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Abstract:  

Human beings have used large amounts of antibiotic, not only in medical contexts but also, for 

example, as growth factors in agriculture and livestock, resulting in the contamination of the 

environment. Even when pathogenic bacteria are the targets of antibiotics, hundreds of non-

pathogenic bacterial species are affected as well. Therefore, both pathogenic and non-

pathogenic bacteria have gradually become resistant to antibiotics. We tested whether there is 

still co-occurrence of resistance and virulence determinants. We performed a comparative 

study of environmental and human gut metagenomes issuing from different individuals from 

different human populations across the world. We found a great diversity of antibiotic 

resistance determinants (ARd) and virulence factors (VFd) in metagenomes. Importantly, even 

after correcting for metagenome sizes, there is a correlation between ARd and VFd. In the 

human gut there are less ARd and VFd than in more diversified environments, and yet the 

ARd/VFd correlations are stronger. They can vary from very high in Malawi, where antibiotic 

consumption is unattended, to non-existent in the uncontacted Amerindians. We conclude that 

there is co-occurrence of resistance and virulence determinants, suggesting a possible co-

selective phenomenon. Therefore, by selecting for resistant bacteria, we may be selecting for 

more virulent strains, as a side effect of antimicrobial therapy. 

 

	    

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 17, 2018. ; https://doi.org/10.1101/298190doi: bioRxiv preprint 

https://doi.org/10.1101/298190


2	  

Introduction:  

Antibiotics are present in microbial communities, not only as a result of the natural lifestyle of 

microorganisms but also due to the usage of these drugs in agriculture, food industry, 

livestock, or in human health (Castanon 2007). Therefore, antibiotics can affect bacterial 

communities as a whole, comprising both pathogenic and non-pathogenic bacteria. Take, for 

example, the human microbiome, defined as the set of microorganisms that colonize humans. 

This microbiome is composed of about 3.8e+13 bacterial cells (Sender et al 2016) spanning 

thousands of taxa and colonizing our body’s surfaces and bio fluids, including tissues such as 

skin, mucosa and most importantly, the gastrointestinal tract. Thus, even when virulent bacteria 

are the targets of antibiotics, the administration of these drugs may also affect many non-

pathogenic mutualistic or commensal bacterial species present in individuals undergoing 

treatment (Francino 2015).  

The resistome (the collection of all antibiotic resistance (AR) genes, which exist in both 

pathogenic and non-pathogenic bacteria (Wright 2007)) is frequently encoded on mobile 

genetic elements. Similarly, the virulome, the set of genes encoding virulence can also be 

encoded on the mobilome (Svara and Rankin 2011; Nogueira et al 2012; Nogueira et al 2009; 

Smith 2001). Therefore, many bacterial virulence factors (VF) are easily spread in bacterial 

populations by horizontal gene transfer, converting mutualistic or commensal bacteria into 

potential opportunistic pathogens. Several examples of highly virulent and multi-resistant 

disseminated clones have already been reported throughout the literature (for a review see 

(Beceiro et al 2013)). 

A given bacterial population may constitute a life insurance to other bacterial populations 

present in the same microbiome through at least two different mechanisms. First, if antibiotic 

resistance genes are coded by plasmids or other mobile genetic elements, they may transfer to 

pathogenic cells and save them from the negative effects of antibiotics. Indeed, these genetic 

elements can spread into the bacterial community by horizontal gene transfer, even crossing 

species (Sommer et al 2010; Sommer et al 2009; Andersson and Hughes 2014; Vega and Gore 
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2014). Curiously, some bacterial strains from different species have been shown to be 

extremely good donors of certain plasmids. As such, they are able to amplify the number of 

plasmids in a bacterial community and spread those plasmids to other bacterial cells (Dionisio 

et al 2002), a phenomenon probably explained by interactions between different plasmids 

(Gama et al 2017a, 2017b).  

Secondly, even bacterial cells not coding for antibiotic resistance determinants nor receiving 

mobile elements may be protected by cells coding for certain drug resistance genes. Indeed, 

gene products that inactivate antibiotics by degrading or modifying antibiotic molecules are 

also decreasing their concentration in the local environment (for a review about mechanisms of 

possible indirect resistance see (Wright 2005). This mechanism of indirect resistance has been 

shown to occur in different systems and to be pervasive (Nicoloff and Andersson 2016; Sorg et 

al 2016; Domingues et al 2017). 

In this paper we ask whether there is co-occurrence of antibiotic and virulence among bacterial 

populations. For this, we have chosen to study metagenomes. There are three main reasons to 

use metagenomes to address this question. First, it is known that, for millions of years, bacteria 

had to cope with the presence of many other species, mostly competing with them (Foster and 

Bell 2012), but also cooperating, both phenomena relying on the full set of genes of the 

metagenome (Ponomarova and Patil 2015; Rosenthal 2011; Foster and Bell 2012). Secondly, 

horizontal gene transfer promotes the genetic relationship between species thus enforcing 

cooperation (Nogueira et al 2009) avoiding the emergence of cheaters within the microbiome. 

