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Abstract

Motivation: The ability to simulate epidemics as a function of model parameters allows for the gain of insights
unobtainable from real datasets. Further, reconstructing transmission networks for fast-evolving viruses like HIV may
have the potential to greatly enhance epidemic intervention, but transmission network reconstruction methods have been
inadequately studied, largely because it is difficult to obtain “truth” sets on which to test them and properly measure their
performance.

Results: We introduce FAVITES, a robust framework for simulating realistic datasets for epidemics that are caused by
fast-evolving pathogens like HIV. FAVITES creates a generative model that produces many items relevant to an epidemic,
such as contact networks, transmission networks, phylogenetic trees, and error-prone sequence datasets. FAVITES is de-
signed to be flexible and extensible by dividing the generative model into modules, each of which is expressed as a fixed API
that can be implemented using various sub-models. We use FAVITES to simulate HIV datasets resembling the San Diego
epidemic and show that the simulated datasets are realistic. We then use the simulated data to make inferences about the
epidemic and how it is impacted by increased treatment efforts. We also study two transmission network reconstruction
methods and their effectiveness in detecting fast-growing clusters.

Availability and implementation: FAVITES is available at https://github.com/niemasd/FAVITES, and a Docker
image can be found on DockerHub (https://hub.docker.com/r/niemasd/favites).

1 Introduction

The spread of many infectious diseases is driven by social and sexual networks (Kelly et al., 1991), and reconstructing
their transmission histories from molecular data can greatly enhance intervention. For example, network-based statistics
for measuring HIV treatment effects can yield increased statistical power (Wertheim et al., 2011); the analysis of the
growth of HIV infection clusters can yield actionable epidemiological information for disease control (Lewis et al., 2008);
transmission-aware models can be used to infer HIV evolutionary rates (Vrancken et al., 2014).

A series of events in which an infected individual infects another individual can be shown as a transmission network,
which itself is a subset of a contact network, a graph in which nodes represent individuals and edges represent contacts (e.g.
sexual) between pairs of individuals. If the pathogens of the infected individuals are sequenced (e.g. the standard of HIV
care in many developed countries), one can attempt to reconstruct the transmission network (or its main features) using
molecular data. What gives us hope to reconstruct the network is that some viruses, such as HIV, evolve quickly, and the
phylogenetic relationships between viruses are reflective of transmission histories (Leitner et al., 1996), albeit imperfectly
(Ypma et al., 2013; Romero-Severson et al., 2014).

Recently, multiple methods have been developed to infer properties of transmission networks from molecular data (e.g.
Prosperi et al., 2011; Ragonnet-Cronin et al., 2013; Pond et al., 2018; Mccloskey and Poon, 2017). Efforts have been
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made to characterize and understand the promise and limitations of these methods. It is suggested that, when combined
with clinical and epidemiological data, these methods can provide critical information about drug resistance, associations
between sociodemographic characteristics, viral spread within populations, and the time scales over which viral epidemics
occur (Grabowski and Redd, 2014). More recently, these methods have become widely used at both local (Campbell et al.,
2017) and global scale (Wertheim et al., 2014). Nevertheless, several questions remain to be fully answered regarding
the performance of these methods. It is not always clear which method/setting combination performs best for a specific
downstream use-case or for specific epidemiological conditions. More broadly, the effectiveness of these methods in helping
achieve public health goals is the subject of ongoing clinical and theoretical research.

Transmission networks are difficult to study because controlling parameters of interest such as network shape and trans-
mission rates is not possible. A relatively inexpensive method to investigate questions related to epidemics is via simulation
(Villandre et al., 2016). Any simulation of transmission networks needs to combine models of social network, transmission,
evolution, and ideally sampling biases and errors. One attempt to build such a simulation tool is PANGEA.HIV.sim, an R
package developed by the PANGEA-HIV consortium to simulate realistic HIV transmission dynamics, phylogenetic trees,
and sequence data (Ratmann et al., 2017). While the PANGEA.HIV.sim workflow allows for generality in terms of model
parameters, it is restrictive in that the statistical models at each step of the workflow are fixed.

We introduce FAVITES (FrAmework for VIral Transmission and Evolution Simulation), which can simulate numerous
models of contact networks, viral transmission, phylogenetic and sequence evolution, data (sub)sampling, and real-world
data perturbations, and which was built to be flexible such that users can seamlessly plug in statistical models and model
parameters at every step of the simulation process. We show the realism of FAVITES in a series of experiments, study
the properties of HIV epidemics as functions of various model and parameter choices, and finally perform simulation
experiments to study two transmission network reconstruction methods.

2 Materials and methods

2.1 FAVITES simulation process

FAVITES provides a general workflow for the simulation of viral transmission networks, phylogenetic trees, and sequence
data. It breaks the simulation process down into a series of interactions between abstract modules, and users can select
the module implementations appropriate to their specific context. In a statistical sense, the end-to-end process creates a
complex composite generative model, each module is a template for a sub-model of a larger model, and different implemen-
tations of each module correspond to different statistical sub-models. FAVITES is designed to be flexible for developers,
a goal achieved by defining APIs for each module and allowing various forms of interaction between modules. These
interactions enable sub-models that are described as conditional distributions (via dependence on preceding steps) or as
joint distributions (via joint implementation). Module implementations can simply wrap around existing tools, allowing
for significant code reuse. To emphasize this, we even wrap around PANGEA.HIV.sim (Ratmann et al., 2017).

