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2  

Abstract 32 

In the crowded cell, a strong selective pressure operates on the proteome to limit the 33 

competition between functional and non-functional protein-protein interactions. 34 

Understanding how this competition constrains the behavior of proteins with respect to their 35 

partners or random encounters is very difficult to address experimentally. Here, we developed 36 

an original theoretical framework in order to investigate the propensity of protein surfaces to 37 

interact with functional and arbitrary partners and ask whether their interaction propensity is 38 

conserved during evolution. Therefore, we performed 5476 cross-docking simulations to 39 

systematically characterize the energy landscapes of 74 proteins interacting with different sets 40 

of homologs, corresponding to their functional partner’s family or arbitrary protein families. 41 

Our framework relies on an original representation of interaction energy landscapes with two-42 

dimensional energy maps that reflect the propensity of a protein surface to interact. To 43 

address the evolution of interaction energy landscapes, we systematically compared the 44 

energy maps resulting from the docking of a protein with several homologous partners. 45 

Strikingly, we show that the interaction propensity of not only binding sites but also of the 46 

rest of protein surfaces is conserved for homologous partners, and this feature holds for both 47 

functional and arbitrary partners. While most studies aiming at depicting protein-protein 48 

interactions focus on native binding sites of proteins, our analysis framework enables in an 49 

efficient and automated way, the physical characterization of not only known binding sites, 50 

but also of the rest of the protein surfaces, and provides a wealth of valuable information to 51 

understand mechanisms driving and regulating protein-protein interactions. It enables to 52 

address the energy behavior of a protein in interaction with hundreds of selected partners, 53 

providing a functional and systemic point of view of protein interactions, and opening the way 54 

for further developments to study the behavior of proteins in a specific environment. 55 

 56 
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Author Summary 57 

In the crowded cell, the competition between functional and non-functional interactions is 58 

severe. Understanding how a protein binds the right piece in the right way in this complex 59 

jigsaw puzzle is crucial and very difficult to address experimentally. To interrogate how this 60 

competition constrains the behavior of proteins with respect to their partners or random 61 

encounters, we (i) performed thousands of cross-docking simulations to systematically 62 

characterize the interaction energy landscapes of functional and non-functional protein pairs 63 

and (ii) developed an original theoretical framework based on two-dimensional energy maps 64 

that reflect the propensity of a protein surface to interact. Strikingly, we show that the 65 

interaction propensity of not only binding sites but also of the rest of protein surfaces is 66 

conserved for homologous partners be they functional or not. We show that exploring non-67 

functional interactions (i.e. non-functional assemblies and interactions with non-functional 68 

partners) is a viable route to investigate the mechanisms underlying protein-protein 69 

interactions. Precisely, our 2D energy maps based strategy enables it in an efficient and 70 

automated way. Moreover, our theoretical framework opens the way for the developments of 71 

a variety of applications covering functional characterization, binding site prediction, or 72 

characterization of protein behaviors in a specific environment. 73 

 74 

 75 

  76 
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Introduction 77 

Biomolecular interactions are central for many physiological processes and are of utmost 78 

importance for the functioning of the cell. Particularly protein-protein interactions have 79 

attracted a wealth of studies these last decades [1–5]. The concentration of proteins in a cell 80 

has been estimated to be approximately 2-4 million proteins per cubic micron [6]. In such a 81 

highly crowded environment, proteins constantly encounter each other and numerous non-82 

specific interactions are likely to occur [7,8]. For example, in the cytosol of S. cerevisiae a 83 

protein can encounter no less than 2000 different proteins [9]. In this complex jigsaw puzzle, 84 

each protein has evolved to bind the right piece in the right way (positive design) and to 85 

prevent misassembly and non-functional interactions (negative design) [10–14]). 86 

Consequently, positive design constrains the physico-chemical properties and the evolution of 87 

protein-protein interfaces. Indeed, a strong selection pressure operates on binding sites to 88 

maintain the functional assembly. For example, homologs sharing at least 30% sequence 89 

identity almost invariably interact in the same way [15]. Conversely, negative design prevents 90 

proteins to be trapped in the numerous competing non-functional interactions inherent to the 91 

crowded environment of the cell. Particularly, the misinteraction avoidance shapes the 92 

evolution and physico-chemical properties of abundant proteins, resulting in a slower 93 

evolution and less sticky surfaces than what is observed for less abundant ones [16–21]. The 94 

whole surface of abundant proteins is thus constrained, preventing them to engage deleterious 95 

non-specific interactions that could be of dramatic impact for the cell at high concentration 96 

[20]. Recently, it has been shown in E. coli that the net charge as well as the charge 97 

distribution on protein surfaces affect the diffusion coefficients of proteins in the cytoplasm 98 

[22]. Positively charged proteins move up to 100 times more slowly as they get caught in non-99 
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specific interactions with ribosomes which are negatively charged and therefore, shape the 100 

composition of the cytoplasmic proteome [22]. 101 

All these studies show that both positive and negative design effectively operate on the whole 102 

protein surface. Binding sites are constrained to maintain functional assemblies (i.e. 103 

functional binding modes and functional partners) while the rest of the surface is constrained 104 

to avoid non-functional assemblies. Consequently, these constraints should shape the energy 105 

landscapes of functional but also non-functional interactions so that non-functional 106 

interactions do not prevail over functional ones. This should have consequences (i) on the 107 

evolution of the propensity of a protein to interact with its environment (including functional 108 

and non-functional partners) and (ii) on the evolution of the interaction propensity of the 109 

whole surface of proteins, non-interacting surfaces being in constant competition with 110 

functional binding sites. We can hypothesize that the interaction propensity of the whole 111 

surface of proteins is constrained during evolution in order to (i) ensure that proteins correctly 112 

bind functional partners, and (ii) limit non-functional assemblies as well as interactions with 113 

non-functional partners. 114 

In this work, we focus on protein surfaces as a proxy for functional and non-functional 115 

protein-protein interactions. We investigate their interaction energy landscapes with native 116 

and non-native partners and ask whether their interaction propensity is conserved during 117 

evolution. With this aim in mind, we performed large-scale docking simulations to 118 

characterize interactions involving either native and/or native-related (i.e. partners of their 119 

homologs) partners or arbitrary partners. Docking simulations enable the characterization of 120 

all possible interactions involving either functional or arbitrary partners, and thus to simulate 121 

the interaction of arbitrary partners which is very difficult to address with experimental 122 

approaches. Docking algorithms are now fast enough for large-scale applications and allow 123 

for the characterization of interaction energy landscapes for thousand of protein couples. 124 
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Typically, a docking simulation takes from a few minutes to a couple of hours on modern 125 

processors [23–25], opening the way for extensive cross-docking experiments [26–29]. 126 

Protein docking enables the exploration of the interaction propensity of the whole protein 127 

surface by simulating alternative binding modes. Here, we performed a cross-docking 128 

experiment involving 74 selected proteins docked with their native-related partners and their 129 

corresponding homologs, as well as arbitrary partners and their corresponding homologs. We 130 

represented the interaction energy landscape resulting from each docking calculation with a 131 

two dimensional (2D) energy map in order to (i) characterize the propensity of all surface 132 

regions of a protein to interact with a given partner (either native-related or not) and (ii) easily 133 

compare the energy maps resulting from the docking of a same protein with different 134 

homologous partners, thus addressing the evolution of the propensity of the whole protein 135 

surface to interact with homology-related partners either native or arbitrary.  136 
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Results 137 

 138 

The interaction propensity of a protein to interact either with native-related or arbitrary 139 

partners is conserved during evolution 140 

We ask whether the interaction propensity of a protein surface is conserved for homologous 141 

native-related partners, and whether this remains true for homologous arbitrary partners. For a 142 

protein A, we refer as native-related partners its native partner (when its three dimensional 143 

(3D) structure is available) and native partners of proteins that are homologous to the protein 144 

A. Arbitrary pairs refer to pairs of proteins for which no interaction between them or their 145 

respective homologs has been experimentally characterized in the Protein Data Bank [30]. To 146 

test the aforementioned hypothesis, we built a database comprising 74 protein structures 147 

divided into 12 families of homologs (S1 Table and Materials and Methods). Each family 148 

displays different degrees of structural variability and sequence divergence in order to see the 149 

impact of these properties on the conservation of the interaction propensity inside a protein 150 

family. Each family has at least a native-related partner family (S1 Fig). Docking calculations 151 

were performed with the ATTRACT software [25]. ATTRACT enables a homogeneous and 152 

exhaustive conformational sampling and is well suited to investigate the propensity of the 153 

whole surface of a protein to interact with a given ligand. Our procedure is asymmetrical 154 

since we aim at characterizing the interaction propensity of a protein (namely the receptor) 155 

with a subset of proteins (namely the ligands). Therefore, a given receptor is docked with a 156 

subset of ligands (here the 74 proteins of the dataset) (Fig 1A and Materials and Methods). 157 

