Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Whence Lotka-Volterra? Conservation Laws and Integrable Systems in Ecology

James P. O’Dwyer
doi: https://doi.org/10.1101/298166
James P. O’Dwyer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Competition in ecology is often modeled in terms of direct, negative effects of one individual on another. An example is logistic growth, modeling the effects of intraspecific competition, while the Lotka-Volterra equations for competition extend this to systems of multiple species, with varying strengths of intra- and inter-specific competition. These equations are a classic and well-used staple of quantitative ecology, providing a framework to understand species interactions, species coexistence, and community assembly. They can be derived from an assumption of random mixing of organisms, and an outcome of each interaction that removes one or more individuals. However, this framing is some-what unsatisfactory, and ecologists may prefer to think of phenomenological equations for competition as deriving from competition for a set of resources required for growth, which in turn may undergo their own complex dynamics. While it is intuitive that these frameworks are connected, and the connection is well-understood near to equilibria, here we ask the question: when can consumer dynamics alone become an exact description of a full system of consumers and resources? We identify that consumer-resource systems with this property must have some kind of redundancy in the original description, or equivalently there is one or more conservation laws for quantities that do not change with time. Such systems are known in mathematics as integrable systems. We suggest that integrability in consumer-resource dynamics can only arise in cases where each species in an assemblage requires a distinct and unique combination of resources, and even in these cases it is not clear that the resulting dynamics will lead to Lotka-Volterra competition.

I acknowledge the Simons Foundation Grant #376199 and the McDonnell Foundation Grant #220020439.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted April 09, 2018.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Whence Lotka-Volterra? Conservation Laws and Integrable Systems in Ecology
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Whence Lotka-Volterra? Conservation Laws and Integrable Systems in Ecology
James P. O’Dwyer
bioRxiv 298166; doi: https://doi.org/10.1101/298166
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Whence Lotka-Volterra? Conservation Laws and Integrable Systems in Ecology
James P. O’Dwyer
bioRxiv 298166; doi: https://doi.org/10.1101/298166

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Ecology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4654)
  • Biochemistry (10298)
  • Bioengineering (7614)
  • Bioinformatics (26189)
  • Biophysics (13445)
  • Cancer Biology (10620)
  • Cell Biology (15333)
  • Clinical Trials (138)
  • Developmental Biology (8452)
  • Ecology (12754)
  • Epidemiology (2067)
  • Evolutionary Biology (16761)
  • Genetics (11356)
  • Genomics (15399)
  • Immunology (10548)
  • Microbiology (25040)
  • Molecular Biology (10151)
  • Neuroscience (54090)
  • Paleontology (398)
  • Pathology (1655)
  • Pharmacology and Toxicology (2877)
  • Physiology (4314)
  • Plant Biology (9196)
  • Scientific Communication and Education (1579)
  • Synthetic Biology (2541)
  • Systems Biology (6752)
  • Zoology (1452)