Simulations start at time zero and continue until a user-specified end criterion is met. Error-free and error-prone
transmission networks, phylogenetic trees, and sequences are output at the end. FAVITES has eight steps (Fig. 1), which
we describe below with examples of canonical models implemented for each step.

Step 1. The ContactNetworkGenerator module generates a contact network; vertices represent individuals, and edges
represent contacts between them that can lead to disease transmission (e.g. sexual). Graphs can be created stochasti-
cally using existing models (Karoński, 1982), including those that capture properties of real social networks (Watts and
Strogatz, 1998; Watts, 1999; Newman et al., 2002). For example, the Erdős-Rényi (ER) model (Erdos and Rényi, 1960)
generates graphs with randomly-placed edges, the Random Partition model (Fortunato, 2010) generates communities, the
Barabási-Albert model (Barabási and Albert, 1999) generates scale-free networks whose degree distributions follow power-
law (suitable for social and sexual contact networks), the Caveman model (Watts, 1999) and its variations (Fortunato,
2010) generate small-world networks, the Watts-Strogatz model (Watts and Strogatz, 1998) generates small-world networks
with short average path lengths, and Complete graphs connect all pairs of individuals (suitable for some communicable
diseases). We currently have all these models implemented by wrapping around the NetworkX package (Hagberg et al.,
2008). In addition, a user-specified network can be used.

Step 2. The transmission network is initialized in two steps. a) The SeedSelection module chooses the “seed” nodes:
individuals who are infected at time zero of the simulation. b) For each selected seed node, the SeedSequence module
generates an initial viral sequence.

Example implemented models for selecting seeds include Random selection (i.e., uniformly at random) and Edge-
Weighted (each node’s probability of being selected is directly proportional to its degree). We also designed a Clusters-
Bernoulli model: randomly select k seed individuals with equal probability to initiate k “clusters,” and for each of the
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Figure 1: FAVITES workflow. (1) The contact network is generated (nodes: individuals; edges: contacts). (2) Seed individuals
who are infected at time 0 are selected (2a), and a viral sequence is chosen for each (2b). (3) The epidemic yields a series of
transmission events in which the time of the next transmission is chosen (3a), the source and target individuals are chosen
(3b), the viral phylogeny in the source node is evolved to the transmission time (3c), viral sequences in the source node are
evolved to the transmission time (3d), and a viral lineage is chosen to be transmitted from source to destination (3e). Step
(3) repeats until the end criterion is met. Step 3c–3e are optional, as tree and sequence generation can be delayed to later
steps. (4) Infected individuals are sampled such that viral sequencing times are chosen for each infected individual (4a),
viral phylogenies (one per seed) are evolved to the end time of the simulation (4b), and viral phylogenies (one per seed)
are pruned to reflect the viral sequencing times selected (4c). (5) Mutation rates are introduced along the branches of the
viral phylogenies and the tree is scaled to the unit of expected mutations. (6) The seed trees are merged using a seed tree
(cyan). (7) Viral sequences obtained from each infected individual are finalized. (8) Real-world errors are introduced on the
error-free data, such as subsampling of the sequenced individuals (marked as green) (8a) and the introduction of sequencing
errors (8b).

k initial individuals, perform a random walk, flipping a coin with probability p at each step to determine if the current
individual will be a seed, until m/k seed individuals have been chosen in the current “cluster”.

Many models can be used to generate the seed sequence, including random selection. However, seed sequences should
ideally emulate the virus of interest. To accomplish this, we implement a model where we use HMMER (Eddy, 1998) to
sample each seed sequence from a profile Hidden Markov Model (HMM) specific to the virus of interest. We provide a set
of such prebuilt profile HMMs constructed from multiple sequence alignments (MSAs) of viral sequences (currently just
for HIV). Our prebuilt HMMs are for the pol gene and come from the Los Alamos National Laboratory (LANL) and from
a San Diego dataset of HIV-1 subtype B sequences (Little et al., 2014).

When multiple seeds are chosen, we need to model their phylogenetic relationship as well. Thus, we also have a model
that samples a single sequence from a viral profile HMM using HMMER, simulates a seed tree with a single leaf per seed
individual (e.g. using Kingman coalescent or birth-death models using DendroPy (Sukumaran and Holder, 2010)), and
then evolves the viral sequence down the tree to generate seed sequences using Seq-Gen (Rambaut and Grass, 1997).

