−1

ρ(FV−1|E0) =
r̃

d̃
(1− S0

K
) +

φ̃S0

φ̃S0 + µ

α

d̃
(= RC0 ), (B1)

establishing the following theorem:

Theorem B.1 (Local stability of E0) Consider the infection
transmission model, given by (III). Then if RC0 < 1, the
infection-free equilibrium, E0, is locally asymptotically stable,
but unstable if RC0 > 1, where RC0 is defined by (B1).

Appendix C: Preliminaries of Chronic Infection
Model

To simplify the system (III), we first use the dimensionless

time, τ = φ̃S0t, and then rescale the variables of the model

(III) by letting s =
S

S0
, c =

C

S0
, p =

VC
S0
. Therefore we obtain

the following system:

ds

dτ
= as(1− (c+ s))− sp

dc

dτ
= ãc(1− ũ(c+ s)) + sp

dp

dτ
= wc− sp−mp,

(IV)

where a =
r − d
φ̃S0

, ã =
r̃ − d̃
φ̃S0

, w =
α

φ̃S0

, m =
µ

φ̃S0

, ũ =
S0

C0
,

with C0 = K(1− d̃

r̃
).
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1. Existence and stability of chronic-only
equilibrium

Let (s∗, c∗, p∗) be the equilibrium of the system (IV).
Assuming s∗ = 0, by the equilibrium conditions, we obtain

c∗ = 1/ũ, p∗ =
wc∗

m
. This establishes the following result for

the original system (III):

Theorem C.1 The chronic subsystem (III ) always has the

chronic-only equilibrium Ec = (0, C0, Vc), where Vc =
α

µ
C0

(recall that C0 = K(1− d̃

r̃
)).

Theorem C.2 The chronic-only equilibrium, Ec, is locally

asymptotically stable if and only if the condition a(
1

c∗
− 1) <

w

m
holds which is equivalent to the condition:

S0

C0
− 1 <

Kφ̃α

rµ
; i.e. RC0

S < 1

in the non-dimensionalized original system (III). Otherwise,

if a(
1

c∗
− 1) >

w

m
, (or RC0

S > 1), then Ec is unstable.

Proof C.1 By linearizing the system (IV) around the equi-
librium Ec = (0, c∗, p∗), we obtain the following characteristic
equation:

[a(1− c∗)− p∗ − Λ][−ũãc∗ − Λ][−m− Λ] = 0. (C1)

Then the Jacobian Matrix of the system (III) evaluated at
Ec = (0, c∗, p∗), has all eigenvalues, Λ, negative if the condi-

tion a(
1

c∗
− 1) <

w

m
holds. Otherwise, if a(

1

c∗
− 1) >

w

m
, it

has one positive eigenvalue.

Furthermore assuming both conditions RC0
S < 1 and RC0 <

1 hold, then the fates of the chronic and susceptible host pop-
ulations depend on the initial chronically infected host and
virus concentration; i.e. the system exhibits bistable dynam-
ics. There are cases, where bistabiliy occurs with two interior
equilibria (one stable and another unstable) when RC0 < 1.
We will derive the bistability condition for general case in Sec-
tion (C 3).

2. Existence of Positive Equilibria

Here, we define positive equilibrium to be the equilibrium
(s∗, c∗, p∗) with all components in the positive orthant. By
the equilibrium conditions, derived from the system (IV), we
have

n∗ = 1− p∗

a
, (C2)

p∗ =
ωc∗

s∗ +m
. (C3)

and

0 = ãc∗(1− ũn∗) + s∗p∗; (C4)

where n∗ = s∗ + c∗. Substituting both equations (C2) and
(C3) into the equation (C4), we get

c∗ = s∗(B̃ − a

ãũ
) +mB̃ (C5)

where B̃ =
a(ũ− 1)

ũw
. Then

n∗ = s∗(B̃ − a

ãũ
+ 1) +mB̃ (C6)

By (C4), we also have

n∗ = 1− ω

a

c∗

s∗ +m
. (C7)

Therefore substituting (C5) into (C7), we obtain

n∗ =
1

ũ
+

ω

ãũ

s∗

(s∗ +m)
. (C8)

By the equality of the equations (C6) and (C8), we have

s∗(B̃ − a

ãũ
+ 1) +mB̃︸ ︷︷ ︸

h(s∗)

=
1

ũ
+

ω

ãũ

s∗

(s∗ +m)︸ ︷︷ ︸
g(s∗)

. (C9)

Let the left hand side of the equation be h(s∗) and the
right hand side of the equation be g(s∗). Both functions
h(s∗), g(s∗) are monotone, where h(s∗) is linear function

with slope (B̃− a

ãũ
+ 1) and g(s∗) is an increasing saturating

function of s∗, converging to
1

ũ
(1 +

w

ã
) as s∗ → ∞. Recall

that we are only considering s∗ ∈ (0, 1).

Existence and number of the positive equilibria depends on
the parameter region:

• Assuming (B̃− a

ãũ
+ 1) < 0, then h(s∗) is a decreasing

function of s∗. In which case, if h(0) < g(0), then the
functions h(s∗) and g(s∗) do not intersect at a positive
value s∗. Therefore if h(0) < g(0), then the system does
not have a positive equilibrium. Otherwise, if h(0) >
g(0), the graphs h(s∗) and g(s∗) intersect at a positive
value, namely s∗0 in (0, 1), whenever h(1) < g(1). In
this case, the system has a positive equilibrium E+C =

(s∗, c∗, p∗) only if s∗0(B̃− a

ãũ
)+mB̃ > 0. Notice that to

obtain a positive equilibrium, we need to also obtain a

corresponding positive value for c∗ = s∗(B̃− a

ãũ
)+mB̃

for the positive intersection s∗. In summary, given the

condition that (B̃ − a

ãũ
+ 1) < 0, the system can have

at most one positive equilibrium E∗+ = (s∗, c∗, p∗).