Third, the study of metagenomes gives us access to the repertoire of genes involved in 

adaptation to the environment, given that many of these traits are often encoded in the 

mobilome and thus can be shared by different, eventually unrelated bacteria. In this context, 

mining for genes coding for antibiotic resistance and virulence traits in metagenomes is a 

reliable way to access the selective pressures the population is subject to, as well as the co-

occurrence of genetic traits of the whole microbiome.  
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The present study aims at understanding the relationship between antibiotic resistance genes 

and those coding for virulence. Here we show that there is indeed a linkage between the 

dissemination of virulence factors and genes coding for antibiotic resistance, within natural 

microbiomes, and that this relationship is influenced by the behaviours of human populations, 

spanning from very different geographical locations across the world.  
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Materials and methods:  

Metagenomic datasets 

Our human gut query cohort included 110 previously studied, and publicly available 

metagenomes pertaining to individuals from different regions of Venezuela, Malawi, and the 

USA, as well as a broad age span (0.05 to 53 years) (Yatsunenko et al 2012). All the 

metagenomes files were generated by the same team and project, and by using the same 

bioinformatics pipeline. Our environmental cohort comprised 64 previously selected, and 

publicly available environmental metagenomes, belonging to 12 different biomes (Delmont et al 

2011). Although Delmont’s team report using a dataset comprised of 77 metagenomes, there 

are only 70 MG-RAST accession numbers present in the article's appendix, of which only 64 

are publicly available. Both project's metagenomes were downloaded from MG-RAST (Meyer et 

al 2008) under FASTA format, making use of successive calls to its Application Programming 

Interface (API) (Wilke et al 2015) using the respective MG-RAST's accession numbers available 

in the aforementioned bibliography. Each FASTA file comprised clustered protein-coding 

sequences, retrieved from MG-RAST's file-formatting pipeline (550.cluster.aa90.faa files). The 

protein sequences enclosed in these files are clustered at 90% identity, containing non-

redundant translated sequences (Yatsunenko et al 2012). These protein-coding formatted 

FASTA files contain the translations of one representative from each cluster. Thus, the numbers 

of protein sequences for a given metagenome used here represent its richness.  

BLAST, VFDB and Resfams 

For every metagenome present in our query, a BLASTP (Altschul et al 1997) search was 

performed against the VFDB database for bacterial virulence factors families (Chen et al 2012) 

and the Resfams AR Proteins database of bacterial antibiotic resistance protein families 

(Gibson et al 2014). An alternative approach made use of the Antibiotic Resistance Genes 

Database (ARDB) (Liu and Pop 2009), but several hindrances concerning its sub-classification 

by functional antibiotic resistance protein families made us discard the possibility of using such 

database to address of AR and VF protein family co-occurrence in metagenomes. 
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The BLAST+ executables package was downloaded on the 17th of November 2015 (ncbi-blast-

2.2.31+ version). The VFDB was downloaded on the 11th of November 2013 (31 classified 

FASTA files of bacterial virulence factor sub-families), and the Resfams database was 

downloaded on the 29th of January 2016, (123 classified FASTA files of bacterial antibiotic 

resistance protein subfamilies. Every protein enclosed in each of the addressed metagenomes, 

was used as a query in order to search for similarities to either AR or VF protein-coding traits. 

Hence, we aimed at retrieving the best hit (best scored alignment) that enabled us to assign an 

AR or VF function to each of the aforementioned metagenomic proteins. Every BLASTP search 

was performed with a very stringent e-value cut-off of 1e-15 (10	  orders	  of	  magnitude	  lower	  

than	  the	  conservative	  commonly	  used	  E-‐value	  of	  1e-‐5). Next, we filtered the resulting output 

files, as to only retrieve the alignment hits with >60% coverage of the query size, and whose 

query and subject length ratio is between 0,75 and 1,5. When	  using	  a	  combination	  of	  this	  very	  

stringent	  e-‐value	  of	  1e-‐15	  together	  with	  coverage,	  and	  length	  ratio	  filters,	  we	  expect	  to	  only	  

retrieve	  true	  homologues,	  avoiding	  false	  positives.	  Furthermore, from all the generated 

alignments between our metagenomic query cohort and the preceding databases, we 

computed the representative counts for the different gene families that coded for either AR or 

VF traits. Thus, the amounts of different classes (gene families) that are present in a given 

metagenome represent its diversity in terms of AR or VF traits. 

We have also removed hits for proteins that aligned with both antibiotic resistance and 

virulence factor proteins (25.9% of hits against the VFDB, and 29,9% of the hits against the 

Resfams database). The abovementioned filters and algorithms were implemented making use 

of Unix scripting languages (GNU Awk version 4.0.1, and Z-Shell version 5.0.2), under a Linux 

environment. 
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Statistical Analysis 

To test for relationships in metagenomes between the presence of both antibiotic resistance 

and virulence factors traits we proceeded as follows. Our expectation is that the diversity 

number for homologues of antibiotic resistance protein families (henceforth denoted as ARd) 

and the diversity number for homologues of virulence factors protein families (denoted as VFd) 

in each metagenome (clustered at 90% identity) increases with the protein family richness of 

the latter (being that the protein family richness here means the total number of cluster 

representative proteins. Given the potential diversity of these protein families, one does not 

expect ARd and VFd to level off with a metagenome’s protein family richness. Therefore, we 

assume a linear relationship between ARd and metagenome’s protein family richness, with a 

fixed 0 intercept. The same for VFd. Our results will show that these assumptions are 

reasonable. Thus, to avoid spurious correlation, we corrected the diversity of ARd and VFd in a 

metagenome by taking into account its protein family richness: we have standardized the 

different representative counts that issued from these samples according to the protein family 

richness of their respective metagenomes, therefore escaping “statistical inevitability”. 