Step 3. An iterative series of transmission events occurs under a stochastic transmission model until the end of the
simulation, as dictated by the EndCriteria module. Each event has five components.

a) The TransmissionTimeSample module chooses the time at which the next transmission event will occur and advances
the current time accordingly, and b) the TransmissionNodeSample module chooses a source node and target node to be
involved in the next transmission event. These two modules are often jointly implemented. Beyond simple models (e.g.
selecting times by draws from an exponential and selecting nodes uniformly at random), the main models of transmission
treat individuals as Markov processes in which individuals start in some state (e.g. Susceptible) and transition between
states of the model (e.g. Infected, Recovered, etc.) over time. These epidemiological models are defined by two sets of
transition rates: “nodal” and “edge-based.” Nodal transition rates are rates that are independent of interactions with
neighbors (e.g. the transition rate from Infected to Recovered in the SIR model), whereas edge-based transition rates are
the rate of transitioning from one state to another given that a single neighbor is in a given state (e.g. the transition rate
from Susceptible to Infected given that a neighbor is Infected). The rate at which a specific node u transitions from state a
to state b is the nodal transition rate from a to b plus the sum of the edge-based transition rate from a to b given neighbor v’s
state for all neighbors v. We use GEMF (Sahneh et al., 2017) to implement many epidemiological models in this manner,
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such as Susceptible-Infected (SI), Susceptible-Infected-Susceptible (SIS), Susceptible-Aware-Infected (SAI), Susceptible-
Infected-Recovered (SIR), Susceptible-Exposed-Infected-Recovered (SEIR), and Susceptible-Vaccinated-Infected-Treated-
Recovered (SVITR). We have also included more sophisticated HIV models, such as the Granich et al. (2009) model as
well the HPTN 071 (PopART) model (Cori et al., 2014).

c) The NodeEvolution module evolves viral phylogenies of the source node to the current time. Many stochastic models
of tree evolution have been developed (Hartmann et al., 2010), some simulating forward in time (i.e., starting from the root
and generating the tree top-down), and others backward (i.e., starting from leaves and generating back in time, typically
based on coalescent theory). For forward models, we wrap around DendroPy for birth-death (Sukumaran and Holder, 2010)
and include our own implementation of dual-birth (Moshiri and Mirarab, 2017) and thus Yule. For backward models, we
wrap around VirusTreeSimulator (Ratmann et al., 2017) for coalescent models with constant, exponentially-growing, or
logistically-growing population size.

d) The SequenceEvolution module evolves all viral sequences in the source node to the current time. A commonly-used
model for DNA is the General Time-Reversible (GTR) model (Tavaré, 1986), parameterized by nucleotide frequencies
and base change rates, with constraints to enforce time-reversibility. Other commonly-used DNA models, e.g. Jukes and
Cantor (1969), Kimura (1980), Felsenstein (1981), and Tamura and Nei (1993), are reductions of the GTR model and
are thus all also currently available in FAVITES. An extension of the GTR model available in FAVITES is the GTR+Γ
model, which incorporates rates-across-sites variation (Yang, 1994). For coding sequences, in which selection occurs at the
encoded amino acid level as well, FAVITES currently includes multiple codon-aware extensions of the GTR model, such as
mechanistic (Zaheri et al., 2014) and empirical (Kosiol et al., 2007) codon models. Our current implementations internally
use Seq-Gen (Rambaut and Grass, 1997) and Pyvolve (Spielman and Wilke, 2015).

e) The SourceSample module chooses the viral lineage(s) in the source node to be transmitted.
Substeps c − e are required only if the choice of transmission events after time t depends on the past phylogeny or

sequences up to time t. If the choice of future transmission recipients/donors and transmission times are agnostic to past
phylogenies and sequences, these can be omitted.

Step 4. The patient sampling (i.e., sequencing) events are determined and phylogenetic trees are updated accordingly.
Three sub-steps are involved.

a) For each individual, the NumTimeSample module chooses the number of times it will be sequenced, the TimeSample
module chooses the corresponding sequencing time(s), and the NumBranchSample module chooses how many viral lineages
will be sampled at each sampling time. A given individual may not be sampled at all, thus simulating incomplete epidemi-
ological sampling efforts. Current implementations include sampling each individual a fixed number of times or a random
number of times by draws from a Poisson distribution. Sampling times can be fixed at the end time of the transmission
simulation or can be uniformly distributed across the entirety of the individual’s span of infection. Individuals can also be
sampled the first time they enter a specific state of the transmission model. This model is appropriate when the transmis-
sion model includes a state for treatment because the standard of the HIV care in many places is to sequence individuals
before the start of antiretroviral therapy. Another model is to draw the sample times from a user-parameterized Truncated
Normal distribution over the window(s) of the individual’s span of infection to recovery/treatment time(s).

b) The NodeEvolution module is called to simulate the phylogenetic trees given sampling times. This step can be used
instead of Step 3c to evolve only lineages that are sampled, thereby reducing the dataset size. In particular, if the tree
simulation model is backwards (e.g. coalescent models), Step 3c should be ignored, and the full backward simulation
process can be performed at once here. c) If the tree is simulated in Step 3c, it may need to be pruned to only include
lineages that are sampled. At this point, we perform the pruning. Sampled lineages at a given time are chosen uniformly
at random, but other models can be implemented.

Step 5. The phylogenetic trees from Step 4 are in unit of time. To generate sequence data, rates of evolution need
to be assumed. The TreeUnit module can be used to determine such rates, yielding a tree in unit of per-site expected
number of mutations. In current implementations, the mutation rate can be a constant (i.e., all branches are multiplied
by a user-given constant), or it can be a constant multiplied by random draws from several commonly-used distributions
(e.g. Exponential, Gamma, or Log-Normal).