For each docking calculation, we produced a 2D energy map, which provides the distribution 158 

of interaction energies of all docking solutions over the whole receptor surface (Fig 1B and 159 

Materials and Methods, Fig 2A-C). The resulting energy map reflects the propensity of the 160 

whole surface of the receptor to interact with the docked ligand. One should notice that 161 
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energy maps computed for two unrelated receptors are not comparable since their surfaces are 162 

not comparable. Therefore, the procedure is ligand-centered and allows only the comparison 163 

of energy maps produced by different ligands docked with the same receptor. The comparison 164 

of two energy maps enables the evaluation of the similarity of the interaction propensity of the 165 

receptor with the two corresponding ligands. In order to investigate the interaction propensity 166 

of all proteins of the dataset, each protein plays alternately the role of receptor and ligand. 167 

Consequently, the procedure presented in Fig 1 is repeated for the whole dataset where each 168 

protein plays the role of the receptor and is docked with the 74 proteins that play the role of 169 

ligands.  170 

 171 

Fig 1. Experimental Protocol. (A) A receptor protein is docked with all proteins of the 172 

dataset (namely the ligands) resulting in 74 docking calculations. (B) For each docking 173 

calculation, an energy map is computed as well as its corresponding five-color and one-color 174 

energy maps, with the procedure described in Fig 2 and Materials and Methods. (C) An 175 

energy map distance (EMD) matrix is computed, representing the pairwise distances between 176 

the 74 energy maps resulting from the docking of all ligands with this receptor. Each cell (i,j) 177 

of the matrix represents the Manhattan distance between the two energy maps resulting from 178 

the docking of ligands i and j with the receptor. A small distance indicates that the ligands i 179 

and j produce similar energy maps when docked with this receptor. In other words, it reflects 180 

that the interaction propensity of this receptor is similar for these two ligands. To prevent any 181 

bias from the choice of the receptor, the whole procedure is repeated for each receptor of the 182 

database, leading to 74 EMD matrices.  183 

 184 

Fig 2. 2D asymmetrical representation of docking energy landscapes and resulting 185 

energy maps. (A) Three-dimensional (3D) representation of the ligand docking poses around 186 
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the receptor. Each dot corresponds to the center of mass (CM) of a ligand docking pose. It is 187 

colored according to its docking energy score. (B) Representation of the CM of the ligand 188 

docking poses after an equal-area 2D sinusoidal projection. CMs are colored according to the 189 

same scale as in A. (C) Continuous energy map (see Materials and Methods for more details). 190 

(D) Five-color map. The energy map is discretized into five energy classes (E) One-color 191 

maps. Top to bottom: red, orange, green, dark green and blue maps highlight respectively hot, 192 

warm, lukewarm, cool and cold regions. 193 

 194 

Fig 3A represents the energy maps computed for the receptor 2AYN_A, the human ubiquitin 195 

carboxyl-terminal hydrolase 14 (family UCH) docked with (i) its native partner (1XD3_B, 196 

ubiquitin-related family), a homolog of its partner (1NDD_B) and (ii) two arbitrary 197 

homologous ligands (1YVB_A and 1NQD_B from the papain-like family). For all four 198 

ligands, either native-related or arbitrary partners, docking calculations lead to an 199 

accumulation of low-energy solutions (hot regions in red) around the two experimentally 200 

known binding sites of the receptor. The first one corresponds to the interaction site with the 201 

native partner, ubiquitin (pdb id 2ayo). The second one corresponds to its homodimerisation 202 

site (pdb id 2ayn). This indicates that native-related but also arbitrary partners tend to bind 203 

onto the native binding sites of native partners as observed in earlier studies [29,31]. The 204 

same tendency is observed for all 74 ligands in the database (Fig 3B). Their 20 best docking 205 

poses systematically tend to accumulate in the vicinity of the two native interaction sites. 206 

Whereas the low-energy solutions for most ligands accumulate around the same interaction 207 

sites (i.e. the native binding sites), we observe that, globally, 2-D energy maps (i) seem to be 208 

more similar between ligands of a same family than between ligands belonging to different 209 

families (Fig 3A). The two energy maps obtained with the ligands of the native-related 210 
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partners family both reveal two sharp hot regions around the native sites and a subset of well-211 

defined cold regions (i.e. blue regions corresponding to high energy solutions) placed in the 212 

same area in the map’s upper-right quadrant. In contrast, the energy maps obtained for the two 213 

ligands of the papain-like family display a large hot region around the two native binding sites 214 

of the receptor, extending to the upper-left and bottom-right regions of the map, suggesting a 215 

large promiscuous binding region for these ligands.  216 

 217 

Fig 3. Subset of energy maps and of ligand docking poses for receptor 2AYN_A. (A) 218 

Examples of maps for the receptor 2AYN_A (ubiquitin carboxyl-terminal hydrolase (UCH) 219 

family) docked with the ligands 1XD3_B (native partner), 1NDD_B (homolog of the native 220 

partner), 1YVB_A and 2NQD_B (false partners). The star indicates the localization of the 221 

experimentally determined interaction site of the ubiquitin, the circle-cross indicates the 222 

homodimerization site of 2AYN_A. (B) Centers of mass (CM) of the 20 best docking poses 223 

obtained for each of the 74 ligands of the database docked with the receptors 2AYN_A. 224 

Receptor protein is represented in cartoon (black), its native ligand and its homodimere are 225 

represented in cartoon with transparency (red and black respectively). CMs of the ligands 226 

belonging to the ubiquitin-related family are colored in red, CMs of the proteins belonging to 227 

the papain-like family are colored in blue. 228 

 229 

We ask whether the observation made for the receptor 2AYN_A, that energy maps produced 230 

with homologous ligands are more similar than those produced with unrelated ligands could 231 

be generalized to all proteins of the dataset. Therefore, we systematically compared the 232 

energy maps computed for a single receptor docked successively with the 74 ligands of the 233 

dataset by calculating of the Manhattan distance between each pair of maps (Fig 1C and  234 

Materials and Methods). The resulting distances are stored in an energy map distance (EMD) 235 
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matrix, where each entry (i,j) corresponds to the distance di,j between the energy maps of 236 

ligands i and j docked with the receptor of interest (Fig 1C and Materials and Methods). 237 

Consequently, a small distance di,j between ligands i and j docked with the receptor k, reflects 238 

that their energy maps are similar. In other words, the interaction propensity of the surface of 239 

the receptor k is similar for both ligands i and j. The procedure is repeated for each receptor of 240 

the dataset resulting in 74 EMD matrices. In order to quantify the extent to which the 241 

interaction propensity of the receptor is conserved for homologous ligands, we investigate 242 

whether distances calculated between homologous ligand pairs (be they native-related to the 243 

receptor or not) are smaller than distances calculated between random pairs.  Fig 4 represents 244 

the boxplots of energy map distances calculated between random ligand pairs or between 245 

homologous ligand pairs docked with their native-related receptors or with the other receptors 246 

of the dataset. Homologous ligands docked either with their native-related or arbitrary 247 

receptors display significantly lower energy map distances than random ligand pairs 248 

(Wilcoxon test p = 0). This indicates that energy maps produced by homologous ligands 249 

docked with a given receptor are more similar than those produced with non-homologous 250 

ligands. Interestingly, this observation holds whether the receptor-ligand pair is a native pair 251 

or not. This suggests that the interaction propensity of a receptor is conserved for homologous 252 

ligands be they native-related or not. 253 

 254 

Fig 4. Boxplots of energy map pairwise distances between homologous ligand pairs from 255 

native-related partner families, homologous ligand pairs from arbitrary partner families 256 

and random ligand pairs. For each receptor, we computed (i) the average of energy map 257 

distances of pair of homologous ligands belonging to its native-related partner family(ies), (ii) 258 

the average of energy map distances of pair of homologous ligands belonging to its non-259 
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native-related partner families, and (iii) the average of energy map distances of random pairs. 260 

