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Abstract

Motivation: The ability to simulate epidemics as a function of model parameters allows insights that are unobtainable
from real datasets. Further, reconstructing transmission networks for fast-evolving viruses like HIV may have the potential
to greatly enhance epidemic intervention, but transmission network reconstruction methods have been inadequately studied,
largely because it is difficult to obtain “truth” sets on which to test them and properly measure their performance.

Results: We introduce FAVITES, a robust framework for simulating realistic datasets for epidemics that are caused
by fast-evolving pathogens like HIV. FAVITES creates a generative model to produce contact networks, transmission
networks, phylogenetic trees, and sequence datasets, and to add error to the data. FAVITES is designed to be extensible
by dividing the generative model into modules, each of which is expressed as a fixed API that can be implemented using
various models. We use FAVITES to simulate HIV datasets and study the realism of the simulated datasets. We then use
the simulated data to study the impact of the increased treatment efforts on epidemiological outcomes. We also study two
transmission network reconstruction methods and their effectiveness in detecting fast-growing clusters.

Availability and implementation: FAVITES is available at https://github.com/niemasd/FAVITES, and a Docker
image can be found on DockerHub (https://hub.docker.com/r/niemasd/favites).

1 Introduction

The spread of many infectious diseases is driven by social and sexual networks (Kelly et al., 1991), and reconstructing their
transmission histories from molecular data may be able to enhance intervention. For example, network-based statistics
for measuring the effects of Antiretroviral Therapy (ART) in Human Immunodeficiency Virus (HIV) can yield increased
statistical power (Wertheim et al., 2011); the analysis of the growth of HIV infection clusters can yield actionable epidemi-
ological information for disease control (Shargie and Lindtjørn, 2007); transmission-aware models can be used to infer HIV
evolutionary rates (Vrancken et al., 2014).

A series of events in which an infected individual infects another individual can be shown as a transmission network,
which itself is a subset of a contact network, a graph in which nodes represent individuals and edges represent contacts
(e.g. sexual) between pairs of individuals. If the pathogens of the infected individuals are sequenced, which is the standard
of HIV care in many developed countries, one can attempt to reconstruct the transmission network (or its main features)
using molecular data. Some viruses, such as HIV, evolve quickly, and the phylogenetic relationships between viruses are
reflective of transmission histories (Leitner et al., 1996), albeit imperfectly (Ypma et al., 2013; Romero-Severson et al.,
2014; Leitner and Romero-Severson, 2018).

Recently, multiple methods have been developed to infer properties of transmission networks from molecular data (Pros-
peri et al., 2011; Ragonnet-Cronin et al., 2013; Kosakovsky Pond et al., 2018). Efforts have been made to characterize and
understand the promise and limitations of these methods: it is suggested that, when combined with clinical and epidemio-
logical data, these methods can provide critical information about drug resistance, associations between sociodemographic
characteristics, viral spread within populations, and the time scales over which viral epidemics occur (Grabowski and
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Redd, 2014). More recently, these methods have become widely used at both local (Campbell et al., 2017) and global scale
(Wertheim et al., 2014). Nevertheless, several questions remain to be fully answered regarding the performance of these
methods. It is not always clear which method/setting combination performs best for a specific downstream use-case or for
specific epidemiological conditions. More broadly, the effectiveness of these methods in helping achieve public health goals
is the subject of ongoing clinical and theoretical research.

Accuracy of transmission networks is difficult to assess because the true order of transmissions is not known. Moreover,
predicting the impact of parameters of interest (e.g., rate of treatment) on the epidemiological outcomes is difficult. In
simulations, in contrast, the ground truth is known and parameters can be easily controlled. The simulation of transmission
networks needs to combine models of social network, transmission, evolution, and ideally sampling biases and errors
(Villandre et al., 2016) .

We introduce FAVITES (FrAmework for VIral Transmission and Evolution Simulation), which can simulate numerous
models of contact networks, viral transmission, phylogenetic and sequence evolution, data (sub)sampling, and real-world
data perturbations, and which was built to be flexible such that users can seamlessly plug in statistical models at every
step of the simulation process. Previous attempts to create an epidemic simulation tool include epinet (Groendyke et al.,
2012), TreeSim (Stadler and Bonhoeffer, 2013), outbreaker (Jombart et al., 2014), seedy (Worby and Read, 2015), and
PANGEA.HIV.sim (Ratmann et al., 2017). A detailed comparison of FAVITES with these tools can be found in Table S1.
One key distinction is that FAVITES simulates the full end-to-end epidemic dataset (social contact network, transmission
history, incomplete sampling, viral phylogeny, error-free sequences, and real-world sequencing imperfections), whereas each
existing tool simulates only a subset of these steps. Another key distinction is that FAVITES allows the user to choose
among several models at each step of the simulation, whereas the existing tools are restricted to specific models. After
describing the FAVITES framework, we compare its output to real data on a series of experiments, study the properties of
HIV epidemics as functions of various model and parameter choices, and finally perform simulation experiments to study
two transmission network reconstruction methods.

2 Materials and methods

2.1 FAVITES simulation process

FAVITES provides a workflow for the simulation of viral transmission networks, phylogenetic trees, and sequence data
(Fig. 1). It breaks the simulation process into a series of interactions between abstract modules, and users can select the
module implementations appropriate to their specific context. In the statistical sense, the end-to-end process creates a
complex composite generative model, each module is a template for a sub-model of a larger model, and different imple-
mentations of each module correspond to different statistical sub-models. Thus, the FAVITES workflow does not explicitly
make model choices: each module implementation makes those choices. The model for a FAVITES execution is defined by
the set of module implementations chosen by the user.

FAVITES defines APIs for each module and lets implementation decide how to achieve the goal of the module. The
APIs allow various forms of interaction between modules, which enable sub-models that are described as conditional distri-
butions (via dependence on preceding steps) or as joint distributions (via joint implementation). Module implementations
can simply wrap around existing tools, allowing for significant code reuse. The available implementations for each step
are continuously updated; the full documentation of these implementations can be found online, and a list of current
implementations can also be found in the supplemental file.

Simulations start at time zero and continue until a user-specified stopping criterion is met. Error-free and error-prone
transmission networks, phylogenetic trees, and sequences are output at the end. FAVITES has eight steps (Fig. 1) detailed
below. Depending on the specific implementations, some of the steps may not be needed (we mark these with an asterisk),
especially when the phylogeny is simulated backward in time. Also note that steps and modules are not the same; a module
may be used in several steps and a step may require multiple modules.