• If (B̃− a

ãũ
+1) > 0, then h(s∗) is an increasing function

of s∗. Thus

– If h(0) < g(0), then h and g have one positive
intersection s∗0 in (0,1) whenever h(1) > g(1). In
which case whenever h(0) < g(0) and h(1) > g(1),
the system has one positive equilibrium, assuming

s∗0(B̃ − a

ãũ
) +mB̃ > 0.

– If h(0) > g(0) and h(0) ≈ g(0), then
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∗ zero equilibrium when h′(0) > g′(0),

∗ two equilibrium when h′(0) < g′(0), and
h(1) > g(1), assuming there is no s∗ ∈ (0, 1) :
h′(0) = g′(s∗).

∗ or one equilibrium if ∃s∗ ∈ (0, 1) : h′(s∗) =
g′(s∗).

• If (B̃ − a

ãũ
+ 1) = 0, then h(s∗) is a constant function.

Thus, if h(0) < g(0), then h and g have no positive
intersection point. Otherwise h(0) > g(0), then h and
g have at most one positive intersection point, s∗0. Yet,
to guarantee the existence of a positive equilibrium,

we must have s∗0(B̃ − a

ãũ
) + mB̃ > 0. Notice that

(B̃ − a

ãũ
) < 0.

In Fig.C.1, the graphs h(s∗) and g(s∗) intersect at
two positive value of s∗ (displayed by red dots). In the
smaller inserted figure, the corresponding upper equilibrium
(ordered by the size of s∗), E+C,2 = (s∗2 = 0.0759, c∗2 =
0.6202, p∗2 = 1.1512), is unstable and the lower equilibrium,
E+C,1 = (s∗1 = 0.0228, c∗1 = 0.5966, p∗1 = 1.4420), is locally
asymptotically stable.

By the equality of the functions h(s∗) and g(s∗), we can
also obtain explicit solutions for susceptible equilibria s∗ (so

can do for c∗ = s∗(B̃ − a

ãũ
) + mB̃ > 0 and p∗2 =

ωc∗

s∗ +m
).

Solving (C9) for s∗, we obtain

s∗1,2 =
−x̂2 ±

√
x̂22 − 4x̂1x̂3

2x̂1
, (C10)

where

x̂1 = Â1,

x̂2 = Â2 +mÂ1 −
w

ã
,

x̂3 = mÂ2.

with

Â1 = ũB̃ − a

ã
+ ũ

Â2 = mũB̃ − 1.

In the original non-parametrized system (III), the equation
(C9) is as follows:

S+
C (B − r

r̃
+ 1) +

µ

φ̃
B︸ ︷︷ ︸

h(S+
C
)

= C0 +
Kα

r̃

S+
C

(S+
C +

µ

φ̃
)︸ ︷︷ ︸

g(S+
C
)

, (C11)

where B = (
r

Kα
(S0 − C0)).

Then we obtain

S+
C,i =

−A1 ±
√
A2

1 − 4A0A2

2A0
, (C12)

where

A0 = (B − r

r̃
+ 1)

=

(
r(d̃− α) + r̃(α− d)

)
αr̃

A1 =
µ

φ̃
(2B − r

r̃
+ 1)− C0 −

Kα

r̃

A2 =
µ

φ̃
(
µ

φ̃
B − C0),

=
µ2rC0

φ̃2Kα

(
RC0
S − 1

)

In the following subsection, we obtain the condition for
backward bifurcation, proving that with vertical transmission
(r̃ > 0), the disease outcomes change significantly.

3. Bistable Dynamics

Previously, we derive local stability conditions for the
infection-free equilibrium, E0, and chronic-only equilibrium,
Ec = (0, C0, Vc) and point out that when both local stability

conditions hold: RC0 < 1 and RC0
S < 1, we obtain a bistable

region with stable chronic-only equilibrium, Ec and infection-
free equilibrium, E0. Yet, bistability can also occur with a
stable interior equilibrium, E+C = (S+

C , C
+
C , V

+
C ), and stable

infection-free equilibrium, E0 along with an unstable interior
equilibrium or unstable chronic-only equilibrium, Ec.

In this section, we derive a general bistability condition at
the critical point (r̃ = r̃c, C

∗ = 0), with R(r̃c) = 1, which
guarantees existence of a positive interior equilibrium, E+C =
(S+
C , C

+
C , V

+
C ) as r̃ increases to r̃c. Note that

RC0 (r̃c) = 1⇔ r̃c =

d̃− αφ̃S0

φ̃S0 + µ

(1− S0

K
)

. (C13)

Theorem C.3 The chronic subsystem (III) has backward
bifurcation at (r̃ = r̃c, C

+
C = 0) if and only if the following

condition holds:

µr
[
µr +Kφ̃(r + d̃)

]
(d− d̃) + (α− d̃)φ̃r2

[
φ̃(S0)2 +Kµ

]
+Kµφ̃d̃rd < 0

where r̃c is a critical value of the bifurcation parameter r̃
such that RC0 (r̃c) = 1. Otherwise, if the left hand side of the
condition is greater than zero, then system present forward
bifurcation.