Hence we define α as the slope of the regression line of ARd on the protein family richness 

(henceforth denoted as Size solely in the equations) of the metagenomes (with a fixed 0 

intercept) and β as the slope of the regression line of VFd on the protein family richness of the 

metagenomes (also with a fixed 0 intercept): 

𝐴𝑅𝑑 = 𝛼. 𝑆𝑖𝑧𝑒 Equation 1A 

𝑉𝐹𝑑 = 𝛽. 𝑆𝑖𝑧𝑒 Equation 1B 

 

Thus a metagenome i of a given protein family richness (Size(i)) is expected to have 𝐴𝑅𝑑  (𝑖) =

𝛼. 𝑆𝑖𝑧𝑒  (𝑖) antibiotic resistance protein families’ homologues and 𝑉𝐹𝑑(𝑖) = 𝛽. 𝑆𝑖𝑧𝑒(𝑖) virulence 

factors protein families’ homologues. Or: 

 

𝐴𝑅𝑑(𝑖)
𝛼. 𝑆𝑖𝑧𝑒(𝑖)

= 1	   Equation 2A 
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𝑉𝐹𝑑(𝑖)
𝛽. 𝑆𝑖𝑧𝑒(𝑖)

= 1	   Equation 2B 

 

 

Naturally, it would be the case if ARd and VFd were only correlated with the protein family 

richness of the metagenomes. This is our null hypothesis, H0: data points are evenly present in 

the four quadrants around point ( !"#(!)
!.!"#$(!)

,   !"#(!)
!.!"#$(!)

)=(1,1). However, some of the metagenomes do 

not match these predictions. Therefore, one may ask whether a given metagenome with more 

ARd than expected for its protein family richness has less or more VFd than expected for its 

protein family richness. There are two alternative hypothesis: 1) data points distribute over 

upper right and lower left quadrants around ( !"#(!)
!.!"#$(!)

,   !"#(!)
!.!"#$(!)

)=(1,1) (i.e. the more diverse are AR 

genes, the more diverse are VF genes); or 2) they distribute over upper left and lower right 

quadrants around ( !"#(!)
!.!"#$(!)

,   !"#(!)
!.!"#$(!)

)=(1,1) (i.e. the more diverse are AR genes, the less diverse are 

VF genes, and vice versa) This is the alternative hypothesis H1: data points distribute over two 

quadrants around. 

The Spearman rank correlation coefficient (rs) was used to test the association between VFd 

and ARd. All possible associations between VFd and ARd hits for sub-families were also 

generated (n = 123 * 31 = 3813). As to control the expected proportion of rejected null 

hypotheses, the Benjamini-Hochberg procedure (Benjamini and Hochberg 1995) was applied to 

the Spearman's rs p-values generated this way. The correlation coefficient (r) and the slope of 

the linear fits were also calculated as to access the strength and direction of the relationship 

between the standardized ARd and VFd on the generated scatterplots, as well as to address 

the ratio between these variables. Associations with rs > 0.5, that also had r > 0.5 and a rs P-

value < 0.001 were considered valid. All statistical analysis was conducted with the R 

programming language (version 3.2.2). Scatterplots and marginal boxplots were generated 

using R's ggplot2, grid, gtable and scales packages. 
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Results: 

Antibiotic resistance (AR) gene families in the metagenomes 

We started by evaluating the quantity of different AR genes present in the metagenomes under 

study. We wanted to know how does the diversity of antibiotic resistance gene families’ 

homologues (that is, ARd, the number of different families) vary with the metagenome protein 

family richness (equation 1A). To answer this question, we used a data set of environmental 

metagenomes issuing from diverse ecosystems and biomes, such as oceans, coral atolls, deep 

oceans, Antarctic aquatic environments and snow, soils, hyper saline sediments, sludge’s, 

microbial fuel cell biofilms, and animal microbial populations (Delmont et al 2011). In this 

dataset, there is a broad variation in AR gene diversity (ARd) (Fig. 1.A), even for a given fixed 

metagenome protein family richness For example, when the number of sequences of a given 

metagenome is about 1.75e+5, the number of ARd can range from almost zero (chicken cecum 

or cow rumen) to about 3000 (acid mine biofilms). However, there is a close to linear 

relationship between ARd and the protein family richness of the metagenomes. Indeed, we 

draw a regression line, with r = 0.7543, rs = 0.6426, P = 1.037e−08 (rs is the Spearman rank 

correlation coefficient, slope = αe ≈ 0.0048). 