Step 6. We now have one tree per seed individual. Some implementations of SeedSequence use a tree to simulate seed
sequences, so the roots of the trees have a phylogenetic relationship. In this case, another call to the SeedSequence module
in this step handles merging the individual phylogenetic trees into a single global tree by placing each individual tree’s
root at its corresponding leaf in the seed tree (Fig. 1).

Step 7. A second invocation of the SequenceEvolution module is used to finalize the sequences. Two scenarios are
possible. If sequences are simulated continuously in Step 3d, this step is used to evolve all sequences between the last
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transmission time and the sampling times. More importantly, to reduce the dataset size and to speed up simulation, when
the transmissions and tree evolution are not dependent on the exact sequences, Step 3d can be skipped (i.e., a dummy
module), and the sequence evolution can be delayed until this point. Here, the SequenceEvolution module can perform the
full sequence simulation on the final tree(s) at once.

Step 8. Error-free data are now at hand. Noise is introduced onto the complete error-free data in two ways. a) The
NodeAvailability module further subsamples the individuals to simulate lack of accessibility to certain datasets. Note,
therefore, that whether a node is sampled is a function of two different modules: NodeAvailability and NumTimeSample
(if NumTimeSample returned 0, the individual is not sampled). Conceptually, NumTimeSample can be used to model
when people are sequenced, while NodeAvailability can be used to model patterns of data availability (e.g. sharing of
data between clinics). Bernoulli sampling with a fixed probability as well as randomly choosing individuals with sampling
probability weighted by the number of transmissions in which the individual was involved are example models currently
implemented. b) The Sequencing module simulates sequencing error on the simulated sequences. In addition to sequencing
machine errors, this can incorporate other real-world sequencing issues, e.g. taking the consensus sequence of a sample and
introducing of ambiguous characters. The current sequencing machine error models implemented include wrappers around
ART (Huang et al., 2012) for simulating Illumina, Roche 454, and SOLiD sequencing error, DWGSIM for simulating
Illumina, SOLiD, and Ion Torrent sequencing error, and Grinder (Angly et al., 2012) for simulating Sanger sequencing
error, including support for ambiguous characters.

Validation. We provide tools to validate FAVITES outputs (Table S1), which compare real networks, phylogenetic
trees, or sequence data to the simulation results. For contact networks, the comparison can be in terms of the average and
standard deviation of node degree distributions and the Kolmogorov-Smirnov (KS) test (Smirnov, 1939). For phylogenetic
trees, we compare terminal and internal branch length distributions between real and simulated using summary statistics
and the KS test. If the user has a Multiple Sequence Alignment (MSA) from real data, a profile Hidden Markov Model
(HMM) can be built from the alignment. Then, the simulated sequences can be aligned against the profile HMM using
hmmscan (Eddy, 1998), and bit-scores can be examined. In addition to post-validation scripts, we have several helper scripts
to implement tasks that are likely common to downstream use of FAVITES output (Table S2).

2.2 Experimental setup

We perform a large simulation study of HIV phylodynamics using FAVITES while employing several generative models
(datasets available at https://gitlab.com/niemasd/favites-paper). Besides demonstrating its flexibility, we present evidence
that the data generated by FAVITES are reasonably similar to real HIV data. We then study properties of the epidemic as
a function of the parameters of the underlying generative models. Finally, we compare two transmission cluster inference
tools when applied to sequence data generated by FAVITES.

2.2.1 The simulation model

We selected a set of “base” simulation models and parameters and performed experiments in which they were varied. For
each parameter set, we ran 10 simulation replicates. The base simulation parameters were chosen to emulate (as much as
possible) HIV transmission in San Diego from 2005 to 2014. We start with base parameters.

Contact network. The contact network includes 100,000 individuals to approximate the at-risk community of San
Diego. We set the base expected degree (Ed) to 4 edges (i.e., sexual partners over 10 years) per individual. This number is
motivated by estimates from the literature (e.g. ≈3 in Wertheim et al. (2017b) and 3–4 in Rosenberg et al. (2011)), and it
is varied in the experiments. We chose the Barabási-Albert (BA) model as the base network model because it can generate
power-law degree distributions (Barabási and Albert, 1999), a property commonly assumed of sexual networks (Hamilton
et al., 2008).

Seeds. We chose 15,000 total infected seed individuals based on the estimate of total HIV cases in San Diego as of 2004
(Shepard et al., 2005). In the base model, we choose seed individuals uniformly at random.

Epidemiological model. We model HIV transmission as a Markov chain epidemic model (see Section 2.1), with
states Susceptible (S), Acute HIV Untreated (AU), Acute HIV Treated with ART (AT), Chronic HIV Untreated (CU),
and Chronic HIV Treated with ART (CT). All seed individuals in the AU state and transmissions occur with fixes rates
(Fig. 2). Note that this model is a simplification of the model used by Granich et al. (2009), which includes eight states of
infection (four untreated and four treated) as opposed to our four states (two untreated and two treated).