P-values are calculated with an unilateral Wilcoxon test. 261 

 262 

Energy maps are specific to protein families 263 

 264 

The results presented above prompt us to assess the extent to which the interaction propensity 265 

of a receptor is specific to the ligand families. In other words, we quantify the extent to which 266 

energy maps are specific to ligand families. If so, we should be able to retrieve ligand 267 

homology relationships solely with the comparison of their corresponding 2D energy maps. 268 

Therefore, we tested our ability to predict the homologs of a given ligand based only on the 269 

comparison of its energy maps with those of the other ligands. In order to prevent any bias 270 

from the choice of the receptor, the 74 EMD matrices are averaged in an averaged distances 271 

matrix (ADM) (see Materials and Methods). Each entry (i,j) of the ADM corresponds to the 272 

averaged distance between two sets of 74 energy maps produced by two ligands i and j.  A 273 

low distance indicates that the two ligands display similar energy maps whatever the receptor 274 

is. We computed a receiver operating characteristic (ROC) curve from the ADM (see 275 

Materials and Methods) which evaluates our capacity to discriminate the homologs of a given 276 

ligand from non-homologous ligands by comparing their respective energy maps computed 277 

with all 74 receptors of the dataset. The true positive set consists in the homologous protein 278 

pairs while the true negative set consists in any homology-unrelated protein pair. The 279 

resulting Area Under the Curve (AUC) is equal to 0.79 (Fig 5). We evaluated the robustness 280 

of the ligand’s homologs prediction depending on the size of the receptor subset with a 281 

bootstrap procedure by randomly removing receptor subsets of different sizes (from 1 to 73 282 

receptors). The resulting AUCs range from 0.769 to 0.79, and show that from a subset size of 283 

five receptors, the resulting prediction accuracy no longer significantly varies (risk of wrongly 284 
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rejecting the equality of two variances (F-test) >5%), and is thus robust to the nature of the 285 

receptor subset (S2 Fig). Finally, we evaluated the robustness of the predictions according to 286 

the number of grid cells composing the energy maps. Therefore, we repeated the procedure 287 

using energy maps with resolutions ranging from 144x72 to 48x24 cells. S2 Table presents 288 

the AUCs calculated with different grid resolutions. The resulting AUCs range from 0.78 to 289 

0.8 showing that the grid resolution has a weak influence on the map comparison. All 290 

together, these results indicate that homology relationships between protein ligands can be 291 

detected solely on the basis of the comparison of their energy maps. In other words, the 292 

energy maps calculated for a given receptor docked with a set of ligands belonging to a same 293 

family are specific to these families. Interestingly, this observation holds for families 294 

displaying important sequence variations (S1 Table). For example, the AUC computed for the 295 

UCH and ubiquitin-related families are 0.98 and 0.88 respectively despite the fact that the 296 

average sequence identity of these families does not exceed 45% (S3 Fig and S1 Table). This 297 

indicates that energy maps are similar even for homologous ligands displaying large sequence 298 

variations. 299 

 300 

Fig 5. Receiver operating characteristic (ROC) curve and its Area Under the Curve 301 

(AUC). ROC are calculated on the averaged distance matrix (ADM) including either all pairs 302 

(blue) or only arbitrary pairs (red) (see Materials and Methods for more details).  303 

 304 

We then specifically investigate the similarity of the energy maps produced by ligands 305 

belonging to a same family in order to see whether some ligands behave energetically 306 

differently from their family members. On the 74 ligands, only five (2L7R_A, 4BNR_A, 307 

1BZX_A, 1QA9_A, 1YAL_B) display energy maps that are significantly different from those 308 

of their related homologs (Z-tests p-values for the comparison of the averaged distance of 309 
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each ligand with their homologs versus the averaged distance of all ligands with their 310 

homologous ligands ≤ 5%). In order to identify the factors leading to differences between 311 

energy maps involving homologous ligands, we computed the pairwise sequence identity and 312 

the root mean square deviation (RMSD) between the members of each family. Interestingly, 313 

none of these criteria can explain the energy map differences observed within families (Fisher 314 

test p of the linear model estimated on all protein families >0.1) (see Fig 6B-C for the 315 

ubiquitin-related family, S4-S14B-C Fig for the other families, and S3 Table for details). Fig 316 

6A represents a subsection of the ADM for the ubiquitin-related family (i.e. the energy map 317 

distances computed between all the members of the ubiquitin-related family and averaged 318 

over the 74 receptors). Low distances reflect pairs of ligands with similar energy behaviors 319 

(i.e. producing similar energy maps when interacting with a same receptor) while high 320 

distances reveal pairs of ligands with distant energy behaviors. 2L7R_A distinguishes itself 321 

from the rest of the family, displaying high-energy map distances with all of its homologs. 322 

RMSD and sequence identity contribute modestly to the energy map distances observed in Fig 323 

6A (Spearman correlation test pRMSD = 0.01 and pseq = 0.02 (S3 Table, Fig 6B-C)). Fig 6D 324 

shows a projection of the contribution from the electrostatic term in the energy function of 325 

ATTRACT on the surface of the seven ubiquitin-related family members (for more details, 326 

see S15 Fig and Materials and Methods). Fig 6E represents the electrostatic maps distances 327 

computed between all members of the family. 2L7R_A stands clearly out, displaying a 328 

negative electrostatic potential over the whole surface while its homologs harbor a remarkable 329 

fifty-fifty electrostatic distribution (Fig 6D). The negatively charged surface of 2L7R_A is 330 

explained by the absence of the numerous lysines that are present in the others members of 331 

the family (referred by black stars, Fig 6D). Lysines are known to be essential for ubiquitin 332 

function by enabling the formation of polyubiquitin chains on target proteins. Among the 333 

seven lysines of the ubiquitin, K63 polyubiquitin chains are known to act in non-proteolytic 334 
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events while K48, K11, and the four other lysines polyubiquitin chains are presumed to be 335 

involved into addressing proteins to the proteasome [32]. 2L7R_A is a soluble UBL domain 336 

resulting from the cleavage of the fusion protein FAU [33]. Its function is unrelated to 337 

proteasomal degradation, which might explain the lack of lysines on its surface and the 338 

differences observed in its energy maps. Interestingly, the differences observed for the energy 339 

maps of 1YAL_B (Papain-like family) (S4 Fig) and 4BNR_A (eukaryotic proteases family) 340 

(S5 Fig) regarding their related homologs can be explained by the fact that they both display a 341 

highly charged surface. These two proteins are thermo-stable [34,35], which is not the case 342 

for their related homologs, and probably explains the differences observed in their relative 343 

energy maps. The V-set domain family is split into two major subgroups according to their 344 

averaged energy map distances (S6A Fig). The first group corresponds to CD2 proteins 345 

(1QA9_A and its unbound form 1HNF_A) and differs significantly from the second group (Z-346 

test p = 0.03 and p = 0.05 respectively). The second group corresponds to CD58 (1QA9_B 347 

and its unbound form 1CCZ_A) and CD48 proteins (2PTT_A). Interestingly, CD2 is known 348 

to interact with its homologs (namely CD58 and CD48) through an interface with a striking 349 

electrostatic complementarity [36]. The two subgroups have thus evolved distinct and specific 350 

binding sites to interact together. We can hypothesize that they have different interaction 351 

propensities resulting in the differences observed between their corresponding energy maps. 352 

These five cases illustrate the capacity of our theoretical framework to reveal functional or 353 

biophysical specificities of homologous proteins that could not be revealed by classical 354 

descriptors such as RMSD or sequence identity. 355 

 356 

Fig 6. Ubiquitin-related family. (A) Energy map distances matrix. It corresponds to the 357 

subsection of the ADM for the ubiquitin-related family (for the construction of the ADM, see 358 

Materials and Methods). Each entry (i,j) represents the pairwise energy map distance of the 359 
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ligand pair (i,j) averaged over the 74 receptors of the dataset. (B) Pairwise sequence identity 360 

matrix between all members of the family. (C) Pairwise root mean square deviation (RMSD) 361 

matrix between all members of the family. (D) Electrostatic maps and cartoon representations 362 

of the seven members of the family. An electrostatic map represents the distribution of the 363 

electrostatic potential on the surface of a protein (for more details, see S15 Fig and Materials 364 

and Methods). On the electrostatic maps, lysines positions are indicated by stars. Cartoon 365 

structures are colored according to the distribution of their electrostatic potential. (E) 366 