Step 1: Contact Network. The ContactNetworkGenerator module generates a contact network; vertices represent
individuals, and edges represent contacts between them that can lead to disease transmission (e.g. sexual). Graphs can be
created stochastically using existing models (Karoński, 1982), including those that capture properties of real social networks
(Watts and Strogatz, 1998; Barabási and Albert, 1999; Newman et al., 2002) and those that include communities (Watts,
1999; Fortunato, 2010). For example, the Erdős-Rényi (ER) model (Bollobas, 1984) generates graphs with randomly-placed
edges, the Random Partition model (Fortunato, 2010) generates communities, the Barabási-Albert model (Barabási and
Albert, 1999) generates scale-free networks whose degree distributions follow power-law (suitable for social and sexual
contact networks), the Caveman model (Watts, 1999) and its variations (Fortunato, 2010) generate small-world networks,
the Watts-Strogatz model (Watts and Strogatz, 1998) generates small-world networks with short average path lengths,
and Complete graphs connect all pairs of individuals (suitable for some communicable diseases). We currently have many
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Figure 1: FAVITES workflow. (1) The contact network is generated (nodes: individuals; edges: contacts). (2) Seed individuals
who are infected at time 0 are selected (2a), and a viral sequence is chosen for each (2b). (3) The epidemic yields a series of
transmission events in which the time of the next transmission is chosen (3a), the source and target individuals are chosen
(3b), the viral phylogeny in the source node is evolved to the transmission time (3c), viral sequences in the source node are
evolved to the transmission time (3d), and a viral lineage is chosen to be transmitted from source to destination (3e). Step
(3) repeats until the end criterion is met. Step 3c–3e are optional, as tree and sequence generation can be delayed to later
steps. (4) Infected individuals are sampled such that viral sequencing times are chosen for each infected individual (4a),
viral phylogenies (one per seed) are evolved to the end time of the simulation (4b), and viral phylogenies (one per seed)
are pruned to reflect the viral sequencing times selected (4c). (5) Mutation rates are introduced along the branches of the
viral phylogenies and the tree is scaled to the unit of expected mutations. (6) The seed trees are merged using a seed tree
(cyan). (7) Viral sequences obtained from each infected individual are finalized. (8) Real-world errors are introduced on the
error-free data, such as subsampling of the sequenced individuals (marked as green) (8a) and the introduction of sequencing
errors (8b). The workflows of a typical forward (blue) and backward (green) simulation are shown as well.
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models implemented by wrapping around the NetworkX package (Hagberg et al., 2008). In addition, a user-specified
network can be used.

Step 2: Seeds. The transmission network is initialized in two steps. a) The SeedSelection module chooses the “seed”
nodes: individuals who are infected at time zero of the simulation. b∗) For each selected seed node, the SeedSequence
module can generate an initial viral sequence.

Seed selection has many implemented models, including uniform random selection, degree-weighted random selection,
and models that place seeds in close proximity. Seed sequences can be user-specified or randomly sampled from probabilistic
distributions. To enable seed sequences that emulate the virus of interest, we implement a model that uses HMMER (Eddy,
1998) to sample each seed sequence from a profile Hidden Markov Model (HMM) specific to the virus of interest. Profile
HMMs are appropriate for sampling random sequences that are intended to resemble real sequences because they define
a probabilistic distribution over the space of sequences, they can be flexible to insertions and deletions, and they can be
sampled in a computationally efficient manner. We provide a set of such prebuilt profile HMMs constructed from multiple
sequence alignments (MSAs) of viral sequences.

When multiple seeds are chosen, we need to model their phylogenetic relationship as well. Thus, we also have a model
that samples a single sequence from a viral profile HMM using HMMER, simulates a seed tree with a single leaf per seed
individual (e.g. using Kingman coalescent or birth-death models using DendroPy (Sukumaran and Holder, 2010)), and
then evolves the viral sequence down the tree to generate seed sequences using Seq-Gen (Rambaut and Grass, 1997).

Step 3: Transmissions. An iterative series of transmission events occurs under a transmission model until the
EndCriteria module triggers termination (e.g. after a user-specified time or a user-specified number of transmission
events). Each transmission event has five components.

a) The TransmissionTimeSample module chooses the time at which the next transmission event will occur and advances
the current time accordingly, and b) the TransmissionNodeSample module chooses a source node and target node to
be involved in the next transmission event. These two modules are often jointly implemented. Some of the current
implementations use simple models such as drawing transmission times from an exponential distribution and selecting
nodes uniformly at random. Others are more realistic and use Markov processes in which individuals start in some state
(e.g. Susceptible) and transition between states of the model (e.g. Infected) over time. These Markov models are defined
by two sets of transition rates: nodal and edge-based. Nodal transition rates are rates that are independent of interactions
with neighbors (e.g. the transition rate from Infected to Recovered), whereas edge-based transition rates are the rate
of transitioning from one state to another given that a single neighbor is in a given state (e.g. the transition rate from
Susceptible to Infected given that a neighbor is Infected). The rate at which a specific node u transitions from state a to
state b is the nodal transition rate from a to b plus the sum of the edge-based transition rate from a to b given neighbor v’s
state for all neighbors v. We use GEMF (Sahneh et al., 2017) to implement many compartmental epidemiological models
in this manner, including sophisticated HIV models like the Granich et al. (2009) model and the HPTN 071 (PopART)
model (Cori et al., 2014).

c∗) For forward models of tree evolution, the NodeEvolution module evolves viral phylogenetic trees of the source node
to the current time using stochastic models of tree evolution (Hartmann et al., 2010). We use DendroPy (Sukumaran
and Holder, 2010) for birth-death and use our own implementation of dual-birth (Moshiri and Mirarab, 2018) and Yule.
Backward-in-time models of evolution (e.g. coalescent), can skip step 3c.

d∗) The SequenceEvolution module is invoked to evolve all viral sequences in the source node to the current time.
Commonly-used models of DNA evolution including General Time-Reversible (GTR) model (Tavaré, 1986), and its re-
ductions such as Jukes and Cantor (1969), Kimura (1980), Felsenstein (1981), and Tamura and Nei (1993), are currently
available as implementations of SequenceEvolution . FAVITES also includes the GTR+Γ model, which incorporates rates-
across-sites variation (Yang, 1994). It also includes multiple codon-aware extensions of the GTR model, such as mechanistic
(Zaheri et al., 2014) and empirical (Kosiol et al., 2007) codon models. These modules internally use Seq-Gen (Rambaut
and Grass, 1997) and Pyvolve (Spielman and Wilke, 2015). When sequences are generated in this step, because viral
phylogenies are in units of time, a per-time mutation rate must be assumed by the SequenceEvolution module.

e∗) The SourceSample module chooses the viral lineage(s) in the source node to be transmitted.
Substeps c − e are required only if the choice of transmission events after time t depends on the past phylogeny or

sequences up to time t. If the choice of future transmission recipients/donors and transmission times are agnostic to past
phylogenies and sequences, these tasks can be delayed until later in the workflow, namely in Steps 4b and 7.

Step 4: Time Sampling and Tree Update. The patient sampling (i.e., sequencing) events are determined and
phylogenetic trees are updated accordingly. Three sub-steps are involved.

a) For each individual, the NumTimeSample module chooses the number of sequencing times (e.g. a fixed number or a
number sampled from a Poisson distribution), the TimeSample module chooses the corresponding sequencing time(s) (e.g.
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by draws from uniform or truncated Gaussian or Exponential distributions, or by sampling right before the first transition
of a person to a treated state), and the NumBranchSample module chooses how many viral lineages will be sampled at each
sequencing time (e.g., single). A given individual may not be sampled at all, thus simulating incomplete epidemiological
sampling efforts.

b∗) The NodeEvolution module is called to simulate the phylogenetic trees given sampling times. This step can be used
instead of Step 3c to evolve only lineages that are sampled, thereby reducing computational overhead. In particular, if the
tree simulation model is backwards (e.g. coalescent models), Step 3c should be ignored, and the full backward simulation
process can be performed at once here. We use VirusTreeSimulator (Ratmann et al., 2017) for coalescent models with
constant, exponentially-growing, or logistically-growing population size.

c∗) If the tree is simulated in Step 3c, it may need to be pruned to only include lineages that are sampled, which we
perform here.