We also draw a fit line for the subset of metagenomes belonging to the human faeces biome. 

Another dataset composed by 110 human gut metagenomes, sampled from healthy individuals 

with ages ranging from 0.05 to 53 years of age, spanning different regions of the world such as: 

USA, Malawi, and the Venezuelan Amazon was also studied (Yatsunenko et al 2012). In this 

dataset (see Supplemental Fig. A) the frequency of antibiotic resistance protein families is 

strongly dependent on the protein family richness of the metagenome (r = 0.9142, rs = 0.9424, P 

= 2.2e-16, slope = αg ≈ 0.0052). 
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Virulence factor (VF) gene families in the metagenomes 

Bacterial virulence factors are proteins that enable pathogenic bacteria to parasitize a host, 

including gene products involved in adhesion and invasion, secretion, toxins, and iron 

acquisition systems (Chen et al 2012).  

The environmental microbiomes of our dataset reveal a great diversity of virulence factors 

protein families' (VFd) densities (Fig. 1.B). For example, when the number of sequences of a 

metagenome is about 3.7e+5, VFd varies from about 1000 (for human faeces) to more than 

7000 (ocean). However, there is a close to linear relationship between VFd and the protein 

family richness of the metagenomes. Indeed, we draw a regression line, with r = 0.6694, rs = 

0.5219, P= 9.745e−06, where rs is the Spearman rank correlation coefficient, slope = βe ≈ 

0.0083). Since virulence may also be associated with the colonization of different types of 

biomes (some virulent traits are involved in adaptation to new environments, by allowing 

bacteria to adhere and colonize substrates, to access to resources such as iron, among other 

functions) besides the context of infection, one can expect different types of these genes in 

environmental microbiomes. Moreover, in human gut microbiomes (see Supplemental Fig. B), 

we observed a good correlation between VFd and the protein family richness of the 

metagenomes (r = 0.6331, rs = 0.7626, P = 2.2e-16, where rs is the Spearman rank correlation 

coefficient, slope = βe ≈ 0.0058). 

The AR / VF correlations  

The main purpose of the present work is to evaluate the relationship, if any, between ARd and 

VFd in microbiomes. Therefore, we excluded from our analysis all the gene products that are 

both homologues to AR and VF determinants. Thus we avoid the introduction of a bias in the 

correlation analysis. We computed !"#(!)
!.!"#$(!)

 and !"#(!)
!.!"#$(!)

 for all metagenomes. In Fig. 2 one can 

see that the two variables are positively correlated: a metagenome with more (less) than 

expected VFd also has more (less) than expected ARd. Although there is a large variation of 

ARd (Fig. 1.A), and VFd (Fig. 1.B), in environmental metagenomes, there is a strong correlation 
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between ARd and VFd (r = 0.7547, rs = 0.8256, P = 2.2e-16, Spearman rank correlation 

coefficient) (Fig. 2). When we draw the regression line for the human gut microbiomes from this 

dataset (human gut), we can see that the ratio ARd/VFd is even higher than for the case of 

environmental metagenomes. Despite the fact that the values for ARd and VFd are lower in gut 

metagenomes (see Fig. 1), one can witness a higher ratio ARd/VFd (larger slope) of 

metagenomes pertaining to the human faeces biome relatively to the slope calculated for all 

environmental metagenomes (Fig. 2). This suggests that there is a greater accumulation of ARd 

over VFd for this particular biome than in environmental ones. In Fig. 2, one can see that just a 

few points fall in the second and fourth quadrants. Points that fall into the second quadrant 

correspond to metagenomes for which there is more ARd than expected, given the VFd. The 

points that fall into the fourth quadrant pertain to metagenomes for which there is less ARd than 

expected, given the VFd. 

Fig. 3 shows AR diversity versus VF diversity in the human gut metagenomes for each 

population (country) and for the three populations together. All the statistics are summarized in 

Table I and Supplemental Table (for the study using the ARDB database (Liu and Pop 2009)). 

The correlation between ARd and VFd is lower in the human gut metagenomes dataset (r = 

0.5572, rs = 0.6289, P = 2.2e-16, Spearman rank correlation coefficient) (Fig. 3.A) than in the 

environmental samples (r = 0.7547, rs = 0.8256, P = 2.2e-16) (Fig. 2). This correlation is not 

dependent on the protein family richness of the metagenomes (Fig. 3.A). In order to better 

understand the results, we can divide the graph into quadrants, using the axes set by 

coordinates (1,1)(See Equations 2.A and 2.B). We can see that there are many points 

(metagenomes) located on the first and third quadrant following the regression line. These 

points represent the metagenomes for which there is a correlation between ARd and VFd; that 

is, ARd and VFd are both either in excess or in deficit (compared to their expected values given 

the protein family richness of the metagenome). Nevertheless, some points fall in the second 

quadrant,  (corresponding to metagenomes for which there is more ARd than expected given 

VFd), and some other points fall into the fourth quadrant (corresponding to metagenomes for 

which there is less ARd than expected given VFd.  
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However, we can distinguish different trends upon geographical localization of the human 

populations under study. The largest contribution to this graph comes from the North American 

samples, which account for 66/110 (60%) of the individuals (Fig. 3.B). 