If the chronic subsystem (III) presents a backward bifurcation,
then the system dynamics are as follows:

i) the bistability

– either occurs with stable E0, and stable Ec, (along
with an unstable unique interior equilibrium E+C ),
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FIG. C.1: Existence of two positive interior equilibria. The intersection of the equations h(s∗) and g(s∗), given in (C9),
provides the susceptible equilibria of the scaled system (IV). The figure above displays the case, where the system (IV)
has two positive equilibria E+C = (s∗, c∗, p∗) in positive orthant. Here the intersection of the two graphs, namely h(s∗) and
g(s∗), in larger picture pointed with red dots. In the figure, the intersections points are s∗1 = 0.0228 and s∗2 = 0.0759 with

corresponding positive equilibria E+C,i = (s∗i , c
∗
i = s∗i (B̃ −

a

ãũ
) + mB̃, pi∗2 =

ωc∗i
s∗i +m

). The inserted smaller figure displays

time-dependent solutions of susceptible cell density with different initial conditions. The parameter values that are used here:
r̃ = 1/10, r = 0.339, d̃ = 1/20, d = 1/24, α = 1/30, φ̃ = 10−10, K = 8.947× 108, µ = 0.012.

– or with stable E0, and stable lower (or upper) inte-
rior equilibrium E+C,i (along with unstable upper

(or lower) interior equilibrium E+C,i),

ii) or the system only presents stable E0, along with two
unstable (upper and lower) interior equilibria, E+C,i (no
bistability case).

Proof C.2 We will first show that there exists a unique con-
tinuously differentiable function C+

C (a component of interior
equilibrium E+C ), which is a function of the bifurcation param-
eter r̃ on some open neighborhood of the critical point r̃ = r̃c.
Recall that

S+
C =

C+
C −

µ

φ̃
B

B − r

r̃

(C14)

By substituting (C14) into the equilibrium condition h(S+
C ) =

g(S+
C ), given by (C11), we get

F (r, C+
C ) = a0(C+

C )2 + b0C
+
C + c0 = 0, (C15)

where

a0 = φ̃2r̃(−αr + αr̃ − dr̃ + d̃r)

a1 = φ̃
(
dµr̃2 − d̃µr2 + αµr2

−αµrr̃ + dµrr̃ − d̃µrr̃ +Kα2φ̃r +Kdφ̃r̃2 +Kd̃2φ̃r

−Kαdφ̃r̃ − 2Kαd̃φ̃r −Kdd̃φ̃r̃ +Kαφ̃rr̃ −Kd̃φ̃rr̃
)

a2 = µ
(
d̃µr2 − dµrr̃ −Kαφ̃r2 +Kd2φ̃r̃ +Kd̃φ̃r2

+Kαdφ̃r −Kdd̃φ̃r −Kdφ̃rr̃
)
.

After rearranging, we obtain the coefficients of the polyno-
mial (C15) as follows:

a0 = φ̃2r̃
[
r(d̃− α) + r̃(α− d)

]
,

a1 = φ̃rr̃(C0 − S0)

(
αφ̃+

C0

K
(
r̃

K
+ µ)

)
+ φ̃αr

(
φ̃rr̃C0 +Kαφ̃+ µ(r − r̃)

)
a2 = µ

[
φ̃r2d̃

(
µ

φ̃
+ S0

)](
1−RC0

)
,

Then at the critical point (r = r̃c, C
+
C = 0), we obtain

F (r̃c, 0) = 0. (C16)
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F (r̃, C+
C ) is a continuously differentiable function of C+

C . At
the fix value (r̃ = r̃c, C

+
C = 0) ∈ R2, we have

∂F (r̃, C+
C )

∂C+
C

|
(r=r̃c,C

+
C

=0)
= a1(r̃c) 6= 0, (C17)

where the expression for r̃c is given by (C13) and

a1(r̃c) = αµφ̃

µr
[
µr +Kφ̃(r + d̃)

]
(d̃− d)

d(µ+ φ̃S0)2

+
(d̃− α)φ̃r2

[
φ̃(S0)2 +Kµ

]
−Kµφ̃d̃rd)

d(µ+ φ̃S0)2

 .

Then by Implicit Function Theorem, there exists an open
interval set U of R, containing r̃c, and such that there exists
a unique continuously differentiable function, f : U →
R :

f(r̃c) = C+
C ,

with C+
C = 0, and

F (r̃, f(r̃))) = 0

for all r̃ ∈ U . We have an explicit expression for C+
C as a func-

tion of r̃, given in (7). Then by Implicit Function Theorem,
this expression of C+

C (r̃) is unique and continuously differen-
tiable w.r.t. r̃ in the open neighborhood U of r̃c.

Next, we will investigate the sign of
∂C+

C

∂r̃
|
(r̃=r̃c,C

+
C

=0)
. By

taking the implicit derivative of the equality (C15) w.r.t r̃ at
the point (r̃ = r̃c, C

+
C = 0), we obtain

dC+
C

dr̃
|
(r̃=r̃c,C

+
C

=0)
=
−∂F
∂r̃
|
(r̃=r̃c,C

+
C

=0)

∂F

∂C+
C

|
(r̃=r̃c,C

+
C

=0)

, (C18)

where

∂F

∂r̃
|
(r̃=r̃c,C

+
C

=0)
= dµ(µr + φ̃rS0)

(C19)

and the expression for
∂F

∂C+
C

|
(r̃=r̃c,C

+
C

=0)
is given in (C17).