Electrostatic map distances matrix. Each entry (i,j) of the matrix represents the Manhattan 367 

distance between the electrostatic maps of the proteins (i,j). 368 

 369 

The AUC of 0.79 calculated previously with energy maps produced by the docking of either 370 

native-related or arbitrary pairs indicates that energy maps are specific to ligand families. To 371 

see whether this observation is not mainly due to the native-related pairs, we repeated the 372 

previous test while removing that time all energy maps computed with native-related pairs 373 

and calculated the resulting ADM. We then measured our ability to retrieve the homologs of 374 

each ligand by calculating the ROC curve as previously. The resulting AUC is still equal to 375 

0.79, revealing that our ability to identify a ligand’s homologs is independent from the fact 376 

that the corresponding energy maps were computed with native-related or arbitrary pairs (Fig 377 

5). This shows that the energy maps are specific to protein families whether the docked pairs 378 

are native-related or not. Consequently, the propensity of the whole protein surface to interact 379 

with a given ligand is conserved and specific to the ligand family whether the ligand is native-380 

related or not. This striking result may reflect both positive and negative design operating on 381 

protein surfaces to maintain functional interactions and to limit random interactions that are 382 

inherent to a crowded environment. 383 

 384 
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The interaction propensity of all surface regions of a receptor is evolutionary conserved 385 

for homologous ligands 386 

To see whether some regions contribute more to the specificity of the maps produced by 387 

homologous ligands, we next dissected the effective contribution of the surface regions of the 388 

receptor defined according to their docking energy value, in the identification of ligand’s 389 

homologs. We discretized the energy values of each energy map into five categories, leading 390 

to a palette of five energy classes (or colors) (see Fig 2D and Materials and Methods). These 391 

five-color maps highlight low-energy regions (i.e. hot regions in red), intermediate-energy 392 

regions (i.e. warm, lukewarm and cool regions in orange, light-green and dark-green 393 

respectively) and high-energy regions (i.e. cold regions in blue). We first checked that the 394 

discretization of the energy maps does not affect our ability to identify the homologs of each 395 

of the 74 ligands from the comparison of their five-colors maps. The resulting AUC is 0.77 396 

(Table 1), showing that the discretization step does not lead to an important loss of 397 

information.  398 

 399 

Table 1. AUC obtained with different types of energy maps. 400 

type of 

map 

continuous 

energy maps 

five-colors 

energy 

maps 

red 

energy 

maps 

orange 

energy 

maps 

light green 

energy 

maps 

dark green 

energy 

maps 

blue 

energy 

maps 

AUC 0.79 0.77 0.73 0.76 0.76 0.76 0.79 

The AUC are calculated from the ADM with the continuous energy maps (Fig 2C), the five-401 

color energy maps (Fig 2D) and the one-color energy maps (Fig 2E) (see Materials and 402 

Methods for more details). 403 

 404 

 405 

 406 
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Then, we evaluated the contribution of each of the five energy classes separately in the 407 

ligand’s homologs identification by testing our ability to retrieve the homologs of the 74 408 

ligands from their one-color energy maps (either red, orange, yellow, green or blue) (see 409 

Materials and Methods). Table 1 shows the resulting AUCs. Interestingly, the information 410 

provided by each energy class taken separately is sufficient for discriminating the homologs 411 

of a given ligand from the rest of the dataset (Table 1). The resulting AUCs range from 0.76 412 

to 0.79 for the orange, light green, dark green, and blue classes and are comparable to those 413 

obtained with all classes taken together (0.77). This shows that (i) warm, lukewarm, cool, and 414 

cold regions alone are sufficient to retrieve homology relationships between ligands and (ii) 415 

the localization on the receptor surface of a given energy class is specific to the ligand 416 

families. Hot regions are less discriminative and lead to an AUC of 0.73. In order to see how 417 

regions corresponding to a specific energy class are distributed over a receptor surface, we 418 

summed its 74 corresponding one-color maps into a stacked map (S16 Fig – see Materials 419 

and Methods for more details). For each color, the resulting stacked map reflects the tendency 420 

of a map cell to belong to the corresponding energy class. Fig 7 shows an example of the five 421 

stacked maps (i.e. for cold, cool, lukewarm, warm and hot regions) computed for the receptor 422 

1P9D_U. Intermediates regions (i.e. warm, lukewarm and cool regions) are widespread on the 423 

stacked map while cold and hot regions are localized on few small spots (three and one 424 

respectively) no matter the nature of the ligand. S17 Fig shows for the receptor 1P9D_U the 425 

12 blue and red stacked maps computed for each ligand family separately. We can see that 426 

some cold spots are specific to ligand families and that their area distribution is specific to 427 

families while all 12 ligand families display the same hot spot in the map’s upper-right 428 

quadrant. These observations can be generalized to each receptor. On average, intermediate 429 

regions are widespread on the stacked maps and cover respectively 744, 1164 and 631 cells 430 

for cool, lukewarm and warm regions, while cold and hot regions cover no more than 431 
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respectively 104 and 110 cells respectively (S18 Fig). Interestingly, hot regions are more 432 

colocalized than cold ones and are restricted to 2 distinct spots on average per stacked map, 433 

while cold regions are spread on 3.7 spots on average (t-Test p = 7.42e-13). These results 434 

show that ligands belonging to different families tend to dock preferentially on the same 435 

regions and thus lead to similar hot region distributions on the receptor surface. This 436 

observation recalls those made by Fernandez-Recio et al. [31], who showed that docking 437 

random proteins against a single receptor leads to an accumulation of low-energy solutions 438 

around the native interaction site and who suggested that different ligands will bind 439 

preferentially on the same localization. 440 

 441 

Fig 7. Stacked maps of 1P9D_U after the filtering of cells with too low intensity and 442 

areas of too small size. The protocol to generate stacked maps is presented in S16 Fig.  (A) 443 

Blue stacked map (i.e. stacked cold regions). (B) Dark green stacked map (i.e. stacked cool 444 

regions). (C) Light green stacked map (i.e. stacked lukewarm regions). (D) Orange stacked 445 

map (i.e. stacked warm regions). (E) Red stacked map (i.e. stacked hot regions). One should 446 

notice that stacked maps of two different colors can overlap because a cell can be associated 447 

to different energy classes depending on the docked ligands. S17 Fig presents blue and red 448 

stacked maps of 1P9D_U computed for each ligand family. 449 

 450 

We can hypothesize that hot regions present universal structural and biochemical features that 451 

make them more prone to interact with other proteins. To test this hypothesis, we computed 452 

for each protein of the dataset, the 2D projection of three protein surface descriptors (see 453 

Materials and Methods and S15 Fig): the Kyte-Doolittle (KD) hydrophobicity [37], the 454 

circular variance (CV) [38] and the stickiness [20]. The CV measures the density of protein 455 

around an atom and is a useful descriptor to reflect the local geometry of a surface region. CV 456 
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values are comprised between 0 and 1. Low values reflect protruding residues and high values 457 

indicate residues located in cavities. Stickiness reflects the propensity of amino acids to be 458 

involved in protein-protein interfaces [20]. It has been calculated as the log ratio of the 459 

residues frequencies on protein surfaces versus their frequencies in protein-protein interfaces. 460 

For each receptor, we calculated the correlation between the docking energy and the 461 

stickiness, hydrophobicity or CV over all cells of the corresponding 2D maps. We found a 462 

significant anti-correlation between the docking energy and these three descriptors 463 

(correlation test p between docking energies and respectively stickiness, hydrophobicity and 464 

CV < 2.2e-16, see S4 Table)). Fig 8 represents the boxplots of the stickiness, hydrophobicity 465 

and CV of each energy class (see S15 Fig and Materials and Methods section for more 466 

details). We observe a clear effect of these factors on the docking energy: cold regions (i.e. 467 

blue class) are the less sticky, the less hydrophobic and the most protruding while hot ones 468 

(i.e. red class) are the most sticky, the most hydrophobic and the most planar (Tukey HSD test 469 

[39], p of the differences observed between each energy classes < 2.2e-16). One should notice 470 

that stickiness has been defined from a statistical analysis performed on experimentally 471 

characterized protein interfaces and therefore between presumed native partners. The fact that 472 

docking energies (physics-based) calculated either between native-related or arbitrary partners 473 

is anti-correlated with stickiness (statistics-based) defined from native interfaces, strengthens 474 

strongly the concept of stickiness as the propensity of interacting promiscuously and provides 475 

physics-based pieces of evidence for sticky regions as a proxy for promiscuous interactions. 476 

