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Abstract 

The uneven illumination of a Gaussian profile makes quantitative analysis highly challenging in 
laser-based wide-field fluorescence microscopy. Here we present flat-field illumination (FFI) 
where the Gaussian beam is reshaped into a uniform flat-top profile using a high-precision 
refractive optical component. The long working distance and high spatial coherence of FFI allows 
us to accomplish uniform epi and TIRF illumination for multi-color single-molecule imaging. In 
addition, high-throughput borderless imaging is demonstrated with minimal image overlap.  

Introduction 

Wide-field fluorescence imaging is a powerful tool for studying molecular mechanisms of 
subcellular processes. It is widely used in screening drugs for various diseases, and in profiling 
cellular phenotypes by an image-based high-throughput system1,2. In these applications, the 
fluorescence intensity is the primary information for the analysis of images. Since the emitted 
fluorescent signal from a fluorophore is dependent on the amount of incident light, a uniform 
illumination is critical to perform quantitative analysis. Many factors including light sources and 
illumination optics contribute the uniformity of the illumination. For instance, in epifluorescence 
excitation, a lamp or light-emitting diode is used as a light source where a traditional Köhler 
illuminator or microlens array3 creates the uniform illumination.  

For imaging single-molecules4 or organelles5 near the cell surface, a laser is utilized as an 
excitation source due to its high brightness and high spatial coherence, however the Gaussian 
illumination profile of the laser has several drawbacks. The uneven illumination of a Gaussian-
shaped beam distorts the intensity data and makes detailed analysis challenging. Moreover 
photobleaching makes it more complicated to analyze the image because it results in a permanent 
loss of fluorescence signal and the bleaching time strongly depends on the illumination intensity6. 
When revealing the stoichiometry of protein complexes using single-molecule fluorescence 
imaging, the intensity analysis is sensitive to an uneven intensity distribution and therefore 
counting of the photobleaching steps is mainly used7,8, whereas in freely diffusing single-molecule 
experiments intensity-based analysis is commonly employed to examine the oligomerization of 
the molecular complex9,10. Importantly, in fluorescence nanoscopy the uneven illumination leads 
to position-dependent resolution and limits the field-of-view (FOV), which is problematic in high-
quality super-resolution imaging11,12. For example, in single-molecule-based localization 
imaging13-15 the localization accuracy is determined by the number of the emitted photons, which 
depends on the excitation intensity. In parallelized stimulated emission depletion (STED) 
microscopy11, which exhibits a higher imaging speed compared to conventional single-spot 
scanning STED16, the spatial resolution depends on the inverse square root of the illumination 
intensity17, and as such there is a wide variance in spatial resolution, i.e. 30 nm at the center but 
~100 nm at the edge of an imaging area.  

Another instance where uneven illumination can be problematic is when performing high-
throughput and high-content imaging18, where a large FOV on the scale of several hundreds of 
microns or millimeters is desired. To achieve such a FOV while maintaining high resolution, a grid 
of images is acquired such that the borders of one image overlap with the adjacent image area, 
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and then the images are stitched together in post-processing. If the illumination is not uniform, 
the final stitched image will have dimmed borders around each individual image unless a large 
image overlap is used. A large overlap will either increase the acquisition time or decrease the 
overall FOV, depending on the number of images taken. Additionally, nonuniform illumination can 
give unreliable measurements in cell and tissue samples. A flat-field correction is possible to 
amend the biased intensity through the post-processing of images18 but is sensitive to changes 
to the experimental setup and uncontrollable intensity fluctuations, and is not feasible in low-light 
applications19 such as single-molecule imaging.  

A number of approaches have been demonstrated to create a uniform illumination profile in laser-
based wide-field fluorescence microscopy. For example, using the centermost portion of the 
expanded Gaussian beam is the most common approach20 but is not ideal because this results 
in a severe loss of the incident laser power. Other approaches include using a pair of microlens 
arrays12,21 or a multimode fiber combined with a speckle reducer22,23, but they still produce 
inhomogeneous illumination and/or are not suitable for total internal reflection fluorescence (TIRF) 
microscopy5 because they degrade the spatial coherence of the beam making it impossible to 
focus tightly to the back focal plane of the objective for TIRF illumination.  