Notice that
∂F

∂r̃
|
(r̃=r̃c,C

+
C

=0)
> 0. Then

dC+
C

dr̃
|
(r̃=r̃c,C

+
C

=0)
< 0⇔

∂F

∂C+
C

|
(r̃=r̃c,C

+
C

=0)
> 0⇔

µr
[
µr +Kφ̃(r + d̃)

]
(d− d̃) + (α− d̃)φ̃r2

[
φ̃(S0)2 +Kµ

]
+Kµφ̃d̃rd < 0

Theorem C.4 The chronic subsystem (III) has a backward
bifurcation at (r̃ = r̃b, C

+
C = C0) if and only if the following

condition holds:

µ2r2 + αKµφ̃r + φ̃2αK2(d− r)
(d− d̃)

[
µ2r +Kµαφ̃

]
+ (α− d̃)Kµφ̃r +Kφ̃

[
Kα2φ̃+ dd̃µ

] > 0

(C20)

where r̃b is a critical value of the bifurcation parameter r̃
such that RC0

0 (r̃b) = 1. Otherwise, if the left hand side of the
condition is less than zero, then the system present forward
bifurcation at (r̃ = r̃b, C

+
C = C0).

Notice that r̃b =
d̃

1− S0

K

(
1 +

Kφ̃α

rµ

) is always positive since

0 < 1− S0

K
< 1− S0

K

(
1 +

Kφ̃α

rµ

) .
Proof C.3 It is analogous to Proof C.2.

Theorem C.5 If RC0 > 1, then the chronic subsystem (III)
has at most a unique positive interior equilibrium E+C . In par-
ticular, whenever

r̃c < r̃ < r̃b, (C21)

it has a unique interior equilibrium. Otherwise,

a. if r̃ > r̃b & r̃ > r̃c, then the system does not have a
positive interior equilibrium E+C , but a stable chronic-
only equilibrium, Ec.

b. if r̃b < r̃ < r̃c, then the system present bistability with
stable chronic-only equilibrium, Ec and stable infection-
free equilibrium,

c. if r̃ < r̃b & r̃ < r̃c, the system has none, one or two
positive interior equilibria, E+C,i for i = 1, 2.

Proof C.4 Recall the polynomials (C12), and (C15), derived
from the chronic subsystem (III):

P̂ (S+
C ) = A0(S+

C )2 +A1S
+
C +A2 = 0,

where

A0 =
1

αr̃

[
r(d̃− α) + r̃(α− d)

]
(C12)

A1 =
µ

φ̃
(2B − r

r̃
+ 1)− C0 −

Kα

r̃

A2 =
µ2rC0

φ̃2Kα

(
RC0
S − 1

)

P (C+
C ) = a0(C+

C )2 + a1C
+
C + a2 = 0,

where

a0 = φ̃2r̃
[
r(d̃− α) + r̃(α− d)

]
, (C15)

a1 = φ̃rr̃(C0 − S0)

(
αφ̃+

C0

K
(
r̃

K
+ µ)

)
+ φ̃αr

(
φ̃rr̃C0 +Kαφ̃+ µ(r − r̃)

)
a2 = µ

[
φ̃r2d̃

(
µ

φ̃
+ S0

)](
1−RC0

)
,

Note that sgn[a0] = sgn[A0].
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Case i) Assume that r(d̃− α) > r̃(d− α).
Then the leading coefficient a0 > 0. Also note that
whenever RC0 > 1, we obtain the constant term a2 < 0.
Then, if both conditions hold: (d̃ − α) > r̃(d − α), and
RC0 > 1, the polynomial (C15) is a concave up parabola.
Then whenever RC0 > 1, it has a unique positive root
C+
C , since a2 < 0. Therefore if RC0 > 1, the chronic

subsystem (III) has at most a unique positive interior
equilibrium. Note that positivity of C+

C does not guaran-
tee positivity of S+

C (see (C14)). Next we will establish
positivity of S+

C under the condition r̃ < r̃b.

Claim C.1 If r̃ < r̃b, then S+
C > 0.

Proof C.5 Note that at r̃ = r̃c, we have S+
C (r̃c) = S0. By

continuity, there exists an open neighborhood, U , of r̃ = r̃c
such that for all r̃ ∈ U , we have S+

C (r̃) > 0. Now assume that
there exists a point r̃ such that r̃ > r̃c and S+

C (r̃) < 0. Then by

intermediate value theorem, there exists a critical point r̃† :
S+
C (r̃†) = 0. If S+

C = 0, then we must have C+
C (r̃c) = C0.

Then r̃† = r̃b, since r̃ = r̃b is the only critical value, providing
C+
C = C0.

Case ii) Now consider that r(d̃− α) < r̃(d− α).
Then the leading coefficient A0 < 0. Also note that
whenever RC0

S > 1, (or r̃ < r̃b) we have the constant
term A2 > 0. Then the polynomial (C12) is a concave
down parabola with constant term A2 > 0. Therefore if
RC0
S > 1, the polynomial (C12) has a positive root S+

C .

Claim C.2 If r̃ > r̃c, then C+
C > 0.