We show that not only the area distribution on a receptor surface of hot regions but also those 477 

of intermediate and cold regions are similar for homologous ligands and are specific to ligand 478 

families (AUC ranging from 0.73 to 0.79) whether the ligands are native-related or not. This 479 

tendency is even stronger for intermediate and cold regions. Interestingly, the information 480 
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contained in the cold regions that cover on average no more than 5.0% of the energy maps is 481 

sufficient to identify homology relationships between ligands. 482 

 483 

Fig 8. Boxplots of three descriptors of the protein surface. (A) the stickiness values, (B) the 484 

Kyte-Doolittle hydrophobicity and (C) the CV values, depending on the energy class. The 485 

stickiness, hydrophobicity and CV values are calculated for each protein following the 486 

protocol described in Materials and Methods. For each of these criteria, p-values between the 487 

median values of two “successive” energy classes were computed using the Tukey HSD 488 

statistical test [39].  489 
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Discussion 490 

In this study, we address the impact of both positive and negative design on thousands of 491 

interaction energy landscapes by the mean of a synthetic and efficient representation of the 492 

docking energy landscapes: two-dimensional energy maps that reflect the interaction 493 

propensity of the whole surface of a protein (namely the receptor) with a given partner 494 

(namely the ligand). We show that all regions of the energy maps, including cold, 495 

intermediate and hot regions are similar for homologous ligands and are specific to ligand 496 

families whether the ligands are native-related or arbitrary. This reveals that the interaction 497 

propensity of the whole surface of proteins is constrained by functional and non-functional 498 

interactions, reflecting both positive and negative design operating on the whole surface of 499 

proteins, thus shaping the interaction energy landscapes of functional partners and random 500 

encounters. These observations were made on a dataset of 74 protein structures belonging to 501 

12 families of structural homologs. 54 out of the 74 proteins of the dataset have at least one 502 

known partner in the dataset. For the 20 remaining proteins, we were not able to find 503 

evidences that they indeed interact with a protein of the dataset. However, we showed that the 504 

interaction propensity of a receptor is conserved for homologous ligands independently from 505 

the fact that these ligands correspond to native partners or not. Indeed, we showed that ligand 506 

homology relationships could be retrieved from their energy maps whether the maps were 507 

computed with native-related pairs or not (the corresponding AUCs calculated with and 508 

without native pairs both equal to 0.79).  509 

While most studies that aim at depicting protein-protein interactions focus on native binding 510 

sites of proteins [12,40–44], we bring a new perspective on protein-protein interactions by 511 

providing a systematic and physical characterization of all regions of the surface of a protein 512 

in interaction with a given ligand (i.e. cold, intermediate and hot regions). Here, we address 513 

the energy behavior of not only known binding sites, but also of the rest of the protein surface, 514 
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which plays an important role in protein interactions by constantly competing with the native 515 

binding site. We show that the interaction propensity of the rest of the surface is not 516 

homogeneous and displays regions with different binding energies that are specific to ligand 517 

families. This may reflect the negative design operating on these regions to limit non-518 

functional interactions [12,14,45]. We can hypothesize that non-interacting regions participate 519 

to favor functional assemblies (i.e. functional assembly modes with functional partners) over 520 

non-functional ones and are thus evolutionary constrained by non-functional assemblies. The 521 

fact that cold regions seem to be more specific to ligand families than hot ones may be 522 

explained by the fact that they are on average more protuberant and more charged. They thus 523 

display more variability than hot ones. Indeed, there is more variability in being positively or 524 

negatively charged and protuberant (with an important range of protuberant shapes) than in 525 

being neutral and flat. S19 Fig presents the electrostatic potential distribution of all energy 526 

classes. Cold regions display a larger variability of electrostatic potential (F-test, p < 2.2e-16) 527 

than hot regions that are mainly hydrophobic thus displaying neutral charge distributions in 528 

average. Consequently, a same hot region may be attractive for a large set of ligands while a 529 

cold region may be unfavorable to specific set of ligands, depending on their charges, shapes 530 

and other biophysical properties.  531 

On the other hand, we show that hot regions are very localized (4.9% of the cells of an energy 532 

map) and tend to be similar no matter the ligand. Similarly to protein interfaces that have been 533 

extensively characterized in previous studies [2,40-43], hot regions are likely to display 534 

universal properties of binding, i.e. they are more hydrophobic and more planar, and thus 535 

more “sticky” than the other regions. They may provide a non-specific binding patch that is 536 

suitable for many ligands. However, we can hypothesize that native partners have evolved to 537 

optimize their interfaces (positive design) so that native interactions prevail over non-native 538 

competing ones. Indeed, we have previously shown that the docking of native partners lead to 539 
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more favorable binding energies than the docking of non-native partners when the ligand is 540 

constrained to dock around the receptor’s native binding site [28,46]. All these results suggest 541 

a new physical model of protein surfaces where protein surface regions, in the crowded 542 

cellular environment, serve as a proxy for regulating the competition between functional and 543 

non-functional interactions. In this model, intermediate and cold regions play an important 544 

role by preventing non-functional assemblies and by guiding the interaction process towards 545 

functional ones and hot regions may select the functional assembly among the competing ones 546 

through optimized interfaces with the native partner.  547 

 548 

In this work, we used and extended the application of the 2D energy map representation 549 

developed in [31] to develop an original theoretical framework that enables the efficient, 550 

automated and integrative analysis of different protein surface features. 2D maps provide the 551 

area distribution of a given feature on the whole protein surface and their discretization 552 

enables the study of a given surface property (e.g. protuberance, planarity, stickiness, 553 

positively charged regions, or cold and hot regions for example). They are easy to manipulate 554 

and their straightforward comparison enables (i) the study of relationships between different 555 

surface properties through the comparison of their area distributions on a protein surface and 556 

(ii) the highlight of the evolutionary constraints exerted on a given feature by comparing its 557 

area distribution on the surfaces of homologous proteins. Particularly, this enables the 558 

identification and characterization of hot regions on a protein surface which can be either 559 

specific or conserved for all ligands and opens up new possibilities for the development of 560 

novel methods for protein binding sites prediction and their classification as functional or 561 

promiscuous in the continuity of previous developments based on arbitrary docking 562 

[28,29,31,46].  563 

 564 
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Our framework provides a proxy for further protein functional characterization as shown with 565 

the five proteins discussed in the Results section Energy maps are specific to protein families. 566 

The comparison of their respective energy maps enables us to reveal biophysical and 567 

functional properties that could not be revealed with classical monomeric descriptors such as 568 

RMSD or sequence identity. Indeed, our framework can reflect the energy behavior of a 569 

protein interacting with a subset of selected partners either functional or arbitrary, thus 570 

revealing functional and systemic properties of proteins. This work goes beyond the classical 571 

use of binary docking to provide a systemic point of view of protein interactions, for example 572 

by exploring the propensity of a protein to interact with hundreds of selected ligands, and thus 573 

addressing the behavior of a protein in a specific cellular environment. Particularly, exploring 574 

the dark interactome (i.e. non-functional assemblies and interactions with non-functional 575 

partners) can provide a wealth of valuable information to understand mechanisms driving and 576 

regulating protein-protein interactions. Precisely, our 2D energy maps based strategy enables 577 

its exploration in an efficient and automated way.  578 
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Materials and Methods 579 

 580 

Protein dataset 581 

The dataset comprises 74 protein structures divided into 12 families of structural homologs 582 

(see S1 Table for a detailed list of each family). Each family is related to at least one other 583 

family (its native-related partners family) through a pair of interacting proteins for which the 584 

3D structure of the complex is characterized experimentally (except the V set domain family: 585 

the two native partners are homologous and belong to the same family) (S1 Fig). Each family 586 

is composed of a monomer selected from the protein-protein docking benchmark 5.0 [47] in 587 

its bound and unbound forms, which is called the master protein. Each master protein has a 588 

native partner (for which the 3D structure of the corresponding complex has been 589 

characterized experimentally) in the database, which is the master protein for another family, 590 

except the V set domain family, which is a self-interacting family. When available, we 591 

completed families with interologs (i.e. pairs of proteins which have interacting homologs in 592 

an other organism) selected in the INTEREVOL database [48] according to the following 593 

criteria: (i) experimental structure resolution better than 3.25 Å, (ii) minimum alignment 594 

coverage of 75% with the rest of the family members and (iii) minimum sequence identity of 595 

30% with at least one member of the family. Since we were limited by the number of 596 

available interologs, we completed families with unbound monomers homologous to the 597 

master following the same criteria and by searching for their partners in the following protein-598 

protein interactions databases [49–54]. We consider that all members of a family correspond 599 

to native-related partners of all members of their native-related partner family. To address the 600 

impact of conformational changes of a protein on its interaction energy maps, we added 601 

different NMR conformers. We show that energy maps involving pairs of conformers are 602 

significantly more similar than those obtained for other pairs of homologous ligands 603 
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(unilateral Wilcoxon test, p < 2.2e-16) showing that the conformational changes in a protein 604 