An attractive method of generating uniform illumination is by utilizing a pair of aspheric lenses24 
where the first lens redistributes the Gaussian beam uniformly and the second lens re-collimates 
it, yielding a flat-field illumination (FFI) profile (Fig. 1a). However, this refractive laser beam 
shaping system has been challenging to employ in fluorescence microscopy due to the 
requirement of high surface quality and the limited working distance25. Here, we overcame these 
problems using a specially designed beam shaper optimized for a regular fluorescence 
microscope over a range of wavelengths. In this work we characterize the beam-shaping 
performance and compare it with optical simulations. We demonstrate multicolor imaging with 

Figure 1. Experimental characterization of FFI. (a) Beam reshaping schematic. (b) Experimental setup. BE, 1.5x beam
expander; DM, dichroic mirror; F1-2, excitation/emission filters; FM, flip mirror; L1-3, lenses; M1-6, mirrors; Obj, 
objective; SMF1-2, single mode fibers; TL, tube lens. (c) Beam profiles of Gaussian beams collimated by a lens with
80 mm or 150 mm focal length and FFI beams without and with an iris. (d) Lineouts taken from the beam profiles in (c)
along dashed lines. Vertical dashed lines in (d) indicate a detection region of a camera. (e) Excitation wavelength
dependence of FFI. Lineouts taken from multicolor images (inserts) with an iris. (f) Working distance dependence of
FFI with 638 nm laser. Scale bars, 10 μm. 
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epi-illumination, quantitative intensity-based single-molecule imaging with TIRF illumination, as 
well as borderless high-throughput imaging with minimal overlap of stitched images. Our simple 
and efficient flat-field illumination is a promising approach for quantitative fluorescence imaging.    

Results 

Flat-field illumination. We first recorded intensity profiles by exciting a thin dye layer with epi-
illumination. The laser beam (λ = 638 nm) exiting from a single mode fiber was collimated by an 
achromatic lens, and FFI was generated by sending the collimated Gaussian beam with a 
diameter of ~10 mm to a beam shaper called TopShape (Fig. 1b, see Methods section). As shown 
in Fig. 1c and 1d, FFI generated a flat-top profile, and the full-width at 90% of maximum (FW90M) 
of FFI was 81.5 μm, which is similar to the diameter of our FOV (~82 μm). For reference, we 
measured intensity profiles using Gaussian beams collimated by a lens with 80 mm or 150 mm 
focal length, and their FW90M was 15.0 μm or 28.6 μm, respectively. We estimated the irregularity 
of the FFI by calculating the root-mean-square of the intensity and it exhibited 2.9% variation. This 
level of non-uniformity is known not to affect single-molecule imaging and fluorescence 
nanoscopy12. The illumination efficiency (η) of Gaussian beams was 92.9% and 51.4% for 80 mm 
and 150 mm focal length lenses whereas that of FFI was 85%, implying that the majority of FFI 
was collected by the detector (see ‘Beam profile measurement’ in Methods section). Multicolor 
imaging at excitation wavelengths of 561 nm and 638 nm was readily attainable without an 
additional fiber or collimator (Fig. 1e). The uniform beam profile was maintained over a working 
distance up to 300 mm at both wavelengths (Fig. 1f, Supplementary Fig. 1). The temporal 
coherence length of light sources did not affect the illumination profile based on our measurement 
with HeNe and diode lasers (data not shown here).  