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/297267doi: bioRxiv preprint 

https://gitlab.com/niemasd/favites-paper
https://doi.org/10.1101/297267
http://creativecommons.org/licenses/by-nc-nd/4.0/


S AU CU

AT CT

𝑛"#𝜆%,"# + 𝑛"(𝜆%,"( + 𝑛)#𝜆%,)# + 𝑛)(𝜆%,)(

𝜆#→( 𝜆#→(𝜆(→# 𝜆(→#

𝜆"#→)#

𝜆"(→)(

Figure 2: Epidemiological model of HIV transmission with states Susceptible (S), Acute HIV Untreated (AU), Acute HIV
Treated with ART (AT), Chronic HIV Untreated (CU), and Chronic HIV Treated with ART (CT). The model is parameterized
by the following rates: infectiousness of AU (λS,AU ), AT (λS,AT ), CU (λS,CU ), CT (λS,CT ) individuals, and by rate to
transition from AU to CU (λAU→CU ), rate to transition from AT to CT (λAT→CT ), rate to start ART (λU→T ), and rate to
stop ART (λU→T ).

Parameter Parameter Values
Contact Network Model Barabási-Albert, Erdős-Rényi, Watts-Strogatz
Expected Degree(Ed) 2, 4, 8, 16
Seed Selection Random, Edge-Weighted
Mean time to ART (EART ) 1⁄8, 1⁄4, 1⁄2, 1, 2, 4, 8 (years)

Table 1: Simulation parameters (base parameters in bold)

We set λAU→CU such that the expected time to transition from AU to CU is 6 weeks (Bellan et al., 2015) and set
λAT→CT such that the expected time to transition from AT to CT is 12 weeks (Cohen et al., 2011). We set λU→T

such that the expected time to start ART is 1 year from initial infection (O’Brien and Markowitz, 2012), and we define
EART = 1/λU→T . We set λT→U such that the expected time to stop ART is 25 months from initial treatment (Nosyk
et al., 2015). For the rates of infection λS,j for j ∈ {AU,CU,AT,CT}, using the infectiousness of CU individuals as a
baseline, we set the parameters such that AU individuals are 5 times as infectious (Wawer et al., 2005) and CT individuals
are not infectious (i.e., rate of 0). Cohen et al. (2011) found a 0.04 hazard ratio when comparing linked HIV transmissions
between an early-therapy group and a late-therapy group, so we estimated AT individuals to be 1⁄20 the infectiousness of
CU individuals. We then scaled these relative rates so that the total number of new cases over the span of the 10 years was
roughly 6,000 (Macchione et al., 2015), yielding transmission rate from acute untreated set to λS,AU = 0.1125 per year.

Phylogeny. A single viral lineage from each individual was assumed to be sampled at the end time of the epidemic
simulation (10 years). The viral phylogenetic tree in unit of time (years) was then sampled under a coalescent model in
which the viral population in an individual undergoes logistic growth using the same approach as the the PANGEA-HIV
methods comparison exercise, setting the initial population to 1, per-year growth rate to 2.851904, and the time back from
present at which the population is at half the carrying capacity (v.T50) to -2 (Ratmann et al., 2017). Each seed individual
is the root of an independent viral phylogenetic tree, and these phylogenetic trees were merged by simulating a seed tree
under the pure neutral Kingman coalescent model with one leaf per seed node and an expected height of approximately
40 years to reflect the origin of HIV in the USA in the 1970s (Worobey et al., 2016) using DendroPy (Sukumaran and
Holder, 2010). The phylogenetic tree was then scaled from unit of time (years) to unit of expected number of mutations
by multiplying each branch length by an evolutionary rate sampled from a log-normal random variable with µ = −6.164
and σ = 0.3 (Fig. S1) (Ratmann et al., 2017).

Sequence data. We sampled a root sequence from a profile Hidden Markov Model (HMM) generated from 639 HIV-1
subtype B pol sequences from San Diego (Little et al., 2014). We evolved down the scaled viral phylogenetic tree under
the GTR+Γ model using Seq-Gen (Rambaut and Grass, 1997) with parameters inferred using RAxML (Stamatakis, 2014)
from the same San Diego sequence dataset (Table S3).

Varying parameters. We thoroughly explore four parameters (Table 1). For the contact network, in addition to the
BA model, we used the Erdős-Rényi (ER) (Erdos and Rényi, 1960) and Watts-Strogatz (WS) (Watts and Strogatz, 1998)
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models. We also varied the expected degree (Ed) of individuals in the contact network between 2 and 16 (Table 1). For the
method of seed selection, we also used “Edge-Weighted,” where the probability that an individual is chosen is weighted by
the individual’s degree. For each selection of contact network model, Ed, and seed selection method, we study multiple rates
of starting ART (expressed as EART ). In our discussions, we focus on EART , a factor that the public health departments can
try to impact. Increased effort in testing at-risk populations can decrease the diagnosis time, and the increased diagnosis
rate coupled with high standards of care can lead to faster ART initiation. Behavioral intervention could in principle also
impact degree distribution, another factor that we vary, but the extent of the effectiveness of behavioral interventions is
unclear (Kelly et al., 1991).