We have compared these results with those of the gut metagenomes issuing from non-western 

human populations, having very contrasting lifestyles and exposure to antibiotics: the 

uncontacted Amerindians, harbouring a resistome similar to that of pre-antibiotic era; and those 

of the people from Malawi with a high prevalence of infectious diseases and widespread use of 

unprescribed antibiotics (WHO s.d.; UNICEF s.d.; Forslund et al 2013).  

While studying metagenomes collected from Amerindians (Venezuela) (21/110, or 19% of the 

metagenomes of the dataset) and Malawians (23/110, or 21%), we can see two completely 

different scenarios (Fig. 3.C and 3.D). In the Amerindian gut metagenomes there is no 

statistically significant correlation between ARd and VFd (r = 0.326, rs = 0.4519, P = 0.04111, 

Spearman rank correlation coefficient). This result is relevant, when we compare it to the 

Malawian gut metagenomes where there is a very strong correlation between ARd and VFd (r = 

0.9088, rs =0.8706, P = 2.533e−06). Interestingly, the slope of the regression line portrayed by 

the association between ARd and VFd belonging to Malawian human gut metagenomes (Fig. 

3.D) is twice as large than those issuing from the Amerindian (Fig. 3.C) and USA populations 

(Fig. 3.B). That is, the Malawian metagenomes accumulate two times more ARd per VFd than 

its Amerindian and North-American counterparts. 

The co-occurrence of AR and VF belonging to the cell envelope 

Our results suggest that co-occurrence of AR and VF might be taking place amidst bacterial 

communities. We wondered, however, which were the genetic traits that were more prone to 

this effect. All the AR and VF protein families associations were plotted and analysed. Thus, 

after all possible associations between subfamilies of AR and VF pairs had been generated (123 

* 31 = 3813) a Spearman’s rho (rs) cut-off of 0.5 was applied as to filter the best correlations. 

The vast majority of associations falls into the functional category of multi-drug efflux pumps 

(AR’s) associated with either secretion systems, as well with iron uptake and adhesion 
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mechanisms (VF’s), respectively (Table II). Amongst the most representative associations 

between AR and VF traits are those belonging to the cell envelope and the general secretion 

mechanisms. On the other hand, the AR protein families for beta-lactamases, and general beta-

lactam resistance mechanisms, bore no statistically significant correlations whatsoever, 

attaining very weak Pearson and Spearman correlation coefficients as well. 
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Discussion:  

Antibiotic resistance among environmental and human gut metagenomes 

As expected, we found different homologues for antibiotic resistance (AR) gene products 

belonging to different protein families (AR diversity or ARd) among environmental metagenomes 

(Fig. 1.A). We have shown that, in the environmental samples, ARd varies a lot from 

metagenome to metagenome. This may result from the differential microbial community 

composition of the metagenomes, whose genetic diversity can be grouped according to the 

adaptation to the environment in question (Delmont et al 2011); but also from the fact that the 

selective pressure for the maintenance of antibiotic resistance genes in environmental 

microbiome varies widely from environment to environment (Martinez 2008; Martinez and 

Baquero 2002; Fitzpatrick and Walsh 2016). Human gut metagenomes, on the contrary, have a 

less diversified repertoire of AR determinants (lower ARd) than that of their environmental 

counterparts. 

We found a very strong correlation between the diversity of AR determinants and the 

metagenome’s protein family richness (Supplemental Fig. A), independently of the geographic 

origin of the human populations. These similar densities of ARd can indicate that, in human gut 

microbiomes, the number of different AR genes is not influenced by the human lifestyle, such 

as diet, medical care, access to antibiotics or other cultural habits (Ghosh et al 2013), and/or 

that the adaptation to the intestinal tract shapes microbial AR diversity as well.  

Antibiotic use can vary from country to country (CDDEP s.d.), and, as consequence, individuals 

from different human populations are under different antibiotic exposition. Forslund and co-

workers have demonstrated that there are robust differences in the antibiotic resistance arsenal 

between countries and that these differences follow the veterinary and human antibiotic use 

(Forslund et al 2013). 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 17, 2018. ; https://doi.org/10.1101/298190doi: bioRxiv preprint 

https://doi.org/10.1101/298190


15	  

Virulence among environmental and human gut metagenomes 

In what concerns virulence, we can assert that there is a wide diversity and density differences 

of VFs in environmental metagenomes, which poses as evidence of the plasticity portrayed by 

environmental bacteria in order to adapt to different hosts and niches (Fig. 1.B). On the other 

hand, human gut microbiomes harbour a less diverse VF repertoire, especially in the USA 

samples (Supplemental Fig. B), which seem to indicate an evolution towards adaptation to the 

human gut, or lower contact with pathogens, eventually due to vaccinations and sanitation.  

Association of AR / VF  

According	  to	  Yatsunenko	  and	  colleagues,	  once	  the	  human	  gut	  metagenome	  is	  established	  at	  

the	  age	  of	  3	  years	  old,	  it	  does	  not	  diverge	  much	  from	  individual	  to	  individual,	  in	  what	  concerns	  

both	  phylogenetic	  diversity	  and	  functional	  richness	  (Yatsunenko et al 2012).	  