Proof C.6 Since C+
C (r̃b) = C0, by continuity there exists an

open neighborhood, V, of r̃ = r̃b : for all r̃ ∈ V, we have
C+
C (r̃) > 0. Now assume that there exists a point r̃ such that

r̃ < r̃b and C+
C (r̃) < 0. Then by intermediate value theorem,

there exists a critical point r̃∗ < r̃b : C+
C (r̃∗) = 0. Then we

must have S+
C = S0. Then r̃∗ = r̃c since r̃∗ = r̃c is the only

critical point, providing S+
C = S0.

Case iii) Now assume that

r(d̃− α) = r̃(d− α). (C22)

Let r̃∗ =
r(d̃− α)

(d− α)
and assume that r̃∗ ∈ [r̃c, r̃b]. Fix

an interval [αs, αe] of α so that whenever r̃ ∈ [r̃c, r̃b],

we have α ∈ [αs, αe]. Let α =
rd̃− r̃d
(r − r̃∗) . Then whenever

α ∈ [αs, α), P (C+
C ) has either one positive and one neg-

ative root, namely C+
C,n and C+

C,p, or two positive roots,

namely C+
C,upper, C

+
C,lower. For simplicity, assume that

whenever α ∈ [αs, α), P (C+
C ) has one positive and one

negative root. Then if α ∈ (α, αe], P (C+
C ) has two pos-

itive roots. At the point α = α, both leading coefficients
a0 = A0 = 0. By continuity, as α → α−, the negative
root C+

C,n converges to −∞ and as α → α+, the upper

positive root C+
C,upper converge to +∞. Again by conti-

nuity, the continuous map C+
C (α), which passes through

C+
C,p and C+

C,lower, takes positive value at α = α; i.e.

C+
C (α) > 0. Recall that S+

C is a continuous increasing
linear function of C+

C by (C14). By similar argument
above, we can also show that S+

C (α) > 0.

Now consider that the condition (C21) does not hold. Then

case a. if r̃ > r̃b & r̃ > r̃c, then the system does not have a
positive interior equilibrium E+C , but stable chronic-only
equilibrium, Ec, since it is the parameter region of r̃
such that RC0 > 1 and RC0

S < 1.

b. if r̃b < r̃ < r̃c, the we obtain bistability with stable
chronic-only equilibrium, Ec and stable infection-free
equilibrium, E0 since they are equivalent conditions to
RC0 < 1, and RC0

S < 1.

case c. if r̃ < r̃b & r̃ < r̃c, we have sgn[A0] = sgn[A2], and
sgn[a0] = sgn[a2], for polynomials(C12), and (C15),
respectively. If r̃ < r̃b & r̃ < r̃c, then we also have
RC0 < 1, and RC0

S > 1. Therefore sgn[A0] = sgn[A2] >
0. If sgn[A0] = sgn[A2] > 0,then sgn[A0] = sgn[A2] =
sgn[a0] = sgn[a2]. Therefore both polynomials have
either no positive roots or two positive roots. Other-
wise if sgn[A0] = sgn[A2] < 0, then by Descartes’ rule
of signs, it has one positive root.

Notice that Theorem C.5 also excludes the existence of
bistability or forward hysteresis (see [33]) for RC0 > 1.

4. Local Stability of the Equilibria and Hopf
Bifurcation (Routh-Hurwitz Criteria)

Back to rescaled version, (IV), of the chronic system. Lin-
earizing the system around the positive infection equilibrium

(s∗, c∗ = s∗(B +
a

ãũ
) + mB, p∗ =

ωc∗

s∗ +m
), we obtain the

following Jacobian matrix:

JE+
C

=


−as∗ −as∗ −s∗

−ũãc∗ + p∗ ã(1− ũn∗)− ũãc∗ s∗

−p∗ ω −(s∗ +m)

 ,

The characteristic equation for the Jacobian matrix J
ε+
C
is :

λ3 + â1(s∗)λ2 + â2(s∗)λ+ â3(s∗) = 0, (22)

where

â1(s∗) = as∗ + (s∗ +m) + ã (1− ũ(2c∗ + s∗)) ,

â2(s∗) = ã (1− ũ(2c∗ + s∗)) [(s∗ +m) + as∗]

+ as∗[(s∗ +m) + (ũãc∗ − p∗)] + s∗(w − p∗),
â3(s∗) = ã (1− ũ(2c∗ + s∗)) [as∗(s∗ +m)− s∗p∗]

+ (ũãc∗ − p∗)[as∗(s∗ +m) + s∗w] + as∗(ws∗ + p∗s∗)

with

c∗ = s∗(B̃ − a

ãũ
) +mB̃,

p∗ =
w

s∗ +m
c∗, s∗ ∈ (0, 1).

By Routh-Hurwitz Criteria, for any s∗ ∈ (0, 1), the
positive equilibrium E+C is locally asymptotically sta-
ble if and only if: âi(s

∗) > 0, for i = 1, 2, 3, and
∆(s∗) = â1(s∗)â2(s∗) − â3(s∗) > 0. Otherwise if ∃s∗0 ∈ (0, 1)
such that â1(s∗0) > 0, â3(s∗0) > 0 and ∆(s∗0) = 0, where
∆(s∗) is a smooth function of s∗, in an open interval of s∗ :
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d∆(s∗)

ds∗
|s∗=s∗0 6= 0, then the system exhibits Hopf bifurcation

at s∗ = s∗0.

The coefficients of the characteristic equation are func-
tions of s∗, for which explicit formulas are given in (C10).
Because of complicated expressions of the coefficients âi, it
is difficult to find any analytic condition, providing Hopf
Bifurcation. Therefore we utilize numerical simulations to
show that the system displays Hopf Bifurcation.