2.2.2 Transmission network reconstruction methods

We compare two HIV network inference tools: HIV-TRACE (Pond et al., 2018) and TreeCluster (Moshiri, 2018). HIV-
TRACE is a widely-used method (Rose et al., 2017; Wertheim et al., 2017b; Pérez-Losada et al., 2017). Under its default
settings, HIV-TRACE clusters individuals such that, for all pairs of individuals u and v, if the Tamura and Nei (1993)
(TN93) distance is at most 1.5%, u and v are connected by an edge; each connected component then forms a cluster. We
ran HIV-TRACE on the simulation experiment data using its default settings, skipping the alignment step because the
simulated sequences did not contain indels. TreeCluster clusters the leaves of a given tree such that the pairwise path
length between any two leaves in the same cluster is at most 0.045 (the default threshold), the members of a cluster define a
full clade, and the number of clusters is minimized. Trees given to TreeCluster were inferred using FastTree-II (Price et al.,
2010) under the GTR+Γ model. TreeCluster is similar in idea to Cluster Picker (Ragonnet-Cronin et al., 2013), which
uses sequence distances instead of tree distances. Cluster Picker can infer clusters using bootstrap support in addition to
distance, a feature that TreeCluster also supports, but to avoid the time-consuming bootstrapping step, we do not employ
it here. We study TreeCluster instead of Cluster Picker because of its improved speed. Our attempts to run PhyloPart
(Prosperi et al., 2011) were unsuccessful due to running time.

2.2.3 Measuring the predictive power of clustering methods

We now have two sets of clusters at the end of the simulation process (year 10): one produced by HIV-TRACE and one by
TreeCluster. Let Ct denote the clustering resulting from removing all individuals infected after year t from a given final

clustering C10, let Ct
i denote a single i-th cluster in clustering Ct, and let g(Ct

i ) =
|Ct

i |−|Ct−1
i |√

|Ct
i |

denote the growth rate of

a given cluster Ct
i ; the square root normalization is based on a practice used on real data (Wertheim et al., 2017a). We

then compute the average number of individuals who were infected between years 9 and 10 by the “top” 1,000 individuals
who were infected at year 9, where we choose top individuals by sorting the clusters in C9 in descending order of g(C9

i )
(breaking ties randomly) and choosing 1,000 individuals in this sorting, breaking ties in a given cluster randomly if needed
(e.g. for the last cluster needed to reach 1,000 individuals). As a baseline, we compute the average number of individuals
who were infected between years 9 and 10 by all individuals, which is equivalent (in expectation) to a random selection of
1,000 individuals. Our metric, therefore, measures the risk of transmission from the top selected 1,000 individuals (roughly
5% of the total infected population). Our motivation for this metric is to capture whether monitoring cluster growth can
help public health intervention efforts with limited resources (hence our limitation on the number of top individuals) in
finding individuals with a higher risk of transmitting.

3 Results

3.1 Comparison of simulated and real data

Phylogenetic trees simulated using the base parameters resemble phylogenetic trees inferred from real sequence data under
the GTR+Γ model using FastTree 2 (Price et al., 2010), both in terms of topology and branch length (Fig. 3). Reassuringly,
our simulated trees, like real trees, include clusters of long terminal branches and short internal branches, with clusters
connected via moderately long branches (Fig. 3a–c). Further, the branch length distributions are similar to real data
(Fig. 3d), showing a bimodal distribution of short and long branches. The simulated branches are on average slightly
shorter than real data, a pattern we do not find surprising given the fact that simulations, unlike real data, enjoy full
sampling. Arguably, more important than the branch length distribution is the pairwise sequence distance distribution.
Pairwise distances according to the TN93 measure are different between the LANL and San Diego datasets. The simulated
distances have distributions that are close to the San Diego dataset, with a second mode that resembles the LANL dataset
(Fig. 3e). Overall, both the phylogeny and sequence data seem realistic.
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Figure 3: Real versus simulated phylogenetic trees and sequence data. Phylogenetic trees inferred from real HIV multiple
sequence alignments from San Diego (Little et al., 2014) (a) and the Los Alamos National Laboratory (b) under the GTR+Γ
model using FastTree 2 (Price et al., 2010), and a tree simulated by FAVITES using base parameters (c). Kernel density
estimates of the branch lengths of the trees (d) and of the pairwise Tamura-Nei 93 (TN93) (Tamura and Nei, 1993) distances
between sequences (e). For the simulated pairwise distances in (e), 639 simulated sequences were randomly chosen from the
full dataset to represent the subsampling of the San Diego dataset, which also contains 639 sequences.
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3.2 Analyzing transmission network properties

As expected, the number of infected individuals increases with time, and the rate of growth is faster for larger EART values
(Fig. 4a). Interestingly, for all tested values of EART , the growth of the number of infected individuals is close to linear,
indicating that the large at-risk population that we simulated has not saturated in the 10 year simulation period. However,
this pattern could not infinitely continue had we simulated beyond 10 years because the number of remaining susceptible
people constantly drops. However, in simulations like ours where the network is not dynamically changing, it makes sense
to ensure the at-risk population is not exhausted during the simulation period.

The percentage of the infected population on ART at any point in time is also interesting. For example, the 90-90-
90 campaign by UNAIDS (2017) aims to have 90% of HIV infected individuals diagnosed, of which 90% should receive
treatment, of which 90% (i.e., 72.9% of total) should adhere and be virally suppressed. We observed that the ratio of
individuals in the treated and untreated states remains constant (Fig. 4) after an initial time period of roughly a year
(initial instability is because we start all individuals in the untreated state; Fig. S2). With EART = 2 years, we have roughly
as many treated people as untreated; decreasing EART predictably reduces the portion of untreated people. According to
our simulations, reaching the 90-90-90 goals in an epidemic like that of San Diego requires EART to be between 1/2 and 1
year (assuming that a lack of viral suppression for treated people is fully attributed to the lack of adherence).