(lower than 3Å) have a low impact on the resulting energy maps (S20 Fig). 605 

 606 

Docking experiment and construction of energy maps 607 

A complete cross-docking experiment was realized with the ATTRACT software [25] on the 608 

74 proteins of the dataset, leading to 5476 (74 x 74) docking calculations (Fig 1A). 609 

ATTRACT uses a coarse-grain reduced protein representation and a simplified energy 610 

function comprising a pseudo Lennard-Jones term and an electrostatic term. The calculations 611 

took approximately 20000 hours on a 2.7GHz processor. Prior to docking calculations, all 612 

PDB structures were prepared with the DOCKPREP software [55]. 613 

During a docking calculation, the ligand Li explores exhaustively the surface of the receptor 614 

Rk (whose position is fixed during the procedure), sampling and scoring thousands of different 615 

ligand docking poses (between 10000 and 50000 depending on the sizes of the proteins) (Fig 616 

2A). For each protein couple Rk-Li, a 2D energy map is computed which shows the 617 

distribution of the energies of all docking solutions over the receptor surface. To compute 618 

these maps, for all docking poses, the spherical coordinates (φ, θ) (with respect to the 619 

receptor center of mass (CM)) of the ligand CM are represented onto a 2D map in an equal-620 

area 2D sinusoidal projection (Fig 2B) (see [31] for more details). Each couple of coordinates 621 

(φ, θ) is associated with the energy of the corresponding docking conformation (Fig 2B). A 622 

continuous energy map is then derived from the discrete one, where the map is divided into a 623 

grid of 36 x 72 cells. Each cell represents the same surface and, depending on the size of the 624 

receptor, can span from 2.5 Å2 to 13Å2. For each cell, all solutions with an energy score below 625 

2.7 kcal/mol-1 from the lowest solution of the cell are retained, according to the conformations 626 

filtering protocol implemented in [28]. The average of the retained energy scores is then 627 
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assigned to the cell. If there is no docking solution in a cell, a score of 0 is assigned to it. 628 

Finally, the energies of the cells are smoothed, by averaging the energy values of each cell 629 

and of the eight surrounding neighbors (Fig 2C). 630 

For each map, the energy values are discretized into five energy classes of same range leading 631 

to a discrete five-colors energy map (Fig 2D). The range is calculated for each energy map 632 

and spans from the minimum to the maximum scores of the map cells. The range of the 633 

energy classes of the map Rk-Li is equal to (maxE – minE)/5, where maxE and minE 634 

correspond to the maximal and minimal energy values in the Rk-Li map. Each five-colors 635 

energy map is then split into five one-color maps, each one representing an energy class of the 636 

map (Fig 2E). The continuous, five-colors and one-color energy maps are calculated for the 637 

5476 energy maps. 638 

 639 

Comparison of energy maps and identification of ligand’s homologs 640 

Since, we cannot compare energy maps computed for two unrelated receptors, the procedure 641 

is ligand-centered and only compares energy maps produced with different ligands docked 642 

with the same receptor. The referential (i.e. the receptor) is thus the same (in other words all 643 

grid cells are comparable) for all the energy maps that are compared. For each receptor Rk, we 644 

computed a 74x74 energy map distance (EMD) matrix where each entry (i,j) corresponds to 645 

the pairwise distance between the energy maps Rk-Li and Rk-Lj resulting from the docking of 646 

the ligands Li and Lj on the receptor Rk (Fig 1). The pairwise distance dMan(Rk-Li, Rk-Lj) 647 

between the energy maps is calculated with a Manhattan distance according to equation (1) 648 

 649 

𝑑!"# 𝑅!𝐿! ,𝑅!𝐿! =  𝑎!" − 𝑏!"!"
!!!

!"
!!!        (1) 650 

 651 
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where anm and bnm are the cells of row index n and column index m of the energy maps Rk-Li 652 

and Rk-Lj respectively. Low distances reflect pairs of ligands that induce similar energy maps 653 

when they are docked on the same receptor. The procedure presented in Fig 1 is repeated for 654 

each receptor of the database resulting in 74 EMD matrices. The 74 EMD matrices are 655 

averaged into an averaged distances matrix (ADM). Each entry (i,j) of the ADM reflects the 656 

similarity of the Rk-Li and Rk-Lj energy maps averaged over all the receptors Rk in the dataset. 657 

In order to estimate the extent to which family members display similar energy maps when 658 

they are docked with the same receptor, we tested our ability to correctly identify the 659 

homologs of the 74 ligands from the only comparison of its energy maps with those of the 660 

other ligands. Because, energy maps are receptor-centered, we cannot compare the energy 661 

maps computed for two unrelated receptors. The procedure consists in the comparison of 662 

energy maps produced with different ligands docked with a same receptor. Two ligands (i,j) 663 

are predicted as homologs according to their corresponding distance (i,j) in the ADM. Values 664 

close to zero should reflect homologous ligand pairs, while values close to one should reflect 665 

unrelated ligand pairs. A Receiver Operating Characteristic (ROC) curve and its Area Under 666 

the Curve (AUC) are computed from the ADM. True positives (TP) are all the homologous 667 

ligand pairs and predicted as such, true negatives (TN) are all the unrelated ligand pairs and 668 

predicted as such. False positives (FP) are unrelated ligand pairs but incorrectly predicted as 669 

homologous pairs. False negatives (FN) are homologous ligand pairs but incorrectly predicted 670 

as unrelated pairs. ROC curves and AUC values were calculated with the R package pROC 671 

[56]. The ligand’s homologs identification was also realized using the five-color energy maps 672 

or the one-color energy maps taken separately. The five energy class regions display very 673 

different sizes, with median ranging from 63 and 66 cells for the blue and red regions to 633 674 

cells for the yellow one. To prevent any bias due to the size of the different classes, we 675 
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normalized the Manhattan distance by the size of the regions compared in the map. The rest of 676 

the procedure is the same than those used for continuous energy maps (Fig 1). 677 

To visualize the area distribution of the regions of a given energy class for all ligands on the 678 

receptor surface, the 74 corresponding one-color maps are summed into a stacked map where 679 

each cell’s intensity varies from 0 to 74 (S16 Fig). To remove background-image from these 680 

maps, i.e. cells with low intensity (intensity < 17) and the areas of small size (< 4 cells), we 681 

used a Dirichlet process mixture model simulation for image segmentation (R package 682 

dpmixsim) [57]. 683 

 684 

2D projection of monomeric descriptors of protein surfaces 685 

We computed KD hydrophobicity [37], stickiness [20], CV [38] maps of each protein of the 686 

dataset, in order to compare their topology with the energy maps. Prior to all, proteins 687 

belonging to the same families were structurally aligned with TM-align [58] in order to place 688 

them in the same reference frame, making their maps comparable. Particles were generated 689 

around the protein surface with a slightly modified Shrake-Rupley algorithm [59]. The density 690 

of spheres is fixed at 1Å2, representing several thousands particles per protein. Each particle is 691 

located at 5Å from the surface of the protein. The CV, stickiness and KD hydrophobicity 692 

values of the closest atom of the protein are attributed to each particle. We also generated 693 

electrostatic maps reflecting the distribution of the contribution of the coulombic term as 694 

encoded in the ATTRACT force field on a protein surface. The procedure is slightly different: 695 

each particle i has a +1 positive charge, and receives the coulombic value Qi (see equation 696 

(2)).  697 

𝑄! =  𝑞!𝑞!/ℰ𝑟!"!
!!!      (2) 698 
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 699 

with n the number of pseudo-atom in the protein, qi the charge of the particle, qj the charge of 700 

the pseudo-atom j, rij the distance between the particle i and the pseudo-atom j, and ε a 701 

distant-dependent dielectric constant (ε = 15rij ). CV was calculated following the protocol 702 

described in [38] on the all-atom structures. Stickiness, electrostatics and hydrophobicity were 703 

calculated on ATTRACT coarse-grain models. Pseudo-atom charges are defined according to 704 

the ATTRACT force field [25]. After attributing a value to each particle, the position of their 705 

spherical coordinates is represented in a 2-D sinusoidal projection, following the same 706 

protocol as described in Fig 2 and Materials and Methods section Docking experiment and 707 

construction of energy maps. The map is then smoothed following the protocol in Fig 2.  708 
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Supporting information 712 