The most relevant results shown here are that, when corrected for metagenome’s protein family 

richness, ARd and VFd are strongly correlated both in the environmental samples (Fig. 2 and 3) 

and in the human gut samples (Fig. 3), with special emphasis on the human gut. 

The North American intestinal samples (Fig. 3.B) show a wide variety of associations between 

ARd and VFd, always presenting a statistically significant correlation between these genetic 

traits. This result in itself reinforces our hypothesis that antibiotic resistance and virulence are in 

fact co-associated. In particular there are 5/66 (7.5%) points in the second quadrant of Fig. 3.B 

representing metagenomes where there is an accumulation of ARd by VFd, thus suggesting 

that the mobilization of mobile genetic elements as gene cassettes, driving to multirresistance, 

might be taking place. The USA population, like other industrialized countries, is culturally 

exposed to antibiotics from health care facilities such as hospitals, antibiotic therapy, and the 

use of antibiotics in agriculture and livestock.  

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 17, 2018. ; https://doi.org/10.1101/298190doi: bioRxiv preprint 

https://doi.org/10.1101/298190


16	  

Amerindians from Venezuela and Malawians share, phylogenetically, more similar human gut 

microbiomes than the North Americans (Yatsunenko et al 2012), which belong mainly to a 

different enterotype (Lozupone et al 2012). Yet, whereas there is no ARd/VFd correlation among 

the Venezuelan individuals, there is a very strong correlation among the Malawian ones. This 

result highlights the potential effect of the exposure to antibacterial drugs on promoting the 

dissemination of antibiotic resistance by horizontal gene transfer, and the potential co-selection 

of virulence traits within bacterial communities.  

The uncontacted Amerindian microbiome represents a “frozen” relic of a pre-antibiotic era of 

the human resistome, while the Malawian gut microbiome is much more exposed, both to 

antibiotics, and to colonization by pathogens (WHO s.d.; UNICEF s.d.; Forslund et al 2013). 

Amerindians have no known access to pharmaceutical drugs, as they usually make use of the 

traditional indigenous medicine. Malawi is one of the poorest countries in Africa, where most 

people live with less than one dollar a day, many people cope with AIDS and bacterial 

infections, and where many children suffer from severe malnutrition (WHO s.d.). Nutrition has 

been reported to have a big impact on both the human gut microbiome composition and 

resistome (Ghosh et al 2014; 2013; Pehrsson et al 2016). In Malawi, UNICEF has been 

implementing a program of Ready-to-Use-Therapeutic-Food (RUTF) in order to reduce mortality 

among children. RUTF often contains antibiotics such as co-trimoxazole. It has been 

questioned, however, whether the success of this therapy is due to re-nutrition or to the 

combination with antibiotics (Alcoba et al 2013; Makoka et al 2012) that could have an effect on 

the microbial gut composition. It has been reported that there is widespread resistance to 

almost all of antibiotics that are empirically used in Malawi due to the lack of routine 

microbiological culture and sensitivity testing (Makoka et al 2012), but also due to self-

medication. Human gut samples from the Malawi people of the dataset used in the present 

study are described as having a high overall resistance potential with an over representation of 

cephalosporin and tetracycline resistance genes which may suggest extensive use of old, 

broad-spectrum antibiotics, a known problem in many developing countries (Forslund et al 

2013). 
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The co-representation of AR and VF targeting the cell envelope 

Between all the possible statistical AR and VF protein families’ correlations, the strongest ones 

are among proteins belonging to the bacterial cell envelope (Table II). This result is not 

surprising, as many proteins that belong to the secretory system or to the secretome itself, and 

thus target the bacterial envelope, are frequently encoded on mobile genetic elements 

(Nogueira et al 2012; Nogueira et al 2009). As such, this co-occurrence may also be regarded 

as a direct consequence of the dynamics of these genetic elements coding for both types of 

determinants. 

In human gut the strongest correlations involve efflux pumps that can extrude antibiotics non-

specifically, and adhesion and iron scavenging mechanisms of pathogenicity. One possible 

explanation for the fact that the most frequent AR and VF associations in human gut involve 

efflux pumps could be that they allow a fast and efficient response to new man-made antibiotic 

molecules, while in environmental genomes, specific resistance mechanisms targeted to 

particular antibiotic molecules may have had more time to evolve to specific strategies. 