As EART decreases, the total number of infected individuals at the end of the simulation time decreases (Fig. 5a). For
our parameter set, reducing EART from 8 years all the way to 1/8 years keeps reducing the final number of infected people.
For example, with degree 4, the average final number of newly infected individuals in the 10 year period is 6686, 4134, and
1273 with EART set to 1, 1/2, 1/8 year, respectively.

Beyond the total number of infections, patterns of branch lengths in the true phylogeny also change. The average
branch length of the true phylogenetic tree increases when EART decreases until it reaches a point of saturation (Fig. 5b).
As expected, higher Ed (which yields faster transmissions) also results in shorter average branch length (Fig. 5b). Note
that the same mean branch length could be obtained by various settings of the network degree and the time to ART.

The shortest branches in a phylogeny are generally the most difficult to infer, and thus, we can hope that decreasing
EART and Ed coincide with reduced phylogenetic inference error. To test this expectation, we computed the normalized
Robinson-Foulds (RF) distance (i.e., the proportion of branches included in one tree but not the other (Robinson and
Foulds, 1981)) between the true tree and the estimated tree. For all model conditions, the RF distance is quite high
(0.50-0.65). As we hoped, for networks with Ed≤ 4, as EART decreases, the RF distance of trees inferred using FastTree
(Price et al., 2010) under the GTR+Γ model decreases (Fig. 5c). However, unexpectedly, for networks with Ed≥ 8, as
EART decreases, the RF distance initially rises and then falls. To further study the cause of this pattern, we analyzed
the proportion of extremely short branches versus EART . For our analysis, we define branches to be “extremely short”
if the expected number of mutations along the branch across the entire sequence is less than or equal to 1. As EART

decreases, the proportion of extremely short branches increases (making phylogenetic inference more difficult) despite the
fact that the average branch length simultaneously increases (making phylogenetic inference easier). Thus, perhaps, the
exact patterns of the fall and rise of RF as a function of decreasing EART is the outcome of these two competing factors:
increased short branches but also higher average branch lengths.

Surprisingly, the model of contact network and the model of choosing the seed individuals only had marginal effects on
epidemiological outcomes. Edge-weighting the seed selections yields a slightly higher total number of infected individuals
than the random selection (Figs. S3). The BA model of contact network leads to a slightly higher infection count when
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Figure 4: (Left) The total number of infected individuals and (Right) the ratio of the number of untreated vs. the number
of treated individuals (log-scale) vs. time for the Barabási-Albert model with various values of expected time to begin ART
(EART , colors) with all other parameters set to base values. In the right, untreated/treated = 1 is shown as a dashed black
line, and the value of untreated/treated corresponding to the “90-90-90” goal (UNAIDS, 2017) is shown as a dashed blue line
((1− 0.93)/0.93 ≈ 0.37). We start from year 2 as dynamics are initially unstable because we initialize the transmission network
with all infected individuals in the Acute Untreated (AU) state. See Figure S2 for full plots.
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Figure 5: (Left) Total number of infected individuals, (Center) average branch length, and (Right) FastTree RF distance
(solid lines) and proportion of “extremely short” branches (dotted lines) vs. expected time to begin ART (EART ) for the
Barabási-Albert with various Ed values (colors) with all other parameters set to base values. In the leftmost plot, the number
of seed individuals (15,000) is shown by a black dashed line. In the rightmost plot, we define branches to be “extremely
short” if the expected number of mutations along the branch is less than or equal to 1 (i.e., the branch length is less than or
equal to the reciprocal of the sequence length).
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Figure 6: The effectiveness of clustering methods in finding high risk individuals. The average number of new infections
between years 9 and 10 of the simulation caused by individuals infected at year 9 in growing clusters. We select 1,000
individuals from clusters, inferred by either HIV-TRACE or TreeCluster, that have the highest growth rate (ties broken
randomly). As a baseline control, the average number of infections over all individuals (similar to expectations under a
random selection) is shown as well. For a cluster with nt members at year t, growth rate is defined as n9−n8√

n9
. The columns

show varying expected degree, and all other parameters are their base values.

compared to the ER and WS models (Figs. S4), but these differences are marginal compared to impacts of EART and Ed.

3.3 Evaluating clustering methods

By measuring the number of new infections caused by each person in the clusters with the highest growth rate, we observe
that both clustering methods can potentially help target intervention and prevention services (Fig. 6). Over the entire
population, the number of new infections caused by each person between years 9 and 10 is 0.029 for our base parameter
settings. The top 1,000 people from the fastest growing TreeCluster clusters, in contrast, infect on average 0.065 new
people. Thus, public health efforts at treatment and prevention are better spent on the growing clusters according to
TreeCluster than just random targeting. HIV-TRACE performs even better than TreeCluster, increasing the per capita
new infections among top 1,000 individuals to 0.086 for base parameters. Thus, an individual in the highest-growth HIV-
TRACE clusters has about a three times higher chance of transmission compared to the general population. As EART

decreases, as expected, the total number of per capita new infections reduces; as a result, the positive impact of using
clustering methods to find the growing clusters gradually diminishes (Fig. 6). Conversely, reducing EART leads to further
improvements obtained using TreeCluster versus random selection and using HIV-TRACE versus TreeCluster.