Step 5: Mutation Rates. Trees from Step 4 have branch lengths in units of time. To generate sequences, rates of
evolution must be assumed. The TreeUnit module determines such rates. For example it may use constant rates or may
draw from a distribution (e.g., Gamma). Applying rates on the tree yields a tree with branch lengths in units of per-site
expected number of mutations. Note that sequences could have been simulated forward in time in Step 3d, at which point
phylogenies were in units of time. In this case, a joint implementation of the TreeUnit and SequenceEvolution modules
must be used such that per-time mutation rates are chosen in Step 3d, and the same mutation rates are used to scale the
tree here.

Step 6∗: Finalize Tree. We now have a single tree per seed. Some implementations of SeedSequence also simulate
a tree connecting seeds; so the roots of per-seed trees have a phylogenetic relationship. In this case, this step merges all
phylogenetic trees into a single global tree by placing each individual tree’s root at its corresponding leaf in the seed tree
(Fig. 1).

Step 7: Finalize Sequences. The SequenceEvolution module is called again. Two scenarios are possible. If sequences
have been simulated in Step 3d, this step is used to evolve all sequences between the last transmission time and the sampling
times. Alternatively, Step 3d may have been skipped (as discussed before) and sequence evolution may have been delayed
until this point. In that scenario, the SequenceEvolution module performs the full sequence simulation on the final tree(s)
at once in this step.

Step 8: Errors. Error-free data are now at hand. Noise is introduced onto the complete error-free data in two ways.
a∗) The NodeAvailability module further subsamples the individuals to simulate lack of accessibility to certain datasets.

Note that whether or not an individual is sampled is a function of two different modules: NodeAvailability and NumTime-
Sample (if NumTimeSample returned 0, the individual is not sampled). Conceptually, NumTimeSample can be used to
model when people are sequenced, while NodeAvailability can be used to model patterns of data availability (e.g. sharing
of data between clinics).

b) The Sequencing module simulates sequencing error on the simulated sequences. In addition to sequencing machine
errors, this can incorporate other real-world sequencing issues, e.g. taking the consensus sequence of a sample and in-
troducing of ambiguous characters. FAVITES currently uses existing tools to simulate Illumina, Roche 454, SOLiD, Ion
Torrent, and Sanger sequencing (Huang et al., 2012; Angly et al., 2012), including support for ambiguous characters.

Model validation. We provide tools to validate FAVITES outputs, by comparing the simulation results against real
data the user may have (e.g., networks, phylogenetic trees, or sequence data) using various summary statistics (Table S2).
In addition to validation scripts, we have several helper scripts to implement tasks that are likely common to downstream
use of FAVITES output (Table S3).

2.2 Experimental setup

We have performed a set of simulations using the FAVITES framework. In these studies, we compare the simulated data
against real HIV datasets, study properties of the epidemic as a function of the parameters of the underlying generative
models, and compare two transmission cluster inference tools when applied to sequence data generated by FAVITES. All
datasets can be found at https://gitlab.com/niemasd/favites-paper-final.
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Figure 2: Epidemiological model of HIV transmission with states Susceptible (S), Acute Untreated (AU), Acute Treated
(AT), Chronic Untreated (CU), and Chronic Treated (CT). The model is parameterized by the rates of infectiousness of AU
(λS,AU ), AT (λS,AT ), CU (λS,CU ), CT (λS,CT ) individuals, and by the rate to transition from AU to CU (λAU→CU ), the
rate to transition from AT to CT (λAT→CT ), the rate to start ART (λU→T ), and the rate to stop ART (λT→U ).

2.2.1 The simulation model

We selected a set of “base” simulation models and parameters and also performed experiments in which they were varied.
For each parameter set, we ran 10 simulation replicates. The base simulation parameters were chosen to emulate HIV
transmission in San Diego from 2005 to 2014 to the extent possible. In addition, to show the applicability of FAVITES
to other settings, we also performed a simulation with parameters learned from the HIV epidemic in Uganda from 2005
to 2014. For both datasets, we estimate some parameters from real datasets while we rely on the literature where such
data are not available. We first describe base parameters for San Diego and then present changing parameters and Uganda
parameters (see Tables S4 and S5 for the full list of parameters).

Contact network. The contact network includes 100,000 individuals to approximate the at-risk community of San
Diego. We set the base expected degree (Ed) to 4 edges (i.e., sexual partners over 10 years). This number is motivated by
estimates from the literature (e.g. ≈3 in Wertheim et al. (2017) and 3–4 in Rosenberg et al. (2011)), and it is varied in
the experiments. We chose the Barabási-Albert (BA) model as the base network model because it can generate power-law
degree distributions (Barabási and Albert, 1999), a property commonly assumed of sexual networks (Hamilton et al., 2008).

Seeds. We chose 15,000 total infected seed individuals uniformly at random based on the estimate of total HIV cases in
San Diego as of 2004 (Macchione et al., 2015a).

Epidemiological model. We model HIV transmission as a Markov chain epidemic model (see Section 2.1) with states
Susceptible (S), Acute Untreated (AU), Acute Treated (AT), Chronic Untreated (CU), and Chronic Treated (CT). All seed
individuals start in AU, and transmissions occur with rates that depend for each individual on the number of neighbors it
has in each state (Fig. 2). Note that this model is a simplification of the model used by Granich et al. (2009).

We set λAU→CU such that the expected time to transition from AU to CU is 6 weeks (Bellan et al., 2015) and set
λAT→CT such that the expected time to transition from AT to CT is 12 weeks (Cohen et al., 2011). We set λU→T

such that the expected time to start ART is 1 year from initial infection (O’Brien and Markowitz, 2012), and we define
EART = 1/λU→T . We set λT→U such that the expected time to stop ART is 25 months from initial treatment (Nosyk
et al., 2015). For the rates of infection λS,j for j ∈ {AU,CU,AT,CT}, using the infectiousness of CU individuals as a
baseline, we set the parameters such that AU individuals are 5 times as infectious (Wawer et al., 2005) and CT individuals
are not infectious (i.e., rate of 0). Cohen et al. (2011) found a 0.04 hazard ratio when comparing linked HIV transmissions
between an early-therapy group and a late-therapy group, so we estimated AT individuals to be 1⁄20 the infectiousness of
CU individuals. We then scaled these relative rates so that the total number of new cases over the span of the 10 years
was roughly 6,000 (Macchione et al., 2015b), yielding λS,AU = 0.1125.

Phylogeny. We estimate parameters related to phylogeny and sequences from real data. We used a multiple sequence
alignment (MSA) of 674 HIV-1 subtype B pol sequences from San Diego (Little et al., 2014) and a subset containing the 344
sequences that were obtained between 2005 and 2014. For both of these datasets, we inferred maximum-likelihood (ML)
phylogenetic trees using the ModelFinder Plus feature (Kalyaanamoorthy et al., 2017) of IQ-TREE (Chernomor et al.,
2016). We then removed outgroups from the tree inferred from the full 674 sequence dataset and used LSD (To et al.,
2016) to estimate the time of the most recent common ancestor (tMRCA) and the per-year mutation rate distribution.
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Parameter Parameter Values
Contact Network Model Barabási-Albert, Erdős-Rényi, Watts-Strogatz
Expected Degree(Ed) 2, 4, 8, 16
Seed Selection Random, Edge-Weighted
Mean time to ART (EART ) 1⁄8, 1⁄4, 1⁄2, 1, 2, 4, 8 (years)

Table 1: Simulation parameters (base parameters in bold)

The tMRCA was estimated at 1980. The mutation rate was estimated as 0.0012 with a standard deviation of roughly
0.0003, so to match these properties, we sampled mutation rates for each branch independently from a truncated Normal
random variable from 0 to infinity with a location parameter of 0.0008 and a scale parameter of 0.0005 to scale branch
lengths from years to expected number of per-site mutations.