In the Fig.C.2, the x-axis presents the values of r̃ and y-axis
shows how the real part of the complex eigenvalue changes
w.r.t. r̃. The characteristic equation, given by (22), is a cubic
polynomial. So the Jacobian matrix JE+

C
has either three real

eigenvalues or one real and two complex conjugate eigenval-
ues, λ. For the case, where the Jacobian matrix JE+

C
has all

eigenvalues with negative real parts, the positive equilibrium
E+C is locally asymptotically stable. If the sign of the real
part of the complex eigenvalues (<λ) changes from negative
to positive as varying the bifurcation parameter r̃, then Hopf
Bifurcation occurs at r̃ : <λ(r̃) = 0. At the Hopf bifurcation
point r̃ : <λ(r̃) = 0, E+C lose its stability and become unstable.
Hopf bifurcation occurs when the order is reversed as well:
unstable E+C becomes stable. Notice that at r̃ : <λ(r̃) = 0, we
have ∆ = 0 while âi(s

∗) > 0, for i = 1, 2, 3. In Fig.C.2, there
are two parameters values r̃ at which Hopf Bifurcation occurs.
At these points, stability of equilibrium E+C first changes from
stable to unstable, and then as r̃ further increases, it changes
unstable to stable.

Appendix D: Lytic and Chronic Invasion Analysis

Assuming that when rare lytic population arrive, the chron-
ic type (resident) is at its equilibrium

E+C = (S+
C , 0, 0, C

+
C , V

+
C )

(the expressions of positive components are given in (7)), we
can estimate the lytic invasion fitness quantity RLinv by using
Next Generation Matrix Approach:
Let the entries of the matrix F be the rates of appearance of
new chronic infections among susceptible cell population in
lytic infected environment, and the entries of the transition
matrix V be the rates of transfer of individuals into or out of
compartments such as death, infection, or absorption.

FE+C =


0 φS+

C

0 0

 ,VE0 =


(η + d) 0

−βη (φS+
C + µ)


Then the lytic invasion fitness quantity is:

RLinv = ρ(FV −1) =
φS+

C

(φS+
C + µ)

βη

η + d
,

establishing the following result:

Theorem D.1 The dominance equilibrium of chronic virus

E+C = (S+
C , 0, 0, C

+
C , V

+
C ) is locally asymptotically stable if

RLinv < 1 and unstable if RLinv > 1.

Notice that at the chronic equilibrium Ec = (0, 0, 0, C0, Vc)
(the expressions of the positive components are given in (5)),
lytic invasion does not occur due to lack of susceptible cell
population in the environment and the immunity provided
by the chronic infection.

By similar approach, by assuming that when rare chronic
population arrive, the resident lytic population is at its
equilibrium

E+L = (S+
L , I

+
L , V

+
L , 0, 0)

(the expressions of positive components are given in (2)), we
can also estimate the chronic virus invasion fitness quantity
as follows:

RCinv =
r̃

d̃
(1− N+

L

K
) +

φ̃S+
L

φ̃S+
L + µ

α

d̃
, with N+

L = S+
L + I+L ,

establishing the following result:

Theorem D.2 The dominance equilibrium of lytic virus

E+L = (S+
L , I

+
L , V

+
L , 0, 0) is locally asymptotically stable if

RCinv < 1 and unstable if RCinv > 1.

Appendix E: Invasion Dynamics: Coexistence &
Substitution

1. Reproduction Number of the multi-strain model

The Jacobian matrix J evaluated at the infection-free equi-
librium E0 = (S0, 0, 0, 0, 0) is J |E0 = (F − V)|E0 , where

F =



0 φS0 0 0

0 0 0 0

0 0 r̃(1− S0

K
) φ̃S0

0 0 0 0


,

and

V−1 =



(η + d) 0 0 0

−βη (φS0 + µ) 0 0

0 0 d̃ 0

0 0 −α (φ̃S0 + µ)


By using the Next Generation Matrix approach for the multi-
strain model, we obtain:

FV−1 =


F1V−1

1 0

0 F2V−1
2

 ,

Note that ρi(FiV−1
i ) = Ri0. Therefore the reproduction num-

ber for the multi-strain model is

R0 = max
i∈{L,C}

{Ri0},

establishing the following theorem:

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 7, 2018. ; https://doi.org/10.1101/297127doi: bioRxiv preprint 

https://doi.org/10.1101/297127


20

0.04 0.06 0.08 0.1
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.03 0.04 0.05 0.06 0.07
2

2.5

3

3.5

4
108

FIG. C.2: The region of Hopf bifurcation: The larger figure displays the real part of the complex eigenvalue, <λ(r̃), v.s.
chronic virus replication rate r̃. The smaller figure displays the chronic equilibrium C+

C v.s. r̃. In the smaller figure, we observe
that as r̃ increases, locally stable positive equilibrium (displayed by red solid line) loses its stability and the system presents
Hopf bifurcation, displaying sustained oscillation, shown with ?. The red color equilibrium is the upper positive equilibrium
in bistabile region, observed in Fig.3(b). As r̃ increases, the lower interior equilibrium disappear and the upper interior
equilibrium become the unique positive equilibrium, displayed with black color. We obtain second Hopf bifurcation point as r̃
further increases. The full bifurcation diagram can be seen in Fig.3b, having the same parameter values used here.