Simulated beam intensity distribution. Since the beam-shaping element (TopShape) is based 
on refraction, which causes a smooth redistribution of the beam intensity, the flat-top beam profile 
simulations can be performed using methods based on geometrical optics26. Here, the beam 
profile was calculated at a certain distance behind the beam shaping system before entering the 
microscope. In Fig. 2a the normalized intensity distribution at a wavelength of 640 nm is shown 
for different working distances. In general, a constant flat-top beam profile was generated for 
distances up to 600 mm. However, at a working distance of 600 mm the intensity distribution has 
slight inhomogeneity because the beam-shaping system used was optimized for shorter working 
distances. Beam shaping is based on manipulating the phase front relation of the incoming laser 
beam to achieve the desired output distribution within a certain range. Beyond this region the 
beam profiles show higher variations due to the increasing mismatch in phase relation. The length   
of this region depends on the design of the beam shaping device. In the case of the current beam 

Figure 2. Simulated flat-top intensity distributions. Working distance dependence at a system wavelength of 640 nm
without (a) and with (b) an additional beam expander (BE). (c) Excitation wavelength dependence at a working distance
of 300 mm. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2018. ; https://doi.org/10.1101/297242doi: bioRxiv preprint 

https://doi.org/10.1101/297242
http://creativecommons.org/licenses/by-nd/4.0/


shaping system, the addressed working distance is limited to about ~300 mm for a plateau 
homogeneity of more than 95%. Note that our experimental beam profiles in Fig. 1d and 1e are 
measured at a working distance of 300 mm. The working distance range for a very homogeneous 
flat-top beam profile can be extended by using an additional beam expander behind the beam 
shaping system, as shown in Fig. 2b. Another simulation was carried out concerning the 
wavelength dependence of the beam shaping system at a fixed working distance (300 mm). As 
shown in Fig. 2c, there was nearly no difference in performance between three different laser 
wavelengths (488 nm, 561 nm and 640 nm).   

Single-molecule imaging and intensity-based analysis. Next, we performed single-molecule 
imaging on DNA labeled with AlexaFluor 647 (AF647) on a coverslip with objective TIRF 
microscopy. When subjected to Gaussian illumination, the molecules closest to the center of the 
beam fluoresced more strongly than those near the periphery, while under FFI the molecules 
exhibited much more uniform fluorescence (Fig. 3a). The intensity trace of single-molecules at 
different x-coordinates clearly showed this feature in Fig. 3b. This uniform fluorescence signal 
yields desirable features in the single-molecule analysis. Firstly, it makes the spot-finding less 
sensitive to the thresholding value. The thresholding parameter is used to determine if a spot is 

Figure 3. Quantitative single-molecule imaging analysis with FFI. (a) Representative single-molecule images taken 
under Gaussian illumination and FFI. Scale bar, 10 μm. (b) 1D intensity data taken from the boxed region of (a). (c)
Threshold curve showing the dependence of the average number of detected molecules on the background
thresholding parameter. Error bars represent the standard deviation from the mean. (d) Intensity distributions of single
and dual probe samples imaged under Gaussian illumination and FFI. Images taken from 20 different regions were
used for each analysis.  
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bright enough to be discerned from the noise level, and generally a global threshold is used8. As 
the normalized threshold value increased, the number of single-molecules was counted and 
plotted for both Gaussian illumination and FFI. As shown in Fig. 3c, under Gaussian illumination 
the number of detected spots steadily decreases with an increase to the threshold parameter, 
while FFI exhibited a noticeable plateau in which the number of spots is insensitive to the 
thresholding parameter and the true number of spots can be determined.  

Secondly, we tested whether FFI can improve quantitative intensity-based analysis. For this, we 
prepared single-probe and dual-probe samples where a capture oligo was hybridized with either 
one or two complementary probes labeled with AF647. In the dual probe sample, the hybridization 
process yielded a mixture where the capture oligo bound one probe or two probes. The single 
probe sample yielded a broadened and skewed distribution under Gaussian illumination (Fig. 3d). 
By contrast, the intensity distribution by FFI was much narrower and had an identifiable central 
intensity from which the distribution was well fit to a Gaussian curve. For comparative metrics we 
calculated the coefficient of variation, i.e. the standard deviation divided by mean, and it was 47% 
and 31% for the Gaussian illumination and FFI, respectively, meaning that the latter has much 
less variability in fluorescence intensity. The applicability of FFI for quantitative intensity-based 
analysis was clearly demonstrated by the dual-probe sample. Figure 3d shows a second 
population at about twice the intensity of the single probe distribution, which is obscured when 
subjected to Gaussian illumination. By virtue of the Gaussian distribution for FFI, it was possible 
to extract the relative population of each species and they were 73% and 27% for one and two 
probes, respectively. It was straightforward to obtain multi-color single-molecule imaging 
(Supplementary Fig. 2).  