Another possible explanation is that extrusion can also be implicated in pathogenic 

mechanisms of human associated pathogens as well as bacteria-host interactions. For 

example, biofilm formation in a Staphylococcus aureus methicillin resistant (MRSA) strain has 

been known to be essentially reliant on the activity of fibronectin binding proteins (McCourt et al 

2014), and multi-drug efflux pumps have direct implications with the formation and 

maintenance of such biofilms (Soto, 2013). Furthermore quinolone resistant S. aureus strains up 

regulate the production of fibronectin binding proteins when subjected to sub-lethal dosages of 

ciprofloxacin (Bisognano et al 2004). It has also been acknowledged that physiological levels of 

some cations present within the host promote the up regulation of genes encoding putative 

efflux transporters, oxidoreductases, and mechanisms of iron uptake either in Acinetobacter 

baumannii (Hood et al 2010) as in Burkholderia cenocepacia (Drevinek et al 2008), which could 

explain the co-association of iron acquisition systems with those of multi-drug efflux pumps.  
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We show here that there is a correlation between the diversity of antibiotic resistance and 

virulence traits in human gut microbiomes and in environmental microbiomes. Interestingly, this 

correlation varies from a human population to another. Human antibiotic exposure due, either to 

therapy or to the environment and food, can have an effect on selecting for potentially 

pathogenic bacteria in the human gut microbiomes. It can also drive and shape changes on the 

gene pool of microbiomes. This means that, by selecting for resistant bacteria, we might be 

also selecting for more virulent strains, as a side effect of antimicrobial therapy. 
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Legends: 

Figure 1. Distribution of the diversity number of antibiotic resistance and virulence factor 

protein families by environmental metagenomes’ protein family richness 

The vertical axes represent the total diversity count of AR protein families’ homologues (ARd) 

(1. A) and VF protein families’ homologues (VFd) (1.B), present in metagenomes. The horizontal 

axes represent the protein family richness of the metagenome, that is, the number of cluster 

representative sequences - see Methods. In 1.A each dot represents one of the 64 

metagenomes. The black line represents the simple linear regression of best fit for all of the 

metagenomes, where the grey shading is the 95% confidence interval. The points are scattered 

showing that the diversity of AR gene families can vary greatly from metagenome to 

metagenome. The points' dispersal illustrates different VFd frequencies when taking distinctive 

environmental metagenomes into comparison. The light line represents the linear regression of 

best fit for the human faeces metagenomes subset. The Correlation coefficient (r), Spearman's 

rank correlation coefficient (rs), P-value obtained from the latter, Coefficient of determination (r2) 

and respective P-value are shown on Table I. 

 

Figure 2. Distribution of AR by VF diversity in environmental metagenomes.  

Scatter plots with marginal boxplots of !"# !
!!.!"#$ !

 versus !"#(!)
!!.!"#$(!)

 of each metagenome where αe 

and β e are the slopes for the environmental metagenomes, calculated in Fig. 1.A and 2.A, 

respectively. The black line represents the simple linear regression line of best fit, where the 

grey shading is the 95% confidence interval. The black line in the box plots represents the 

median, and the black diamonds represent the mean. Each dot represents a metagenome, and 

the grey lines parallel to the axes represent the (1,1) reference coordinates. The correlations 

seem to depend on the biome. The light line represents the linear regression of the human 

faeces metagenomes subset. There is a significant correlation involving the 12 different 

environmental biomes (n = 64, r = 0.7547, rs = 0.8256, P < 0.001, BH post hoc procedure, lm 

slope = 0.6283), and that the slope is greater in metagenomes issuing from the human faeces 
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subset, than in the environmental ones. These statistics along with the Coefficient of 

determination (r2) and respective P-value are shown on Table I. 

 

Figure 3. Distribution of AR by VF diversity in Human gut metagenomes.  

Scatter plots with marginal boxplots of !"# !
!!.!"#$ !

 versus !"#(!)
!!.!"#$(!)

 of each metagenome where αg 

and βg are the slopes calculated in Supplemental Fig. A and B , respectively. A simple linear 

regression line of best fit is represented in each graph, where the grey shading is the 95% 

confidence interval. The black line in the box plots represents the median and the black 

diamonds represent the mean. Each dot represents a metagenome, and the grey lines parallel 

to the axes represent the (1,1) reference coordinates. A) Significant correlation in metagenomes 

of all human populations – Malawi, USA, Venezuela, respectively (n = 110, r = 0.5572, rs = 

0.6289, P < 0.001, BH post hoc procedure, lm slope = 0.2075), coloured according to the 

metagenome protein family richness. B) Significant correlation in gut microbiomes of USA 

individuals (n = 66, r = 0.5304, rs = 0.6367, P < 0.001, BH post hoc procedure, lm slope = 

0.1897). C) Non-significant correlation in gut microbiomes of Venezuelan individuals (n = 21, r = 

0.326, rs = 0.4519, P > 0.001, BH post hoc procedure, lm slope = 0.1371). D) Strong significant 

correlation in gut metagenomes of Malawian individuals (n = 23, r = 0.9088, rs = 0.8706, P < 

0.001, BH post hoc procedure, lm slope = 0.3725). These statistics along with the Coefficient of 

determination (r2) and respective P-value are shown on Table I. 