Theorem E.1 If R0 < 1, then infection-free equilibrium
E0 = (S0, 0, 0, 0, 0); is locally asymptotically. Otherwise if
R0 > 1, then E0 is unstable.

2. Derivation of coexistence equilibrium for
multi-strain model (I)

We can rearrange the multi-strain model (I) as follows:

Ṡ =
rS0

K
S(1− N

S0
)− S(φVL + φ̃VC)

İ = φSVL − (η + d)I

Ċ =
r̃C0

K
C(1− N

C0
) + φ̃SVC

V̇L = βηI − (φS + µ)VL,

V̇C = αC − (φ̃S + µ)VC ,

(E1)

where N = S+ I +C. An equilibrium, E†(S†, I†, C†, V †L , V
†
C),

of the system (I) must be a solution of the system below:

0 =
rS0

K
S†(1− N†

S0
)− S†(φV †L + φ̃V †C)

0 = φS†V †L − (η + d)I†

0 =
r̃C0

K
C†(1− N†

C0
) + φ̃S†V †C

0 = βηI† − (φS† + µ)V †L ,

0 = αC† − (φ̃S† + µ)V †C ,

(E2)

By the second and fourth equations in the system (E2), we
have

V †L =
(d+ η)I†

φS†
, V †L =

βηI†

φS† + µ
(E3)

By the equality of both equations in (E3) , we obtain

S† =
µ(d+ η)

φ(βη − (d+ η))
. (E4)

By the equation fifth equation in (E2), we have

V †C =
αC†

φ̃S† + µ
. (E5)

Substituting (E5), into the third equation in (E2), we get

N† =

([
φ̃S†α

φ̃S† + µ

]
+

r̃

K
C0

)
K

r̃
(E6)

By the first equation in (E2),

N† = S0 −
K

r

[
(d+ η)I†

S†
+

φ̃αC†

φ̃S† + µ

]
(E7)

Substituting the equations (E3) and (E5) into the equation
(E8), we obtain

C† = A(S†)− I†B(S†) (E8)
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where

A(S†) =
(S0 − S†)
W (S†)

, (E9)

B(S†) =

K(d+ η)

rS†
+ 1

W (S†)
, (E10)

(E11)

with

W (S†) = 1 +
K

r

φ̃α

φ̃S† + µ
.

Thus

N† = S† + I†(1−B(S†)) +A(S†). (E12)

Substituting (E6) into the equation (E12) and by rearranging
it , we obtain

I† =

(
K

r̃

[
φ̃αS†

φ̃S† + µ

]
+ C0

)
− (S† +A(S†))

(1−B(S†))
. (E13)

This establishes the following result:

Theorem E.2 The multi-strain system (I) has at most a
unique coexistence equilibrium

E† = (S†, I†, V †L , C
†, V †C)

where

S† =
µ(d+ η)

φ(βη − (d+ η))
,

I† =

(
K

r̃

[
φ̃αS†

φ̃S† + µ

]
+ C0

)
− (S† +A(S†))

(1−B(S†))
,

V †L =
(d+ η)I†

φS†
,

C† = A(S†)− I†B(S†),

V †C =
αC†

φ̃S† + µ
,

where

A(S†) =
(S0 − S†)
W (S†)

,

B(S†) =

K(d+ η)

rS†
+ 1

W (S†)
,

with

W (S†) = 1 +
K

r

φ̃α

φ̃S† + µ
.

Remark E.1 Similar to the system (III), we also study the

local stability of the coexistence equilibrium E† for the multi-
strain system (I). Evaluating the Jacobian matrix around

the coexistence equilibrium E†, we obtain the characteristic

equation, which is a fifth degree polynomial of eigenvalue λ.
The coefficients of characteristic equation can be written as
functions of S†; yet due to difficult expressions of these func-

tions, we study the local stability of E†, and the parameter
regime, where the system exhibit hopf bifurcation, numerical-
ly. The Fig.5(d) depicts that, in the given parameter regime,

the coexistence equilibrium E† is locally asymptotically stable
(displayed with •) for smaller value of η. Yet as η increases, at
a critical value ηc, the system undergoes hopf bifurcation and
displays sustained oscillations (the magnitude of the periodic
solutions shown by a bar). The further increase in η restabi-

lizes the coexistence equilibrium E†.

3. Competitive Exclusion when r̃ = 0

Theorem E.3 Assume r̃ = 0. If Ri0 > 1, for i ∈ {L,C}, then
the virus strain with largest reproduction number outcompetes
the other one.

To prove Theorem (E.3), we will first establish the following
lemma:

Lemma E.1 Assume r̃ = 0. Let

R̂L0 :=
φS0(βη − (η + d))

µ(η + d)
and R̂C0 :=

φ̃S0(α− d̃)

µd̃
.

Then, for all i ∈ {L,C}, the reproduction numbers Ri0 is

equivalent to R̂i0 for i ∈ {L,C}, respectively, i.e. the following
conditions hold:

i. Ri0 = 1 if and only if R̂i0 = 1,

ii. Ri0 > 1 if and only if R̂i0 > 1,

iii. Ri0 < 1 if and only if R̂i0 < 1.

Proof E.1 • Case [i.] If r̃ = 0, then

RC0 =
φ̃S0

φ̃S0 + µ

α

d̃
.