Thirdly, we recorded the photobleaching time under Gaussian illumination and FFI with an 
elevated excitation power (Fig. 4). The photobleaching time was found to be extremely uniform 
when the sample was subjected to FFI, whereas under Gaussian illumination single-molecules 
photobleached more quickly in the center than near the periphery.  

Background suppression in TIRF illumination. We next examined whether FFI effectively 
eliminated background fluorescence via TIRF illumination by imaging single-molecules in the 
presence of 5 nM fluorescently labeled molecules. For comparison, we performed the experiment 
with a multi-mode fiber (MMF) combined with a speckle scrambler that generated a homogeneous 
profile with epi-illumination. While the FFI provided by the TopShape was able to fully suppress 

Figure 4. Uniform photobleaching via FFI. Representative single-molecule images taken at times of 0, 30, and 60 
seconds under Gaussian illumination and FFI. Colormap showing the average photobleaching time analyzed with 
images taken from 10 different regions. Scale bars, 10 μm. 
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the background, as evident in Fig. 5, the MMF approach showed a highly elevated background 
level indicating that only partial TIRF was achieved. The measured signal to background ratio was 
12.5  7.8 and 5.1  4.1 (mean  S.D.; n = 50) for FFI and MMF, respectively. In our TIRF 
microscope, an incident beam needed to be focused to a diameter of <120 μm at the back focal 
plane of the objective for all incident light to contribute to the generation of an evanescent field, 
however the limited spatial coherence of the MMF prevented tight focusing.  

High-throughput imaging. To examine the potential application of FFI for high-throughput 
imaging, we acquired a grid of images from mammalian cells with epi-illumination using excitation 
wavelengths of 561 nm and 638 nm. We used a 1.5x beam expander just after the TopShape 
(Fig. 1b) to fully cover our camera and the illumination profile was not affected by this additional 
optical component (Supplementary Fig. 3). As depicted in Fig. 6a, FFI enabled borderless stitched 
imaging with minimal image overlap (5%), whereas the stitched image using Gaussian 
illumination had distinct dark borders between imaging areas. This shows that our illumination 
scheme will increase the imaging speed and minimize photobleaching for high-throughput 
imaging. In addition, we demonstrated the feasibility of using a low magnification (20x) objective 
in conjunction with FFI (Fig. 6b).  

Figure 5. Background reduction by TIRF illumination. Representative images taken under illumination by a multimode
fiber (MMF) combined with a speckle scrambler and under FFI in the presence of 5 nM background. Lineouts taken as
indicated by the dashed yellow lines show the MMF only achieved partial TIRF as evident by the elevated background
level, while FFI achieves full TIRF as seen by the minimal background. Scale bar, 10 μm. 

Figure 6. Borderless image stitching under FFI. (a) High-throughput 3x3 multicolor imaging of mitochondria (green)
and actin (red) under Gaussian illumination with 150 mm focal length lens and FFI with a 1.5x beam expander with 5%
overlap. (b) 3x3 stitched image of mitochondria under FFI with 1.5x beam expander and a 20x objective (10% overlap).
Scale bars, 50 μm (a) and 200 μm (b). 
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Discussion 

We demonstrated flat-field illumination for multi-color wide-field fluorescence microscopy using a 
refraction-based beam shaping system. As contrasted with other approaches12,23, our method is 
applicable to TIRF illumination, which effectively rejects background fluorescence. Our beam 
shaping device is extremely tolerant for variations of the incoming laser beam by accepting 10% 
variation, while being achromatic as well. This behavior originates from the well-balanced 
mapping of the incoming rays to the intended flat-top beam profile in combination with a 
sophisticated material choice, which decreases the sensitivity to input beam diameter variations. 
The homogenous illumination profile of FFI will enable not only quantitative single-molecule 
analysis based on intensity information20, but also high quality super-resolution imaging with a 
uniform spatial resolution over a large FOV11,12. Further, FFI can potentially be used with a large 
area detector such as scientific complementary metal-oxide semiconductor (sCMOS) camera to 
increase the throughput27. A new optical design generating a square-shaped beam instead of a 
round one may be feasible, which would yield greater illumination efficiency. Our compact and 
high precision beam shaper with a large output diameter can be easily implemented to any 
commercial wide-field microscope, and thus we expect that simple flat-field illumination approach 
will greatly advance quantitative fluorescence imaging.  