 713 

S1 Table. List of proteins of the dataset and their structural families. Proteins are referred 714 

by their PDB identifiers, followed by their chain identifier. The NMR conformers are referred 715 

with their conformation identifier. The conformational state of the structures are indicated in 716 

brackets ((b) for bound conformation, (u) for unbound conformation). Structural families are 717 

named according to the SCOPe database [60] at the family level. Averaged sequence identity 718 

and RMSD are given for each family. 719 

 720 

S2 Table. AUC according to the grid resolution used for the energy maps. A linear model 721 

was constructed from the dataset constituted of all the intra-family ligand pairs (202 protein 722 

pairs). This model allows the estimation of the linear correlation between the three descriptors 723 

and the pairwise ADM distance. The model takes into account the individual contribution of 724 

each descriptor as well as their crossed contributions with each other. The p-value of each 725 

individual contribution calculated over the 202 pairs is estimated with a Fisher test and are 726 

given in the table line “all proteins”. We then individually looked each family to see whether 727 

the contribution of the descriptors is dependent from the family. Inside each family, the 728 

number of protein pairs is too small to estimate a linear model. Consequently, we used a 729 

Spearman correlation coefficient test to estimate the p-value of each contribution. 730 

 731 

S3 Table. Estimation of the effective contribution of sequence identity, RMSD and 732 

electrostatic distance in the pairwise ADM distances for each ligand pair belonging to a 733 

same family. The correlation is computed between each cell of the 74 energy maps of each of 734 

the 74 receptors and the corresponding cell in receptor’s maps of stickiness, hydrophobicity 735 

and CV. 736 
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 737 

S4 Table. Correlation between energy scores and stickiness, hydrophobicity and circular 738 

variance (CV). The grid resolution corresponds to the number of cells composing the energy 739 

maps. The AUC is calculated following the same protocol used in the main text (see 740 

Materials and Methods) 741 

 742 

S1 Fig. Interactions between structural families of the dataset. Interactions are symbolized 743 

by links between families. An interaction is established between two families when, there is at 744 

least one PDB reporting a structure of complex involving members of the two families [30]. 745 

Consequently, all members of a family do not necessarily have its native partner in its native-746 

related partner family. The V set domains family is a special case of self-interacting family, 747 

where members form dimers of structural homologs. 748 

 749 

S2 Fig. AUC values calculated on random subsets of receptor of different sizes. The AUC 750 

is computed following the protocol described in Fig. 1 with random subsets composed from 1 751 

to 73 receptors. Receptors of each subset are randomly chosen among the 74 receptors of the 752 

dataset. For each subset size, the procedure is repeated 100 times. Red vertical lines indicate 753 

the standard deviation of the AUC for each subset size. Above a subset size of five receptors, 754 

the AUC does not significantly fluctuate (risk of wrongly rejecting the equality of two 755 

variances (F-test) >5% [61]). 756 

 757 

S3 Fig. Receiver operating characteristic (ROC) curve and Area Under this Curve 758 

(AUC) calculated for each family.  759 

 760 

S4 Fig. Papain-like family. (A) Energy map distances matrix. It corresponds to the 761 

subsection of the ADM for the papain-like family (for the construction of the ADM, see 762 
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Materials and Methods). Each entry (i,j) represents the pairwise energy map distance of the 763 

ligand pair (i,j) averaged over the 74 receptors of the dataset (for more details, see Materials 764 

and Methods). (B) Pairwise sequence identity matrix between all members of the family. (C) 765 

Pairwise root mean square deviation (RMSD) matrix between all members of the family. (D) 766 

Electrostatic maps and cartoon representations of the seven members of the family. An 767 

electrostatic map represents the distribution of the electrostatic potential on the surface of a 768 

protein (see Fig. S15 and Materials and Methods). Cartoon structures are colored according to 769 

the distribution of their electrostatic potential. (E) Electrostatic map distances matrix. Each 770 

entry (i,j) of the matrix represents the Manhattan distance between the electrostatic maps of 771 

the proteins (i,j). 772 

 773 

S5 Fig. Eukaryotic-proteases family. (A) Energy map distances matrix. It corresponds to the 774 

subsection of the ADM for the Eukaryotic proteases family (for the construction of the ADM, 775 

see Materials and Methods). Each entry (i,j) represents the pairwise energy map distance of 776 

the ligand pair (i,j) averaged over the 74 receptors of the dataset (for more details, see 777 

Materials and Methods). (B) Pairwise sequence identity matrix between all members of the 778 

family. (C) Pairwise root mean square deviation (RMSD) matrix between all members of the 779 

family. (D) Electrostatic maps and cartoon representations of the seven members of the 780 

family. An electrostatic map represents the distribution of the electrostatic potential on the 781 

surface of a protein (for more details, see Fig. S15 and Materials and Methods). Cartoon 782 

structures are colored according to the distribution of their electrostatic potential. (E) 783 

Electrostatic map distances matrix. Each entry (i,j) of the matrix represents the Manhattan 784 

distance between the electrostatic maps of the proteins (i,j). 785 

 786 

S6 Fig. V set domains family. (A) Energy map distances matrix. It corresponds to the 787 

subsection of the ADM for the V set domain family (for the construction of the ADM, see 788 
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Materials and Methods). Each entry (i,j) represents the pairwise energy map distance of the 789 

ligand pair (i,j) averaged over the 74 receptors of the dataset (for more details, see Materials 790 

and Methods). (B) Pairwise sequence identity matrix between all members of the family. (C) 791 

Pairwise root mean square deviation (RMSD) matrix between all members of the family. (D) 792 

Electrostatic maps and cartoon representations of the six members of the family. An 793 

electrostatic map represents the distribution of the electrostatic potential on the surface of a 794 

protein (for more details, see Fig. S15 and Materials and Methods). Cartoon structures are 795 

colored according to the distribution of their electrostatic potential. (E) Electrostatic map 796 

distances matrix. Each entry (i,j) of the matrix represents the Manhattan distance between the 797 

electrostatic maps of the proteins (i,j). 798 

 799 

S7 Fig. UCH-L family. (A) Energy map distances matrix. It corresponds to the subsection of 800 

the ADM for the UCH-L family (for the construction of the ADM, see Materials and 801 

Methods). Each entry (i,j) represents the pairwise energy map distance of the ligand pair (i,j) 802 

averaged over the 74 receptors of the dataset (for more details, see Materials and Methods). 803 

(B) Pairwise sequence identity matrix between all members of the family. (C) Pairwise root 804 

mean square deviation (RMSD) matrix between all members of the family. (D) Electrostatic 805 

maps and cartoon representations of the seven members of the family. An electrostatic map 806 

represents the distribution of the electrostatic potential on the surface of a protein (for more 807 

details, see Fig. S15 and Materials and Methods). Cartoon structures are colored according to 808 

the distribution of their electrostatic potential. (E) Electrostatic map distances matrix. Each 809 

entry (i,j) of the matrix represents the Manhattan distance between the electrostatic maps of 810 

the proteins (i,j). 811 

 812 

S8 Fig. UCH family. (A) Energy map distances matrix. It corresponds to the subsection of the 813 

ADM for the UCH family (for the construction of the ADM, see Materials and Methods). 814 
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Each entry (i,j) represents the pairwise energy map distance of the ligand pair (i,j) averaged 815 

over the 74 receptors of the dataset (for more details, see Materials and Methods). (B) 816 

Pairwise sequence identity matrix between all members of the family. (C) Pairwise root mean 817 

square deviation (RMSD) matrix between all members of the family. (D) Electrostatic maps 818 

and cartoon representations of the seven members of the family. An electrostatic map 819 

represents the distribution of the electrostatic potential on the surface of a protein (for more 820 

details, see Fig. S15 and Materials and Methods). Cartoon structures are colored according to 821 

the distribution of their electrostatic potential. (E) Electrostatic map distances matrix. Each 822 

entry (i,j) of the matrix represents the Manhattan distance between the electrostatic maps of 823 

the proteins (i,j). 824 

 825 

S9 Fig. Ubiquitin activating enzymes family. (A) Energy map distances matrix. It 826 

corresponds to the subsection of the ADM for the Ubiquitin activating enzymes family (for 827 

the construction of the ADM, see Materials and Methods). Each entry (i,j) represents the 828 

pairwise energy map distance of the ligand pair (i,j) averaged over the 74 receptors of the 829 

dataset (for more details, see Materials and Methods). (B) Pairwise sequence identity matrix 830 

between all members of the family. (C) Pairwise root mean square deviation (RMSD) matrix 831 

between all members of the family. (D) Electrostatic maps and cartoon representations of the 832 

seven members of the family. An electrostatic map represents the distribution of the 833 

electrostatic potential on the surface of a protein (for more details, see Fig. S15 and Materials 834 

and Methods). Cartoon structures are colored according to the distribution of their 835 

electrostatic potential. (E) Electrostatic map distances matrix. Each entry (i,j) of the matrix 836 

represents the Manhattan distance between the electrostatic maps of the proteins (i,j). 837 