In our simulations, a single viral lineage from each individual was sampled at the end time of the epidemic (10 years).
The viral phylogeny in unit of time (years) was then sampled under a coalescent model with logistic viral population
growth using the same approach as the the PANGEA-HIV methods comparison exercise, setting the initial population to
1, the per-year growth rate to 2.851904, and the time back from present at which the population is at half the carrying
capacity (v.T50) to -2 (Ratmann et al., 2017). Each seed individual is the root of an independent viral phylogenetic tree,
and these trees were merged by simulating a seed tree with one leaf per seed node under a non-homogeneous Yule model
(Le Gat, 2016) scaled such that its height equals 25 years to match the 1980 estimate using SD. The rate function of

the non-homogeneous Yule model was set to λ(t) = e−t2 + 1 to emulate short branches close to the base of the tree (see
comparison to other functions in Fig. S1).

Sequence data. We sampled a root sequence from a profile Hidden Markov Model (HMM) generated from the San
Diego MSA using HMMER (Eddy, 1998). We evolved it down the scaled viral phylogenetic tree under the GTR+Γ model
using Seq-Gen (Rambaut and Grass, 1997) with parameters inferred by IQ-TREE (Table S5).

Varying parameters. For San Diego, we explore four parameters (Table 1). For the contact network, in addition to
the BA model, we used the ER (Bollobas, 1984) and WS (Watts and Strogatz, 1998) models. We also varied the expected
degree (Ed) of individuals in the contact network between 2 and 16 (Table 1). For seed selection, we also used “Edge-
Weighted,” where the probability that an individual is chosen is weighted by the individual’s degree. For each selection
of contact network model, Ed, and seed selection method, we study multiple rates of starting ART (expressed as EART ).
In our discussions, we focus on EART , a factor that the public health departments can try to impact. Increased effort in
testing at-risk populations can decrease the diagnosis time, and the increased diagnosis rate coupled with high standards of
care can lead to faster ART initiation. Behavioral intervention could in principle also impact degree distribution, another
factor that we vary, but the extent of the effectiveness of behavioral interventions is unclear (Kelly et al., 1991).

Uganda simulations. Our simulations with Uganda followed a similar approach to the base model used for San Diego
but with different choices of parameters, motivated by Uganda. For inferring the reference phylogeny and mutation rates,
we used a dataset of all 893 HIV-1 subtype D pol sequences in the Los Alamos National Laboratory (LANL) HIV Sequence
Database that were sourced from Uganda and that were obtained between 2005 and 2014. All other Uganda parameters
were motivated by McCreesh et al. (2017), and the following are key differences from the San Diego simulation. The
contact network had 10,000 total individuals (a regional epidemic), and 1,500 individuals were randomly selected to be
seeds. For epidemiological parameters, we assumed the expected time to begin as well as stop ART to be 1 year (McCreesh
et al., 2017). A comprehensive list of simulation parameters can be found in Tables S4 and S5.

2.2.2 Transmission network reconstruction methods

We compare two HIV network inference tools: HIV-TRACE (Kosakovsky Pond et al., 2018) and TreeCluster (Moshiri,
2018). HIV-TRACE is a widely-used method (Rose et al., 2017; Wertheim et al., 2017; Pérez-Losada et al., 2017) that
clusters individuals such that, for all pairs of individuals u and v, if the Tamura and Nei (1993) (TN93) distance is below
the threshold (default 1.5%), u and v are connected by an edge; each connected component forms a cluster. When we ran
HIV-TRACE, we skipped its alignment step because we did not simulate indels. TreeCluster clusters the leaves of a given
tree such that the pairwise path length between any two leaves in the same cluster is below the threshold (default 4.5%),
the members of a cluster define a full clade, and the number of clusters is minimized. Trees given to TreeCluster were
inferred using FastTree 2 (Price et al., 2010) under the GTR+Γ model. We used FastTree 2 because using IQ-TREE on
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these very large datasets (up to 80,000 leaves) was not feasible. TreeCluster is similar in idea to Cluster Picker (Ragonnet-
Cronin et al., 2013), which uses sequence distances instead of tree distances (but also considers branch support). We study
TreeCluster instead of Cluster Picker because of its improved speed. Our attempts to run PhyloPart (Prosperi et al., 2011)
were unsuccessful due to running time.

2.2.3 Measuring the predictive power of clustering methods

We now have two sets of clusters at the end of the simulation process (year 10): one produced by HIV-TRACE and one by
TreeCluster. Let Ct denote the clustering resulting from removing all individuals infected after year t from a given final

clustering C10, let Ct
i denote a single i-th cluster in clustering Ct, and let g(Ct

i ) =
|Cti |−|Ct−1

i |√
|Cti |

denote the growth rate of a

given cluster Ct
i (Wertheim et al., 2018). We then compute the average number of individuals who were infected between

years 9 and 10 by the “top” 1,000 individuals (roughly 5% of the total infected population) who were infected at year
9, where we choose top individuals by sorting the clusters in C9 in descending order of g(C9

i ) (breaking ties randomly)
and choosing 1,000 individuals in this sorting, breaking ties in a given cluster randomly if needed (e.g. for the last cluster
needed to reach 1,000 individuals). As a baseline, we compute the average number of individuals who were infected between
years 9 and 10 by all individuals, which is equivalent (in expectation) to a random selection of 1,000 individuals. Our
metric, therefore, measures the risk of transmission from the selected 1,000 individuals. Our motivation for this metric is
to capture whether monitoring cluster growth can help public health intervention efforts with limited resources in finding
individuals with a higher risk of transmitting.

3 Results

3.1 Comparison to real phylogenies

To compare data simulated by FAVITES to real data, we use the aforementioned San Diego and Uganda phylogenies. Since
the trees on real data are inferred trees (as opposed to true trees), we compare them to inferred trees on simulated data
(built using FastTree 2 as running IQ-TREE on simulated data was not feasible). We randomly subsample the simulated
dataset to match the number of sequences in the corresponding real dataset (344 for San Diego; 893 for Uganda).

For San Diego, the mean patristic distance between sequences on inferred trees is respectively 0.087 and 0.089 for
the real and base simulated datasets. The distributions of pairwise distances among inferred trees of real and simulated
datasets have similar shapes, but distances from real data have higher variance (Fig. 3a). To quantify the divergence
between the real and simulated distributions, we use the Jensen-Shannon Divergence (JSD), a number between 0 and 1
with 0 indicating a perfect match (Lin, 1991). The JSD is only 0.023 for trees inferred from the San Diego base parameters
(Table S6). The Uganda simulations have a larger divergence (Fig. 3a) between real and simulated distributions (JSD:
0.082), with simulated data showing higher mean distances (means: 0.075 and 0.097). We observe similar patterns when we
compute pairwise distances directly from sequences and apply phylogenetic correction using the JC69+Γ model (Table S6;
Fig. S4). For all simulated datasets, the true trees have lower variance in pairwise distances compared to estimated trees;
this is consistent with the stochasticity of sequence evolution and the added variance due to the inference uncertanity.