Therefore

RC0 = R̂C0 ⇔
φ̃S0

φ̃S0 + µ

α

d̃
=
φ̃S0(α− d̃

µd̃

⇔ (φ̃S0 + µ)(α− d̃) = µα

⇔ φ̃S0(α− d̃) = µd̃

⇔ φ̃S0(α− d̃)

µd̃
= 1.

• Case [ii.]-[iii.]

RC0 > 1 (or <) ⇔ φ̃S0

φ̃S0 + µ

α

d̃
> 1 (or <)

⇔ φ̃S0(α− d̃) > µd̃ (or <)

⇔ φ̃S0(α− d̃
µd̃

> 1 (or <)

⇔ R̂C0 > 1 (or <).

By the same argument above, one can also show that the
threshold conditions R̂L0 and RL0 are also equivalent.
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With the same argument, we can also establish the following
result:

Lemma E.2 Assume r̃ = 0. Let

R̂Linv :=
φS+

C (βη − (η + d))

µ(η + d)
and R̂Cinv :=

φ̃S+
L (α− η)

µ+ d̃
.

Then, for all i ∈ {L,C}, the invasion fitness quantity Riinv is

equivalent to R̂iinv, respectively.

Proof E.2 (Proof of Theorem E.3) If r̃ = 0, then the
chronic susceptible equilibrium is

S+
C =

µd̃

φ̃(α− d̃)
=

S0

R̂C0
, (E14)

where R̂C0 =
φ̃S0(α− η)

µ+ d̃
. Recall that lytic invasion conditions

is:

ˆRLinv =
φS+

C (βη − (η + d))

µ(η + d)
. (E15)

Substituting (E14) into the equation (E15), we obtain RLinv =

R̂L0
R̂C0

. Therefore RLinv > 1 if and only if R̂L0 > R̂C0 (which

holds if and only if RL0 > RC0 .) By the same argument, we
can also show R0 maximization for chronic virus invasion.

TABLE V: Infection and Invasion Regions

Region RL0 RC0 RLinv RCinv Infection Invasion

I < 1 < 1 − − No infection No invasion

II < 1 > 1 < 1 − Only chronic No invasion

III < 1 > 1 > 1 − Only chronic Lytic invades

IV > 1 < 1 − > 1 Only lytic Chronic invades

V > 1 < 1 − < 1 Only lytic No invasion

V I > 1 > 1 < 1 > 1 Both infection Chronic invades

V II > 1 > 1 < 1 < 1 Both infection No invasion

V III > 1 > 1 > 1 > 1 Both infection Both invades

IX > 1 > 1 > 1 < 1 Both infection Lytic invades
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FIG. E.3: Dynamics of the chronic-subsystem (III) with susceptible, S(t), chronically infected, C(t), and chronically infecting
free viruses, VC(t), at time t. a) Infection dies out and population density converges to infection-free equilibrium, E0. b)
Population density size converges to positive interior equilibrium, E+C . c) The system displays Hopf bifurcation: the interior
equilibrium, E+C , loses its stability and the system exhibits sustained oscillations. Common parameters for the dynamics are
given in the Table IV. The initial virus and host densities are V C0 = 0.04 × S0 viruses/ml, S0 = 8.3 × 108 hosts/ml. For part

(a) φ̃ = 0.5× 10−11, part (b) φ̃ = 0.5× 10−9 and part (c) φ̃ = 0.1× 10−8.
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FIG. E.4: Corresponding distinct time-dependent solutions of the chronic subsystem derived from varying bifurcation
parameter,r̃. a) Region (a): Stable DFE with r̃ = 0.025. b) Region (b): Bistability with stable positive EE, E+C , with r̃ = 0.04.

c) Region (c): Bistability with stable limit cycle with r̃ = 0.043. d) Region (d): Stable limit cycle with r̃ = 0.06. e) Region (e):

Stable positive EE, E+C , with r̃ = 0.065. f) Region (f): Stable chronic-only equilibrium, Ec, with r̃ = 0.08. The initial virus and

host densities are: S0 = 8.3× 109 hosts/ml & V C0 = 0.04×S0 viruses/ml (high density); S0 = 103 hosts/ml, & V C0 = 0.04×S0

viruses/ml (low density), C0 = 0 hosts/ml.
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FIG. E.5: Additional bifurcation dynamics of chronic-only system (III) with varying values of the model parameters r̃ and φ̃.
The solid (dashed) lines represent stable (unstable) equilibrium. The black lines are the unique equilibrium. The red lines shows
the region, where bistability occurs (except the figure in part (k)) with stable infection-free equilibrium, E0 (displayed by green
solid lines) and the blue lines represent chronic-only equilibrium, Ec. The unstable infection-free equilibrium, E0 is displayed by
green dashed lines (the region where RC0 > 1). The region where the system displays sustained oscillations, shown with ?. The

parameter values used here are as follows: a) α = 1/18, φ̃ = 5× 10−8, b) α = 1/18, φ̃ = 5× 10−9, c) α = 1/18, φ̃ = 5× 10−10,

d) α = 1/29, φ̃ = 1.95 × 10−7, e) α = 1/22, φ̃ = 1.95 × 10−7, f)α = 1/22, φ̃ = 2 × 10−10, g) α = 1/23, φ̃ = 2 × 10−10, h)

α = 1/25, φ̃ = 2× 10−10, i) α = 1/18, φ̃ = 2× 10−10, j)α = 1/21, φ2 = 2× 10−9.5, k) α = 1/21, φ̃ = 1.35× 10−8, The rest of
the parameter values are identical to the ones in Table I.
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