 838 

S10 Fig. UBC-related family. (A) Energy map distances matrix. It corresponds to the 839 

subsection of the ADM for the UBC-related family (for the construction of the ADM, see 840 
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Materials and Methods). Each entry (i,j) represents the pairwise energy map distance of the 841 

ligand pair (i,j) averaged over the 74 receptors of the dataset (for more details, see Materials 842 

and Methods). (B) Pairwise sequence identity matrix between all members of the family. (C) 843 

Pairwise root mean square deviation (RMSD) matrix between all members of the family. (D) 844 

Electrostatic maps and cartoon representations of the seven members of the family. An 845 

electrostatic map represents the distribution of the electrostatic potential on the surface of a 846 

protein (for more details, see Fig. S15 and Materials and Methods). Cartoon structures are 847 

colored according to the distribution of their electrostatic potential. (E) Electrostatic map 848 

distances matrix. Each entry (i,j) of the matrix represents the Manhattan distance between the 849 

electrostatic maps of the proteins (i,j). 850 

 851 

S11 Fig. Kunitz (STI) inhibitors family. (A) Energy map distances matrix. It corresponds to 852 

the subsection of the ADM for the Kunitz (STI) inhibitors family (for the construction of the 853 

ADM, see Materials and Methods). Each entry (i,j) represents the pairwise energy map 854 

distance of the ligand pair (i,j) averaged over the 74 receptors of the dataset (for more details, 855 

see Materials and Methods). (B) Pairwise sequence identity matrix between all members of 856 

the family. (C) Pairwise root mean square deviation (RMSD) matrix between all members of 857 

the family. (D) Electrostatic maps and cartoon representations of the seven members of the 858 

family. An electrostatic map represents the distribution of the electrostatic potential on the 859 

surface of a protein (for more details, see Fig. S15 and Materials and Methods). Cartoon 860 

structures are colored according to the distribution of their electrostatic potential. (E) 861 

Electrostatic map distances matrix. Each entry (i,j) of the matrix represents the Manhattan 862 

distance between the electrostatic maps of the proteins (i,j). 863 

 864 

S12 Fig. Retrovirus capsid proteins family. (A) Energy map distances matrix. It 865 

corresponds to the subsection of the ADM for the retrovirus capsid proteins family (for the 866 
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construction of the ADM, see Materials and Methods). Each entry (i,j) represents the pairwise 867 

energy map distance of the ligand pair (i,j) averaged over the 74 receptors of the dataset (for 868 

more details, see Materials and Methods). (B) Pairwise sequence identity matrix between all 869 

members of the family. (C) Pairwise root mean square deviation (RMSD) matrix between all 870 

members of the family. (D) Electrostatic maps and cartoon representations of the seven 871 

members of the family. An electrostatic map represents the distribution of the electrostatic 872 

potential on the surface of a protein (for more details, see Fig. S15 and Materials and 873 

Methods). Cartoon structures are colored according to the distribution of their electrostatic 874 

potential. (E) Electrostatic map distances matrix. Each entry (i,j) of the matrix represents the 875 

Manhattan distance between the electrostatic maps of the proteins (i,j). 876 

 877 

S13 Fig. Cystatins family. (A) Energy map distances matrix. It corresponds to the subsection 878 

of the ADM for the cystatins family (for the construction of the ADM, see Materials and 879 

Methods). Each entry (i,j) represents the pairwise energy map distance of the ligand pair (i,j) 880 

averaged over the 74 receptors of the dataset (for more details, see Materials and Methods). 881 

(B) Pairwise sequence identity matrix between all members of the family. (C) Pairwise root 882 

mean square deviation (RMSD) matrix between all members of the family. (D) Electrostatic 883 

maps and cartoon representations of the seven members of the family. An electrostatic map 884 

represents the distribution of the electrostatic potential on the surface of a protein (for more 885 

details, see Fig. S15 and Materials and Methods). Cartoon structures are colored according to 886 

the distribution of their electrostatic potential. (E) Electrostatic map distances matrix. Each 887 

entry (i,j) of the matrix represents the Manhattan distance between the electrostatic maps of 888 

the proteins (i,j). 889 

 890 

S14 Fig. Cyclophilins family. (A) Energy map distances matrix. It corresponds to the 891 

subsection of the ADM for the cyclophilins family (for the construction of the ADM, see 892 
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Materials and Methods). Each entry (i,j) represents the pairwise energy map distance of the 893 

ligand pair (i,j) averaged over the 74 receptors of the dataset (for more details, see Materials 894 

and Methods). (B) Pairwise sequence identity matrix between all members of the family. (C) 895 

Pairwise root mean square deviation (RMSD) matrix between all members of the family. (D) 896 

Electrostatic maps and cartoon representations of the seven members of the family. An 897 

electrostatic map represents the distribution of the electrostatic potential on the surface of a 898 

protein (for more details, see Fig. S15 and Materials and Methods). Cartoon structures are 899 

colored according to the distribution of their electrostatic potential. (E) Electrostatic map 900 

distances matrix. Each entry (i,j) of the matrix represents the Manhattan distance between the 901 

electrostatic maps of the proteins (i,j). 902 

 903 

S15 Fig. Generation of electrostatics, stickiness, hydrophobicity and circular variance 904 

(CV) maps. Here is presented an example of generation of the stickiness map for the structure 905 

1AVW_A. (A) Generation of particles with a slightly modified Shrake-Rupley algorithm [59] 906 

around the protein surface, leads to a homogenous shell of particles with a 1Å2 density. Each 907 

sphere is located at 5Å from the surface of the protein. The stickiness value of the closest 908 

atom of the protein is attributed to each particle. In this example, spheres are colored 909 

according to the stickiness of the protein surface. The procedure is similar for hydrophobicity 910 

and CV. (B) The spherical coordinates of each sphere is represented on a 2-D map with an 911 

equal-area sinusoidal projection, following the same protocol as described in Fig. 2 and 912 

Materials and Methods. Each resulting dot is colored according to the same scale of (A). (C) 913 

The map is smoothed following the protocol in Fig. 2 and Materials and Methods. The scale 914 

is the same as in (A). 915 

 916 
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S16 Fig. Generation of stacked maps of a receptor. (A) Calculation of the 74 one-color 917 

maps (red ones in the example) of receptor #1. A value of one is associated to colored cells 918 

while zero is assigned to white cells. (B) Sum of the 74 one-color maps into a stacked map. 919 

Cell’s intensity varies from 0 to 74 and corresponds to the number of time the cell is colored 920 

over the 74 ligands. (C) Filtering of the cells of low cell intensity (intensity < 17) and areas of 921 

too small size (< 4 cells) with a Dirichlet process mixture model simulation for image 922 

segmentation [57]. The procedure is repeated for each color stacked map. 923 

 924 

S17 Fig. Blue and red stacked maps of 1P9D_U computed for each ligand family. (A-L) 925 

We compute the one-color stacked map of each family as the sum of the one-color maps 926 

resulting from the docking of each ligand of a same family with 1P9D_U. 927 

 928 

S18 Fig. Boxplots of the size (in number of cells) of each energy class for all stacked 929 

maps. One should notice that the sum of the sizes of the 5 energy classes is superior to 1548 930 

cells, which is the total size of a map, because a same cell of a stacked map can be assigned to 931 

several energy classes (Fig 8). 932 

 933 

S19 Fig. Boxplots of the electrostatic potential of the protein surfaces depending on the 934 

energy class. The electrostatic potential is calculated for each protein following the protocol 935 

described in Materials and Methods. p-values between the variances of two “successive” 936 

energy classes were computed using the F-test. 937 

 938 

S20 Fig. Boxplots of energy map pairwise distances between ligand pairs of conformers 939 

and pairs of homologous ligands (i.e. non-conformers pairs). For each receptor, we 940 

computed (i) the average of energy map distances of pairs of conformers, (ii) the average of 941 
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energy map distances of pairs of homologous ligands. P-values are calculated with an 942 

unilateral Wilcoxon test. 943 
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