Our simulated trees, like real trees, include clusters of long terminal branches and short internal branches, especially
close to the root (Fig. S2). The branch length distributions are bimodal, with one peak close to 0 and another between
0.01 and 0.03 (Fig. 3b). However, the second mode for the real trees is larger than the second mode of real data; for
example, for San Diego, the second peak is at 0.030 for real data and 0.023 for base simulated data. The JSD divergence
between branch length distributions of real and simulated trees are 0.102 for San Diego (base) and 0.119 for Uganda. The
distribution of branch lengths on true trees (as opposed to inferred trees) has a similar shape (Fig. 3b) but a shorter tail
of long branches and a reduced JSD compared to real data (e.g., 0.044 for base San Diego; see Table S6).

Sensitivity to parameters. Even though mean branch lengths can change (between 0.0053 and 0.0080) as a result
of changing EART and Ed (Fig. S3), the overall distributions remain quite stable (Figs. 3b and S4). Similarly, patristic
distances are not sensitive to EART (Fig. 3ab) nor to Ed (Fig. S4). In terms of branch lengths, the divergence from the
real data changes only marginally as Ed and EART change (Table S7). While the distributions are stable with respect to
these epidemiological parameters, they are sensitive to others. For example, results are sensitive to the model of mutation
rates. We draw mutation rates from a Truncated Normal distribution (fitted to real data) and obtain close matches to real
data. However, other distributions (e.g. Exponential) yield significant deviation from real distributions (Fig. S4). Because
of these deviations, we have only used the truncated normal distributions for mutation rates everywhere.
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real data are inferred trees (as opposed to true trees), we compare them
to inferred trees on simulated data (built using FastTree 2 as running IQ-
TREE on simulated data was not feasible). We randomly subsample the
simulated dataset to match the number of sequences in the corresponding
real dataset (344 for San Diego; 893 for Uganda).

For San Diego, the mean patristic distance between sequences on
inferred trees is respectively 0.087 and 0.089 for the real and base simulated
datasets. The distributions of pairwise distances among inferred trees of
real and simulated datasets have similar shapes, but distances from real
data have higher variance (Fig. 3a). To quantify the divergence between the
real and simulated distributions, we use the Jensen-Shannon Divergence
(JSD), a number between 0 and 1 with 0 indicating a perfect match (Lin,
1991). The JSD is only 0.023 for trees inferred from the San Diego base
parameters (Table S6). The Uganda simulations have a larger divergence
(Fig. 3a) between real and simulated distributions (JSD: 0.082), with
simulated data showing higher mean distances (means: 0.075 and 0.097).
We observe similar patterns when we compute pairwise distances directly
from sequences and apply phylogenetic correction using the JC69+Γ

model (Table S6; Fig. S4). For all simulated datasets, the true trees have
lower variance in pairwise distances compared to estimated trees; this
is consistent with the stochasticity of sequence evolution and the added
variance due to the inference uncertanity.

Our simulated trees, like real trees, include clusters of long terminal
branches and short internal branches, especially close to the root (Fig. S2).
The branch length distributions are bimodal, with one peak close to 0 and
another between 0.01 and 0.03 (Fig. 3b). However, the second mode for the
real trees is larger than the second mode of real data; for example, for San
Diego, the second peak is at 0.030 for real data and 0.023 for base simulated
data. The JSD divergence between branch length distributions of real and
simulated trees are 0.102 for San Diego (base) and 0.119 for Uganda. The
distribution of branch lengths on true trees (as opposed to inferred trees)
has a similar shape (Fig. 3b) but a shorter tail of long branches and a
reduced JSD compared to real data (e.g., 0.044 for base San Diego; see
Table S6).

Sensitivity to parameters. Even though mean branch lengths can change
(between 0.0053 and 0.0080) as a result of changing EART and Ed
(Fig. S3), the overall distributions remain quite stable (Figs. 3b and S4).
Similarly, patristic distances are not sensitive to EART (Fig. 3ab) nor to
Ed (Fig. S4). In terms of branch lengths, the divergence from the real data
changes only marginally as Ed and EART change (Table S7). While the
distributions are stable with respect to these epidemiological parameters,
they are sensitive to others. For example, results are sensitive to the model
of mutation rates. We draw mutation rates from a Truncated Normal
distribution (fitted to real data) and obtain close matches to real data.
However, other distributions (e.g. Exponential) yield significant deviation
from real distributions (Fig. S4). Because of these deviations, we have only
used the truncated normal distributions for mutation rates everywhere.

3.2 Impact of parameter choices on the epidemiology

Infected population. The number of infected individuals increases with
time and the rate of growth is faster for larger EART values (Fig. S5). For
all tested values of EART , the number of infected individuals grows close
to linearly (Pearson r ≥ 0.966), indicating that the large at-risk population
has not saturated in the 10-year simulation period. As EART decreases
from 8 years to 1/8 years, the total number of infected individuals at the
end of the simulation keeps decreasing (Fig. 4a). For example, with degree
4, the average final number of infected individuals in the 10 year period is
6686, 4134, and 1273 with EART set to 1, 1/2, 1/8 year, respectively.

The model of contact network and the model of choosing the seed
individuals have only marginal effects on these outcomes. Edge-weighting
the seed selections yields a slightly higher (at most 12%) total number of
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Fig. 3. Kernel density estimates of the distributions of (a) patristic distances (path length)
between all pairs of sequencesand (b) branch lengths of real and simulated datasets for the
San Diego (SD) and Uganda (UG) datasets. Averages are shown as dots (Fig. S3). Black
denotes distributions computed from true (simulated) trees and grey denotes distributions
computed from trees inferred from sequences (IQ-TREE fro real and FastTree 2 for
simulated data). Note that real data only have inferred pairwise distances and branch lengths,
as true branch lengths are not known. EART is the expected time to start ART.

infected individuals than the random selection (Table S7). The BA model of
contact network leads to a slightly higher infection count when compared
to the ER (at most 7%) and WS (at most 8%) models (Figs. S6), but these
differences are marginal compared to impacts of EART and Ed (which,
when changed, leads to 43% and 152% change, respectively, in the number
of infected people compared to the base parameters). Finally, Uganda
simulations lead to higher infection count (64% versus 45%) compared to
San Diego (Table S7).

Treated population. The ratio of untreated to treated individuals is a
function of EART but not Ed (Fig. 4b). Note that this ratio remains
constant (at most 14.7% change) after year 4, has small changes in year
1 to 4, and experiences an initial period of instability for about 1 year
(Fig. S5), likely because all seeds are initially AU. With EART= 1 years,
the ratio is on average 0.507 after year 2; decreasing/increasing EART
reduces/increases the portion of untreated people. The 90-90-90 campaign
by UNAIDS (2014) aims to have 90% of the HIV population diagnosed, of
which 90% should receive treatment, of which 90% (i.e., 72.9% of total)
should be virally suppressed. Reaching the 90-90-90 goals in the epidemic
we model here requires EART between 1/2 and 1 year (assuming that
lack of viral suppression is fully attributed to lack of adherence). These
results are stable with respect to model of contact network, Ed, and seed
selection approach (Figs. 4b and S7). The only model choice that had a
noticeable effect on the results is the use of the ER network model, which
led to an increase in Untreated/Treated for Ed≤ 4 (Fig. S7). We note that
our simulated Uganda epidemic had twice the ratio of Untreated/Treated
compared to base San Diego (Table S7).