 

Methods 

Flat-field illumination fluorescence microscope. Our imaging system was constructed with an 
Olympus IX73 inverted microscope. Two laser sources (06-MLD 638 nm and 06-DPL 561 nm, 
Cobolt) were combined, split into two fiber couplers and delivered to the microscope. One output 
beam from a single-mode fiber (P5-630PM-FC-2, Thorlabs) was collimated with an achromatic 
lens (L1, f = 63.5 mm, #49-780, Edmund Optics) and sent to the beam shaper (TopShape, 
asphericon GmbH) where the input size was ~10 mm (1/e2), but it is generally acceptable in a 
range between 9.2 mm and 10.8 mm26. Two mirrors (M1 and M2) served as four extra degrees 
of freedom to guide the beam into the TopShape. The flat-top beam was redirected by mirrors 
towards the microscope and was focused by a TIR lens (L3, f = 300 mm, AC508-300-A, Thorlabs) 
to the back focal plane of the objective (UPlanSApo, 100x/1.40 oil, Olympus). To measure 
Gaussian beam profiles, the other output beam from a single-mode fiber (P5-630A-PCAPC-1, 
Thorlabs) was collimated with a lens (L2, f = 80 mm or 150 mm, Thorlabs) and sent to the 
microscope via a flipping mirror which was installed between the TopShape and TIR lens. The 
TIR lens was mounted on a xyz translator to adjust the incidence angle for epi or TIRF illumination. 
Fluorescence through a filter cube (laser quad-band TRF89901v2, Chroma) was imaged onto an 
electron-multiplying charge-coupled device (EMCCD) camera (iXon Ultra 897, Andor). The flat-
top profile can be achieved even if the beam through the objective lens is either Airy disc-like or 
coma-like so long as the intensity profile is flat. Inspection of the intensity profile was done via a 
live feed by the camera using μManager28 while adjusting the angle of incidence to the TopShape.  

Beam profile measurement. A thin dye layer was created by sandwiching a microscope slide 
with a square coverslip (22 mm in length). 2 µL of a ~1 µM dye solution (STAR635 or Cy3B from 
Abberior or GE Healthcare, respectively) was dropped on the slide, and the square coverslip was 
pressed so the dye covered the full area of the coverslip. Epoxy was used to seal the edges. 
Intensity profiles were measured by exciting the layer of dye with a 638 nm or 561 nm laser with 
the Gaussian or FFI beam at a working distance of up to 300 mm. The recorded profiles were 
normalized. We used ImageJ29 to measure the intensity profile along the diagonal as indicated in 
Fig. 1c. The irregularity of the FFI was calculated by the standard deviation divided by the mean 
of the intensity within the FW90M of the profile. To measure the illumination efficiency (η) of the 
FFI, we inserted a 0.5x demagnifier before the EMCCD camera, which allowed us to capture all 
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of the illumination. The intensity of FFI detected by the camera without the 0.5x demagnifier was 
divided by the total intensity of FFI to calculate the efficiency. The efficiency for Gaussian beams 
was calculated using similar principles. The difference in calculating the efficiencies of FFI and 
the Gaussian beam was that the latter illumination was measured using simulated Gaussian 
beams with parameters taken from experimental data. The illumination efficiencies for Gaussian 
beams (f = 80 and 150 mm) and FFI were 93%, 51% and 85%, respectively.  