 

Supplemental Figure. Distribution of the diversity number of antibiotic resistance and 

virulence factor protein families by human gut metagenomes’ protein family richness 

The vertical axes represent the total diversity count of AR protein families’ homologues (ARd) 

(A) and VF protein families’ homologues (VFd) (B), present in metagenomes. The horizontal axes 

represent the protein family richness of the metagenome, that is, the number of cluster 

representative sequences - see Methods. Each dot represents one of the 110 human gut 

metagenomes. The lines depict the linear regressions of the metagenomes from Malawi, USA 

and Venezuela, and the black line depicts the regression line for all metagenomes, where the 

grey shading is the 95% confidence interval. The Correlation coefficient (r), Spearman's rank 
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correlation coefficient (rs), and P-value obtained from the latter, Coefficient of determination (r2) 

and respective P-value are shown on Table I. 
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Table I

Resfams vs VFDB

Human

Statistic All Countries USA Malawi Venezuela All Countries USA Malawi Venezuela All Countries USA Malawi Venezuela
r 0,9142 0,9034 0,9413 0,9689 0,6331 0,5768 0,8251 0,8288 0,5572 0,5304 0,9088 0,326
rs 0,9424 0,9394 0,9202 0,9468 0,7626 0,7211 0,8429 0,8987 0,6289 0,6367 0,8706 0,4519
rs p-value 2,20E-016 2,20E-016 5,19E-010 5,16E-006 2,20E-016 8,61E-012 1,73E-006 2,98E-006 2,20E-016 2,08E-008 2,53E-006 0,04111
slope 0,005192 0,005039 0,005494 0,005587 0,005825 0,005259 0,006937 0,007301 0,2075 0,1897 0,3725 0,1371
r-squared 0,9558 0,9443 0,9816 0,9858 0,8301 0,7859 0,9482 0,9247 0,3105 0,2813 0,8259 0,1063
F-statistic p-value 2,20E-016 2,20E-016 2,20E-016 2,20E-016 2,20E-016 2,20E-016 1,25E-015 1,06E-012 2,58E-010 4,64E-006 2,00E-009 0,1493

Environmental

ARd(i) ~ Size(i) VFd(i) ~ Size(i)
Statistic All Biomes All Biomes Statistic

r 0,7543 0,6694 r
rs 0,6426 0,5219 rs
rs p-value 1,04E-008 9,75E-006 rs p-value
slope 0,004762 0,008337 global slope
r-squared 0,7213 0,6241 human gut metagenomes slope
F-statistic p-value 2,20E-016 5,19E-015 r-squared

F-statistic p-value
0,5695

5,95E-013

0,7547
0,8256

2,20E-016
0,6283
0,9156

ARd(i) ~ Size(i) VFd(i) ~ Size(i) ( ARd(i) / (αg * Size(i)) )  ~  ( VFd(i) / (βg * Size(i)) )

( ARd(i) / (αe * Size(i)) )  ~  ( VFd(i) / (βe * Size(i)) )
Value
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Table II
AR mechanism VF mechanism Correlation

coefficient
Spearman's rs Spearman's rs P-value 

(BH corrected)

Environmental:
ABC (ATP-binding cassette superfamily) Antibiotic Efflux Pump Heme-mediated Iron Uptake 0.8785 0.8598 2.787245e−14
msbA (Lipid A export ATP-binding/permease protein MsbA) Heme-mediated Iron Uptake 0.8602 0.8738 2.787245e−14
macB (Macrolide export ATP-binding/permease protein MacB) Heme-mediated Iron Uptake 0.8415 0.8889 2.787245e−14
macB (Macrolide export ATP-binding/permease protein MacB) Type VI secretion system & effectors 0.8017 0.8367 2.787245e−14
macB (Macrolide export ATP-binding/permease protein MacB) Fibronectin-binding proteins 0.7463 0.7549 2.665298e−11
TetM TetW TetO TetS (Tetracycline resistance proteins) Fibronectin-binding proteins 0.7375 0.7620 1.301533e−11
macB (Macrolide export ATP-binding/permease protein MacB) Type III secretion system & effectors 0.7307 0.8205 2.787245e−14
msbA (Lipid A export ATP-binding/permease protein MsbA) Fibronectin-binding proteins 0.7304 0.7545 2.726477e−11
msbA (Lipid A export ATP-binding/permease protein MsbA) Others (Adhesion & Invasion proteins) 0.7005 0.7216 5.711802e−10
TetM TetW TetO TetS (Tetracycline resistance proteins) Others (Adhesion & Invasion proteins) 0.6594 0.7308 2.603417e−10

Human Gut:
MFS (major facilitator superfamily) Antibiotic Efflux Pump Type VI secretion system & effectors 0.8101 0.6806 6.008628e−14
MFS (major facilitator superfamily) Antibiotic Efflux Pump Siderophore-mediated Iron Uptake 0.7489 0.7353 4.979333e−14
ABC (ATP-binding cassette superfamily) Antibiotic Efflux Pump Heme-mediated Iron Uptake 0.6477 0.6307 4.979333e−14
ABC (ATP-binding cassette superfamily) Antibiotic Efflux Pump Fibronectin-binding proteins 0.6390 0.6603 4.979333e−14
mexW mexI (multidrug resistance efflux pump) Type IV Pili 0.6189 0.5899 4.979333e−14
ABC (ATP-binding cassette superfamily) Antibiotic Efflux Pump Others (Adhesion & Invasion proteins) 0.6012 0.5639 1.810177e−09
msbA (Lipid A export ATP-binding/permease protein MsbA) Fibronectin-binding proteins 0.5538 0.5958 4.979333e−14
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