Changing Ed has a noticable impact on the results (Fig. 6). When Ed is decreased 4 (the base value) to 2, slowing
the epidemic down, both methods remain very effective in finding high-risk individuals, and HIV-TRACE continues to
outperform TreeCluster. However, when Ed is increased, the two methods first tie at Ed= 8, and at Ed= 16, TreeCluster
becomes slightly better than HIV-TRACE for most EART values (Fig. 6). Interestingly, both methods are only barely
better than a random selection of individuals if the epidemic is made very fast growing by setting EART≥ 2 and Ed= 16.
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However, besides these special cases, both methods seem very effective in most conditions we tested.

4 Discussion

Our results demonstrated that FAVITES can simulate under numerous different models and produce realistic data. We also
showed that TreeCluster and HIV-TRACE, when paired with temporal monitoring, can successfully identify individuals
most likely to transmit, and HIV-TRACE performs better than TreeCluster under most tested conditions. The ability to
find people with increased risk of onward transmission is especially important because it can potentially help public health
officials better spend their limited budgets for targeted prevention (e.g. pre-exposure prophylaxis, PrEP) or treatment
(e.g. efforts to increase ART adherence).

We studied several models for various steps of our simulations, but we did not exhaustively test all models: FAVITES
currently includes 21 modules and a total of 136 implementations across them, and testing all model combinations is
infeasible, but we aimed to choose models that best emulate reality. All the sub-models we used can be criticized for
imperfect capturing of reality. For example, our contact network remains unchanged with time, whereas real sexual
networks are dynamic. Our transmission model does not directly model effective prevention measures such as PrEP. Our
sequences include substitutions, but no recombination. Moreover, our models of sequence evolution assume the sites of a
sequence are independent and identically-distributed (i.i.d.), ignoring evolutionary constraints across sites. We also ignored
infections from outside the network (viral migration), assumed full patient sampling, and we sampled all patients at the
end time as opposed to varied-time sampling. While these and other choices may impact results, we note that our goal
here was mainly to show the utility of FAVITES. Importantly, beyond the numerous models currently implemented into
FAVITES, new models with improved realism can easily be incorporated, and continued model improvement is a reason
why we believe frameworks like FAVITES are needed.

We observed relatively high levels of error in inferred phylogenies. This is not surprising given the low rate of evolution
and length of the pol region (which we emulate). Further, our phylogenetic trees include many super-short branches,
perhaps due to our complete sampling. Many transmission cluster inference tools (e.g. PhyloPart, Cluster Picker, and
TreeCluster) use phylogenetic trees during the inference process and thus may be sensitive to tree inference error. Other
tools, such as HIV-TRACE do no attempt to infer a full phylogeny (only distances). The high levels of tree inference errors
may be partially responsible for the relatively lower performance of TreeCluster compared to HIV-TRACE. Nevertheless,
TreeCluster had higher per capita new infections in its fastest growing clusters than the population average, indicating
that the trees, although imperfect, still include useful signal about the underlying transmission histories.

Nevertheless, we caution that our studies are not meant to be a definitive comparison of TreeCluster and HIV-TRACE,
and results should be interpreted with several limitations kept in mind. A major limitation is that both methods we tested
use a threshold internally for defining clusters. The specific choice of distance threshold defines a trade-off between cluster
sensitivity and specificity, and the trade-off will impact cluster compositions. The best choice of the threshold is likely a
function of epidemiological factors, and the default thresholds are perhaps optimal for certain epidemiological conditions,
but not others. For example, we observed that, for a minority of our epidemiological settings, TreeCluster is more effective
than HIV-TRACE in predicting growing clusters. A thorough exploration of all epidemiological parameters and method
thresholds is left for future studies. On a practical note, FAVITES can enable public health officials to simulate conditions
similar to their own epidemic and pick the best method/threshold tailored to their situation.

Beyond the methods, the approach we used for evaluating clustering methods, despite its natural appeal, is not the only
possible measure. For example, the best way to choose high risk individuals given results of clustering at one time point or
a series of time points is not clear. We used a strict ordering based on square-root-normalized cluster growth and arbitrary
tiebreakers, but many other metrics and strategies can be imagined. For example, we may want to order individuals
within a cluster by some criteria as well and choose certain number of people per cluster inversely proportional to the
growth rate of the cluster. We simply choose 1,000 people to simulate a limited budget, but perhaps reducing/increasing
this threshold give somewhat different results. We experimented with using 200 or 5,000 individuals as the fixed budget
(Fig. S5) and observed that, while general patterns remain consistent, some differences are observed. For example, with
increased budgets, as expected, the gap between clustering methods and random clustering is narrower. Less predictably, it
appears that, in some conditions (e.g. Ed= 16), lower budgets prefer TreeCluster while higher budgets prefer HIV-TRACE.
A thorough exploration of the best method for each budget is beyond the scope of the current work. Similarly, we leave
a comprehensive study of the best strategies to allocate budgets based on the results of clustering and better ways of
measuring effectiveness to future work.
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