Optical simulation. The experimental set-up was modelled in the optical design software CodeV 
(Synopsys). The source is fiber-coupled, whereby the divergence of the laser beam coming out 
of the fiber depends on the mode field diameter (MFD) of the fiber. This MFD decreases with the 
wavelength of laser light, which is incorporated in the simulations. The MFD and the divergence 
angle were calculated for every wavelength, and the fiber output was simulated as a point source, 
which was collimated by a lens. The distance between the fiber output and the collimation lens 
was determined by the divergence of the beam and was adjusted aiming for a collimated beam 
with a diameter of approximately 10 mm at 1/e2, which is the required input beam size for our 
beam shaping system. The collimated beam passed the beam shaping system and the resulting 
flat-top beam profile was calculated in different distances behind the beam shaping system, which 
was the working distance. Depending on the simulations performed, an additional beam expander 
was inserted, to enlarge the output beam by a factor of 1.5. The maximum possible working 
distance over which the flat-top profile is maintained increases by almost a factor of two. The 
output intensity distribution was detected using the illumination analysis tool (LUM) in CodeV. The 
illumination analysis was used to compute the illuminance (or irradiance) distribution across a 
receiver surface resulting from the luminance of specified 2D or 3D sources. Monte Carlo ray 
tracing was used to model the transfer of radiation from extended sources to a receiver surface, 
which was the image surface in this case.  

Preparation of dye-labeled DNA samples. For single-molecule experiments in Fig. 3a-c, Fig. 4, 
and Fig. 5, biotinylated single-stranded DNA (ssDNA) called oligo 1 was dissolved in MilliQ water 
for a final concentration of 1 mM. 200 nmoles of AlexaFluor 647 NHS ester (Thermo Fisher) 
dissolved in anhydrous dimethyl sulfoxide, and 10 nmoles of oligo 1 were mixed in labeling buffer 
(0.1 M sodium tetraborate pH 8.5). After incubating overnight at room temperature, the sample 
was purified by ethanol precipitation. The labeled ssDNA was dissolved in 100 μL of T50 (10 mM 
Tris pH 8 and 50 mM NaCl) buffer, the concentration and labeling efficiency were measured using 
NanoDrop, and stored at -20°C until use. For dual-probe experiments in Fig. 3d, probes (1 and 2) 
and capture oligos were diluted in hybridization buffer (200 mM NaCl and 10 mM Tris, pH 8) to a 
final concentration of 2 μM of each probe and 1 μM of capture oligo, heated at 95 ˚C for two 
minutes, then slowly cooled down to room temperature. For single probe experiments, the same 
procedure was followed but only probe 1 was hybridized with the capture oligo. All chemicals and 
oligonucleotides were purchased from Sigma-Aldrich and IDT unless specified. The sequence 
information is listed in Supplementary Table 1.   

Single-molecule fluorescence imaging and analysis. We used biotin-labeled BSA or 
polyethylene glycol (PEG, Laysan Bio) coated flow chambers as described previously30. After 
washing with T50 buffer, 20 μg/mL neutravidin diluted in T50 was added and incubated for 5 
minutes before washing out with T50. ~10 pM of biotinylated DNA labeled with AF647 was 
incubated for 5 minutes in the flow chamber and washed out. Before imaging acquisition, we 
added an imaging buffer composed of 2 mM Trolox (Santa Cruz) and an oxygen scavenger (20 
mM Tris pH 8.0, 250 mM NaCl, 1 % w/v dextrose, 1 mg/mL glucose oxidase, 0.04 mg/mL 
catalase). Illumination powers of 4 mW were used for all single-molecule experiments for both 
Gaussian illumination and FFI, except in the case of the photobleaching experiment. We obtained 
images from 20 different areas for single-molecule analysis.  
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A custom MATLAB script was used to identify the location and intensity of each fluorescent spot30. 
For the generation of 1D intensity profile in Fig. 3b, the locations and intensities of molecules in 
the middle 50% of the field-of-view (as evident by the yellow boxes in Fig. 3a) were stored for 
both Gaussian illumination and FFI. The intensity of each molecule was plotted as a function of 
the x-coordinate of the molecule (160 nm precision). In the case where multiple molecules were 
localized to the same x-coordinate, the intensity of all the molecules at that same coordinate were 
averaged and plotted as a single point in the 1D profile.  