Figure 3: Kernel density estimates of the distributions of (a) patristic distances (path length) between all pairs of sequences
and (b) branch lengths of real and simulated datasets for the San Diego (SD) and Uganda (UG) datasets. Averages are
shown as dots (Fig. S3). Black denotes distributions computed from true (simulated) trees and grey denotes distributions
computed from trees inferred from sequences (IQ-TREE for real and FastTree 2 for simulated data). Note that real data
only have inferred pairwise distances and branch lengths, as true branch lengths are not known. EART is the expected time
to start ART.
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3.2 Impact of parameter choices on the epidemiology

Infected population. The number of infected individuals increases with time and the rate of growth is faster for
larger EART values (Fig. S5). For all tested values of EART , the number of infected individuals grows close to linearly
(Pearson r ≥ 0.966), indicating that the large at-risk population has not saturated in the 10-year simulation period. As
EART decreases from 8 years to 1/8 years, the total number of infected individuals at the end of the simulation keeps
decreasing (Fig. 4a). For example, with degree 4, the average final number of infected individuals in the 10 year period is
6686, 4134, and 1273 with EART set to 1, 1/2, 1/8 year, respectively.

The model of contact network and the model of choosing the seed individuals have only marginal effects on these
outcomes. Edge-weighting the seed selections yields a slightly higher (at most 12%) total number of infected individuals
than the random selection (Table S7). The BA model of contact network leads to a slightly higher infection count when
compared to the ER (at most 7%) and WS (at most 8%) models (Figs. S6), but these differences are marginal compared
to impacts of EART and Ed (which, when changed, leads to 43% and 152% change, respectively, in the number of infected
people compared to the base parameters). Finally, Uganda simulations lead to higher infection count (64% versus 45%)
compared to San Diego (Table S7).

Treated population. The ratio of untreated to treated individuals is a function of EART but not Ed (Fig. 4b). Note
that this ratio remains constant (at most 14.7% change) after year 4, has small changes in year 1 to 4, and experiences an
initial period of instability for about 1 year (Fig. S5), likely because all seeds are initially AU. With EART = 1 years, the
ratio is on average 0.507 after year 2; decreasing/increasing EART reduces/increases the portion of untreated people. The
90-90-90 campaign by UNAIDS (2014) aims to have 90% of the HIV population diagnosed, of which 90% should receive
treatment, of which 90% (i.e., 72.9% of total) should be virally suppressed. Reaching the 90-90-90 goals in the epidemic
we model here requires EART between 1/2 and 1 year (assuming that lack of viral suppression is fully attributed to lack of
adherence). These results are stable with respect to model of contact network, Ed, and seed selection approach (Figs. 4b
and S7). The only model choice that had a noticeable effect on the results is the use of the ER network model, which led
to an increase in Untreated/Treated for Ed≤ 4 (Fig. S7). We note that our simulated Uganda epidemic had twice the ratio
of Untreated/Treated compared to base San Diego (Table S7).

3.3 Evaluating inference methods

Phylogenetic error. From simulated sequences, we inferred trees under the GTR+Γ model using FastTree 2 (Price
et al., 2010), and we computed the normalized Robinson-Foulds (RF) distance (i.e., the proportion of branches included
in one tree but not the other (Robinson and Foulds, 1981)) between the true trees and their respective inferred trees
(Fig. S8). For all model conditions, the RF distance is quite high (0.36-0.58 for San Diego and 0.25-0.40 for Uganda).
However, we note that our datasets include many extremely short branches, defined here as those where the expected
number of mutations along the branch across the entire sequence length is lower than 1. In our simulations, we have
between 16% and 30% of branches that are extremely short (Fig. S8) and therefore hard to infer.

Clustering methods We measure the number of new infections caused by each person in the clusters with the highest
growth rate and compare it with the same value for the total population (Fig. 5). Over the entire population, the average
number of new infections caused by each person between years 9 and 10 is 0.028 for our base parameter settings. The
top 1,000 people from the fastest growing TreeCluster clusters, in contrast, infect on average 0.066 new people. Thus,
the top 1000 people chosen among the growing clusters according to TreeCluster are more than twice as infectious as a
random selection of 1000 individuals. HIV-TRACE performs even better than TreeCluster, increasing the per capita new
infections among top 1,000 individuals to 0.097 for base parameters, a 3.46x improvement compared to the population
average. As EART decreases, the total number of per capita new infections reduces; as a result, the positive impact of
using clustering methods to find the growing clusters gradually diminishes (Fig. 5). Conversely, reducing EART leads to
further improvements obtained using TreeCluster versus random selection and using HIV-TRACE versus TreeCluster.

Changing Ed also impacts the results (Fig. 5). When Ed = 2, slowing the epidemic down compared to the base case,
both methods remain better than random, and HIV-TRACE continues to outperform TreeCluster. However, when Ed is
increased, the two methods first tie at Ed= 8, and at Ed= 16, TreeCluster becomes slightly better than HIV-TRACE for
most EART values (Fig. 5). The advantage compared to a random selection of individuals is diminished (improvements
never exceed 70%) when the epidemic is made very fast growing by setting EART≥ 2 and Ed= 16.
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Fig. 4. Sensitivity analysis of epidemiological outcomes. We show (a) the total number of
infected individuals, and (b) the ratio of the number of untreated vs. the number of treated
individuals (log-scale), vs. expected time to begin Antiretroviral Therapy (EART ) for the
Barabási-Albert model with various mean contact numbers (Ed) with all other parameters
set to base values. Untreated/treated = 1 is shown as a dashed black line, and the value
of untreated/treated corresponding to the “90-90-90” goal (UNAIDS, 2014) is shown as a
dashed blue line ((1 − 0.93)/0.93 ≈ 0.37). The Untreated/Treated value corresponding
to the simulated Uganda dataset has been shown as a + symbol on (b).

3.3 Evaluating inference methods

Phylogenetic error. From simulated sequences, we inferred trees under the
GTR+Γ model using FastTree 2 (Price et al., 2010), and we computed
the normalized Robinson-Foulds (RF) distance (i.e., the proportion of
branches included in one tree but not the other (Robinson and Foulds,
1981)) between the true trees and their respective inferred trees (Fig. S8).
For all model conditions, the RF distance is quite high (0.36-0.58 for San
Diego and 0.25-0.40 for Uganda). However, we note that our datasets
include many extremely short branches, defined here as those where the
expected number of mutations along the branch across the entire sequence
length is lower than 1. In our simulations, we have between 16% and 30%
of branches that are extremely short (Fig. S8) and therefore hard to infer.