For the generation of the thresholding curve in Fig. 3c, an additional MATLAB script was used in 
conjunction with the code used for the above intensity distributions. The thresholding parameter 
was normalized to the intensity of the brightest single molecule in the field-of-view, such that the 
thresholding parameter was some fractional value multiplied by the intensity of the brightest spot. 
The x-axis of the threshold curve is the fractional value used to normalize the threshold parameter. 
The error bars represent the standard deviation from the average number of molecules at each 
thresholding value. When the threshold is set too low, the spot-finding code incorrectly counts 
noise as spots, and when it is set too high the code does not count the true single molecule spots 
and only counts extremely bright spots which are typically impurities or multiple emitters. As the 
thresholding value is increased past a critical value, the number of spots detected under FFI 
rapidly drops and the standard deviation increases.  

Photobleaching analysis. DNA labeled with AF647 (oligo 1) was imaged under laser powers of 
9 mW for both Gaussian illumination and FFI. For 10 different imaging areas, 2-minute movies 
were recorded, the locations of molecules detected in the first 10 frames of the movies were 
stored, and the photobleaching time for all molecules in the movie was measured. The data across 
all movies was merged, and the illuminated area was divided into six concentric rings, each with 
a width of 50 pixels, and the average photobleaching time of each ring was calculated. The 
resulting average photobleaching time was plotted with a colormap. 

Background reduction by flat-field TIRF illumination. We imaged oligo 1 in the presence of 5 
nM antibody labeled with AF647 in PEG-passivated flow chambers to check if TIRF illumination 
was attainable. For the experiment with a multi-mode fiber, we used a bare fiber (Φ = 105 μm, 
NA 0.15, Draka Prysmian fiber) combined with a vibrating motor (JRF370-18260, ASLONG). We 
calculated signal-to-background ratio that was defined by (IS - IB)/IB, where IS and IB are the mean 
of signal and background intensity. 50 single-molecules near the center of the FOV were 
analyzed.   

Preparation of cell sample. A549 cells (ATCC) were grown on coverslips in a Petri dish with F-
12K medium including 10% FBS (F2442, Sigma) and 1% Penicillin/Streptomycin (15140122, 
Thermo Fisher), incubated in 5% CO2 at 37˚C for 48 to 72 hours. To stain mitochondria, the cell 
medium was removed and replenished with pre-warmed staining solution including 50-100 nM 
MitoTracker Red CMXRos (M7512, Thermo Fisher), incubated in CO2 incubator for 30 min. After 
washing three times with the cell medium, the cells were fixed with 3.7% paraformaldehyde 
(15710, Electron Microscope Sciences) at room temperature for 15 min. The cells were washed 
with 1x PBS three times and permeabilized with 0.1% (v/v) Triton X-100 for 5 min. After washing 
with PBS, the cells were pre-incubated with PBS containing 1% BSA for 30 min, and actins were 
stained with AF647 phalloidin (A22287, Thermo Fisher) for 20 min. The sample was mounted in 
Prolong Diamond antifade mountant (P36961, Thermo Fisher) and sealed with epoxy. 

High-throughput Imaging. Using an automated 2D stage (SCAN IM 120 x 80, Marzhauser) 
controlled by μManager, a 3 × 3 grid was recorded with 638 nm and 561 nm excitation lasers. FFI 
was expanded 1.5x by installing a beam expander (asphericon GmbH) to the end of TopShape 
to provide a full FOV illumination to the sample. For comparison, we imaged the same area with 
a Gaussian beam (f = 150 mm). The red and green images were stitched separately by using the 
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stitching plugin of Fiji software31. Parameters for stitching were left as default; 0.30 regression 
threshold and linear blending for stitching. A leakage of mitochondria signal to the actin image 
was post-processed. The images collected by FFI did not undergo any prospective or 
retrospective correction to fix uneven illumination. While stitched images offered seamless 
transitioning, overlapping of red and green images was not exact due to shifts in image when 
recording automatically with XY stage.  

Data availability. The data that support the findings of this study are available from the 
corresponding author upon request.  
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