Clustering methods We measure the number of new infections caused by
each person in the clusters with the highest growth rate and compare it
with the same value for the total population (Fig. 5). Over the entire
population, the average number of new infections caused by each person

between years 9 and 10 is 0.028 for our base parameter settings. The top
1,000 people from the fastest growing TreeCluster clusters, in contrast,
infect on average 0.066 new people. Thus, the top 1000 people chosen
among the growing clusters according to TreeCluster are more than twice
as infectious as a random selection of 1000 individuals. HIV-TRACE
performs even better than TreeCluster, increasing the per capita new
infections among top 1,000 individuals to 0.097 for base parameters,
a 3.46x improvement compared to the population average. As EART
decreases, the total number of per capita new infections reduces; as a result,
the positive impact of using clustering methods to find the growing clusters
gradually diminishes (Fig. 5). Conversely, reducingEART leads to further
improvements obtained using TreeCluster versus random selection and
using HIV-TRACE versus TreeCluster.

Changing Ed also impacts the results (Fig. 5). When Ed = 2, slowing
the epidemic down compared to the base case, both methods remain
better than random, and HIV-TRACE continues to outperform TreeCluster.
However, when Ed is increased, the two methods first tie at Ed= 8, and at
Ed= 16, TreeCluster becomes slightly better than HIV-TRACE for most
EART values (Fig. 5). The advantage compared to a random selection
of individuals is diminished (improvements never exceed 70%) when the
epidemic is made very fast growing by setting EART≥ 2 and Ed= 16.

4 Discussion
Our results demonstrated that FAVITES can simulate under different
models and can produce realistic data. A comparison of the fit between
real and simulated data for Uganda and San Diego points to the importance
of data availability. For San Diego, where more studies have been done
and more sequence data were available, the fit between simulated and true
data was generally good (Table S6) . For Uganda, we had to rely on several
sources (e.g., data from McCreesh et al. (2017) and LANL), and we had
a reduced fit between simulations and real data. Increased gathering and
sharing of data, including sequence data, can in future improve our ability
to parameterize simulations.

Although we only explored viral epidemics, the applications of
FAVITES can easily expand to epidemics caused by other pathogens
for which molecular epidemiology is of interest (Azarian et al., 2014).
We also showed that TreeCluster and HIV-TRACE, when paired with
temporal monitoring, can successfully identify individuals most likely to
transmit, and HIV-TRACE performs better than TreeCluster under most
tested conditions. The ability to find people with increased risk of onward
transmission is especially important because it can potentially help public
health officials better spend their limited budgets for targeted prevention
(e.g. pre-exposure prophylaxis, PrEP) or treatment (e.g. efforts to increase
ART adherence).

We studied several models for various steps of our simulations, but
we did not exhaustively test all models: FAVITES currently includes 21
modules and a total of 169 implementations (i.e., specific models) across
them, and testing all model combinations is infeasible. To simulate San
Diego and Uganda, we aimed to choose the most appropriate set of 21
sub-models available in FAVITES to create the end-to-end simulations.
Each of these 21 sub-models has its own limitations, as models inevitably
do. However, it must be noted that limitations resulting from model
assumptions are limitations of the specific example simulation experiment
we performed in this manuscript, rather than limitations of the framework:
FAVITES is designed specifically to be flexible, allowing the use of
different models for different steps. If better models are developed for each
of these 21 modules, they can be easily incorporated. Like all statistical
modeling, appropriate choice of model assumptions is essential to the
interpretation of the simulation results, and it is important for the user to
choose models appropriate to their specific epidemic of interest. To aid

Figure 4: Sensitivity analysis of epidemiological outcomes. We show (a) the total number of infected individuals, and (b) the
ratio of the number of untreated vs. the number of treated individuals (log-scale), vs. expected time to begin Antiretroviral
Therapy (EART ) for the Barabási-Albert model with various mean contact numbers (Ed) with all other parameters set to
base values. Untreated/treated = 1 is shown as a dashed black line, and the value of untreated/treated corresponding to
the “90-90-90” goal (UNAIDS, 2014) is shown as a dashed blue line ((1− 0.93)/0.93 ≈ 0.37). The Untreated/Treated value
corresponding to the simulated Uganda dataset has been shown as a + symbol on (b).

4 Discussion

Our results demonstrated that FAVITES can simulate under different models and can produce realistic data. A comparison
of the fit between real and simulated data for Uganda and San Diego points to the importance of data availability. For
San Diego, where more studies have been done and more sequence data were available, the fit between simulated and true
data was generally good (Table S6) . For Uganda, we had to rely on several sources (e.g., data from McCreesh et al.
(2017) and LANL), and we had a reduced fit between simulations and real data. Increased gathering and sharing of data,
including sequence data, can in future improve our ability to parameterize simulations.

Although we only explored viral epidemics, FAVITES can easily expand to epidemics caused by other pathogens for
which molecular epidemiology is of interest (Azarian et al., 2014). We also showed that TreeCluster and HIV-TRACE,
when paired with temporal monitoring, can successfully identify individuals most likely to transmit, and HIV-TRACE
performs better than TreeCluster under most tested conditions. The ability to find people with increased risk of onward

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/297267doi: bioRxiv preprint 

https://doi.org/10.1101/297267
http://creativecommons.org/licenses/by-nc-nd/4.0/


i
i

“main” — 2018/10/4 — 7:41 — page 8 — #8 i
i

i
i

i
i

8 Moshiri et al.

0.1250.250.51.02.04.08.0
EART (years)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Av
er

ag
e 

N
um

be
r 

of
 In

fe
ct

io
ns

Effectiveness (Ed = 2)
Expected
TreeCluster
HIV-TRACE

0.1250.250.51.02.04.08.0
EART (years)

Effectiveness (Ed = 4)
Expected
TreeCluster
HIV-TRACE

0.1250.250.51.02.04.08.0
EART (years)

Effectiveness (Ed = 8)
Expected
TreeCluster
HIV-TRACE

0.1250.250.51.02.04.08.0
EART (years)

Effectiveness (Ed = 16)
Expected
TreeCluster
HIV-TRACE

Fig. 5. The effectiveness of clustering methods in finding high risk individuals. The average number of new infections between years 9 and 10 of the simulation caused by individuals
infected at year 9 in growing clusters. We select 1,000 individuals from clusters, inferred by either HIV-TRACE or TreeCluster, that have the highest growth rate (ties broken randomly). As
a baseline control, the average number of infections over all individuals (similar to expectations under a random selection) is shown as well. For a cluster with nt members at year t, growth
rate is defined as n9−n8√

n9
. The columns show varying expected degree (i.e., number of sexual partners), and all other parameters are their base values.

choose models appropriate to their specific epidemic of interest. To aid
users, our extensive documentation provides descriptions for each module
implementation and we provide model validation scripts.

For the simulation of HIV epidemics, novel statistical models can be
created to address the unrealistic assumptions. For example, our contact
network remains unchanged with time, whereas real sexual networks
are dynamic. Our transmission model does not directly model effective
prevention measures such as PrEP. Our sequences include substitutions,
but no recombination. Moreover, the models of sequence evolution we
used ignore many evolutionary constraints across sites. We also ignored
infections from outside the network (viral migration), assumed full patient
sampling, and we sampled all patients at the end time as opposed to varied-
time sampling. While these and other choices may impact results, we note
that our goal here was mainly to show the utility of FAVITES. We leave
an extensive study of the impact of each of these factors on the results to
future studies. Importantly, new models with improved realism to address
these issues can easily be incorporated, and continued model improvement
is a reason why we believe flexible frameworks like FAVITES are needed.

We observed relatively high levels of error in inferred phylogenies.
This is not surprising given the low rate of evolution and length of the pol
region (which we emulate). Further, our phylogenies include many super-
short branches, perhaps due to our complete sampling. Many transmission
cluster inference tools (e.g. PhyloPart, Cluster Picker, and TreeCluster) use
phylogenies during the inference process and thus may be sensitive to tree
inference error. Other tools like HIV-TRACE do not attempt to infer a full
phylogeny (only distances). The high levels of tree inference error may be
partially responsible for the relatively lower performance of TreeCluster
compared to HIV-TRACE. Nevertheless, TreeCluster had higher per capita
new infections in its fastest growing clusters than the population average,
indicating that the trees, although imperfect, still include useful signal
about the underlying transmission histories.

Using FAVITES, we compared TreeCluster and HIV-TRACE in terms
of their predictive power, and our results complement studies on real
data (Rose et al., 2017). Nevertheless, our simulations study has some
limitations that should be kept in mind. A major limitation is that
both methods we tested use a distance threshold internally for defining
clusters. The specific choice of threshold defines a trade-off between
cluster sensitivity and specificity, and the trade-off will impact cluster
compositions. T he best choice of the threshold is likely a function of
epidemiological factors, and the default thresholds are perhaps optimal
for certain epidemiological conditions, but not others. For example, we
observed that, for a minority of our epidemiological settings, TreeCluster
is more effective than HIV-TRACE in predicting growing clusters. A
thorough exploration of all epidemiological parameters and method
thresholds is left for future studies. On a practical note, FAVITES can

enable public health officials to simulate conditions similar to their own
epidemic and pick the best method/threshold tailored to their situation.

The approach we used for evaluating clustering methods, despite its
natural appeal, is not the only possible measure. For example, the best
way to choose high-risk individuals given clustering results at one time
point or a series of time points is unclear. We used a strict ordering
based on square-root-normalized cluster growth and arbitrary tie-breaking,
but many other metrics and strategies can be imagined (Wertheim et al.,
2018). For example, we may want to order individuals within a cluster
by some criteria as well and choose certain number of people per cluster
inversely proportional to the growth rate of the cluster. We simply chose
1,000 people to simulate a limited budget, but perhaps reducing/increasing
this threshold gives interesting results. A thorough exploration of the best
method for each budget is beyond the scope of this work. Similarly, we
leave a comprehensive study of the best strategies to allocate budgets based
on the results of clustering and better ways of measuring effectiveness, to
future work.
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Figure 5: The effectiveness of clustering methods in finding high risk individuals. The average number of new infections
between years 9 and 10 of the simulation caused by individuals infected at year 9 in growing clusters. We select 1,000
individuals from clusters, inferred by either HIV-TRACE or TreeCluster, that have the highest growth rate (ties broken
randomly). As a baseline control, the average number of infections over all individuals (similar to expectations under a
random selection) is shown as well. For a cluster with nt members at year t, growth rate is defined as n9−n8√

n9
. The columns

show varying expected degree (i.e., number of sexual partners), and all other parameters are their base values.

transmission is especially important because it can potentially help public health officials better spend their limited budgets
for targeted prevention (e.g. pre-exposure prophylaxis, PrEP) or treatment (e.g. efforts to increase ART adherence).

We studied several models for various steps of our simulations, but we did not exhaustively test all models: FAVITES
currently includes 21 modules and a total of 169 implementations (i.e., specific models) across them, and testing all model
combinations is infeasible. To simulate San Diego and Uganda, we aimed to choose the most appropriate set of 21 sub-
models available in FAVITES to create the end-to-end simulations. Each of these 21 sub-models has its own limitations,
as models inevitably do. However, it must be noted that limitations resulting from model assumptions are limitations of
the specific example simulation experiment we performed in this manuscript, rather than limitations of the framework:
FAVITES is designed specifically to be flexible, allowing the use of different models for different steps. If better models are
developed for each of these 21 modules, they can be easily incorporated. Like all statistical modeling, appropriate choice
of model assumptions is essential to the interpretation of the simulation results, and it is important for the user to choose
models appropriate to their specific epidemic of interest. To aid users, our extensive documentation provides descriptions
for each module implementation and we provide model validation scripts.

For the simulation of HIV epidemics, novel statistical models can be created to address the unrealistic assumptions. For
example, our contact network remains unchanged with time, whereas real sexual networks are dynamic. Our transmission
model does not directly model effective prevention measures such as PrEP. Our sequences include substitutions, but no
recombination. Moreover, the models of sequence evolution we used ignore many evolutionary constraints across sites.
We also ignored infections from outside the network (viral migration), assumed full patient sampling, and we sampled
all patients at the end time as opposed to varied-time sampling. While these and other choices may impact results, we
note that our goal here was mainly to show the utility of FAVITES. We leave an extensive study of the impact of each of
these factors on the results to future studies. Importantly, new models with improved realism to address these issues can
easily be incorporated, and continued model improvement is a reason why we believe flexible frameworks like FAVITES
are needed.

We observed relatively high levels of error in inferred phylogenies. This is not surprising given the low rate of evolution
and length of the pol region (which we emulate). Further, our phylogenies include many super-short branches, perhaps due
to our complete sampling. Many transmission cluster inference tools (e.g. PhyloPart, Cluster Picker, and TreeCluster) use
phylogenies during the inference process and thus may be sensitive to tree inference error. Other tools like HIV-TRACE do
not attempt to infer a full phylogeny (only distances). The high levels of tree inference error may be partially responsible for
the relatively lower performance of TreeCluster compared to HIV-TRACE. Nevertheless, TreeCluster had higher per capita
new infections in its fastest growing clusters than the population average, indicating that the trees, although imperfect,
still include useful signal about the underlying transmission histories.

Using FAVITES, we compared TreeCluster and HIV-TRACE in terms of their predictive power, and our results com-
plement studies on real data (Rose et al., 2017). Nevertheless, our simulations study has some limitations that should be
kept in mind. A major limitation is that both methods we tested use a distance threshold internally for defining clusters.
The specific choice of threshold defines a trade-off between cluster sensitivity and specificity, and the trade-off will impact
cluster compositions. T he best choice of the threshold is likely a function of epidemiological factors, and the default
thresholds are perhaps optimal for certain epidemiological conditions, but not others. For example, we observed that, for
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a minority of our epidemiological settings, TreeCluster is more effective than HIV-TRACE in predicting growing clusters.
A thorough exploration of all epidemiological parameters and method thresholds is left for future studies. On a practical
note, FAVITES can enable public health officials to simulate conditions similar to their own epidemic and pick the best
method/threshold tailored to their situation.

The approach we used for evaluating clustering methods, despite its natural appeal, is not the only possible measure.
For example, the best way to choose high-risk individuals given clustering results at one time point or a series of time
points is unclear. We used a strict ordering based on square-root-normalized cluster growth and arbitrary tie-breaking, but
many other metrics and strategies can be imagined (Wertheim et al., 2018). For example, we may want to order individuals
within a cluster by some criteria as well and choose certain number of people per cluster inversely proportional to the
growth rate of the cluster. We simply chose 1,000 people to simulate a limited budget, but perhaps reducing/increasing
this threshold gives interesting results. A thorough exploration of the best method for each budget is beyond the scope
of this work. Similarly, we leave a comprehensive study of the best strategies to allocate budgets based on the results of
clustering and better ways of measuring effectiveness, to future work.
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