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Abstract
Uniform Manifold Approximation and Projection (UMAP) is a recently-published non-linear
dimensionality  reduction technique.  Another such algorithm, t-SNE, has been the default
method for such task in the past years. Herein we comment on the usefulness of UMAP
high-dimensional  cytometry  and  single-cell  RNA  sequencing,  notably  highlighting  faster
runtime  and  consistency,  meaningful  organization  of  cell  clusters  and  preservation  of
continuums in UMAP compared to t-SNE.

Introduction
The last decades have witnessed a large increment in the number of parameters analysed in
single cell cytometry studies. It currently reaches around 20 for flow-cytometry, 40 for mass-
cytometry,  and  more  than  20,000  in  single-cell  RNA-sequencing.  In  this  context,
dimensionality reduction techniques have been pivotal in enabling researchers to visualize
high-dimensional data. While principal component analysis has historically been the main
technique used for  dimensionality  reduction  (DR),  the recent  years have highlighted the
importance  of  non-linear  DR  techniques  to  avoid  overcrowding  issues.  Common  such
techniques[1]  include Isomap, Diffusion Map and t-SNE[2] (also renamed viSNE[3]). t-SNE
is currently the most commonly-used technique and is efficient at highlighting local structure
in the data, which for cytometry notably translates to the representation of cell populations as
distinct  clusters.  t-SNE  however  suffers  from  limitations  such  as  loss  of  large-scale
information  (the  inter-cluster  relationships),  slow  computation  time  and  inability  to
meaningfully  represent  very large datasets[4].  A  new algorithm,  called  Uniform Manifold
Approximation  and  Projection  (UMAP)  has  been  recently  published  by  McInnes  and
Healy[5]. They claim that compared to t-SNE it preserves as much of the local and more of
the global data structure, with a shorter runtime. Since t-SNE has been extremely prevalent
in the field of cytometry broadly encompassing flow and mass-cytometry as well as single-
cell RNA-sequencing (scRNAseq), we tested these claims on well-characterized single-cell
datasets[6-8]. We confirm that UMAP is an order of magnitude faster than t-SNE. In addition
to this straightforward advantage, we argue that UMAP is not only able to create informative
clusters, but is also able to organize these clusters in a meaningful way. We illustrate these
claims  by  showing  that  UMAP  can  order  clusters  from T  and  NK cells  from 8  human
organs[7] in  a way that  both identifies major cell  lineages but  also a common axis  that
broadly  recapitulates their differentiation stages.  We also show that  UMAP allows for an
easier visualization of multibranched cellular trajectories by using a mass-cytometry[6] and a
scRNAseq[8] datasets both recapitulating hematopoiesis.

Results 
Faster runtime, equivalent local information and superior global structure
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We ran UMAP and t-SNE simultaneously on a dataset covering 39 samples originating from
8 distinct human tissues enriched for T and NK cells, of more than >350,000 events with 42
protein targets[7]. As observed by McInnes and Healy[5], we measured runtimes that were
significantly lower (5 minutes on average for UMAP for 200,000 cells, versus 2 hour and 22
minutes for Barnes-Hut t-SNE) across a large range of dataset sizes (Figure S1). Using
Phenograph[9]  clustering and manual cluster labeling, we classified events into 7 broad cell
populations (Figure S2A). UMAP and t-SNE were both successful at pulling together only
clusters corresponding to similar cell populations with generally very good correspondence
with  Phenograph  clustering  (Figure  1A and Figure  S2B).  However  t-SNE separated cell
populations into distinct clusters more commonly than UMAP, notably splitting CD8 T cells,
gamma-delta  T  cells  and  contaminating  cells  (likely  including  B  cells)  into  two  distinct
clusters each.  Although this highlights that  tSNE might  be more sensitive in segregating
these populations that differ, we were unable to test this quantitatively. We also note that
although these cells were not always segregated into completely distinct clusters by UMAP,
these cell populations remained similarly identifiable in UMAP as compared to tSNE (Figure
S2B). In addition, UMAP appeared more stable than t-SNE, being more consistent across
distinct  replicates and independent  subsampling which should facilitate consistency in its
intepretation (Figure S3).  By color-coding the tissues of  origin  on the UMAP and t-SNE
maps, we observed that t-SNE grouped cell clusters according to their origin more often than
UMAP (Figure 1B and Figure S4). UMAP instead ordered events according to their origin
within each major cluster, roughly from cord-blood and PBMCs, to liver and spleen, and to
tonsils one the one end to skin, gut and lung on the other end. The sample type was not
given as an input of any of these two algorithms. Instead we observed that UMAP was able
to recapitulate the differentiation stage of T cells within each major cluster, as seen by the
expression levels of events for the resident-memory markers CD69 and CD103, the memory
T cell marker CD45RO and naive cells marker CCR7 on the UMAP projection (Figure 1C).
By contrast, while t-SNE identified similar continuums within clusters, they had no apparent
structure along a common axis that made them easily identifiable (Figure 1D).

UMAP better represents the multi-branched trajectory of hematopoietic development
To investigate how UMAP handles continuity of cell phenotypes we applied it alongside t-
SNE  on  the  well-documented  topic  of  bone-marrow  hematopoiesis  using  both  a  mass-
cytometry (>86,000 events, 25 parameters, 24 cell populations annotated by its authors[6])
and a scRNAseq dataset (three sample types, 51,252 cells, 25,912 dimensions[8]). On the
mass-cytometry dataset, UMAP visually revealed 8 major cell clusters (Figure 2A). One was
composed of all B cell subsets (and close to a small cluster of plasma cells) and one of all T
cell  subsets. Four small  homogeneous clusters corresponded to macrophages, NK cells,
eosinophils  and  non-classical  monocytes.  The  last  cluster  contained  11  out  of  the  24
manually-gated populations and appeared most interesting with respect to hematopoiesis.
Indeed, these populations were ordered according to a five-leaf branched structure that was
consistent  with  hematopoietic  differentiation:  hematopoietic  stem cells  (HSC)  overlapped
with multipotent progenitors (MPP). These cells neighbored common lymphoid progenitors
(CLP)  on one  side,  and  common myeloid  progenitors  (CMP)  on  the other.  CMP led to
myeloid-erythroid progenitors (MEP) which led to unlabelled erythrocytes (Figure S5), and to
granulocyte-myeloid progenitors (GMP). GMP then led to classical monocytes that further
led to myeloid dendritic cells on one branch and to cells labeled as intermediate monocytes
on  another  branch.  UMAP  linked  basophils  to  a  population  of
Lin−cKit+Sca1−CD34+FcγRII/III+FcεRIα+ cells,  consistently  with  a  previously-described
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phenotype  for  committed  basophil  progenitors[10].  These  putative  progenitors  appeared
closer to CMP than GMP, a topic that is still intensely debated. Neutrophils were gated-out
from the  dataset  by  its  authors  and  are  thus  absent  from this  representation[6].  t-SNE
identified relatively similar clusters with a few differences (Figure 2B), notably singling out
more clusters than UMAP. CD4+ T cells were separated from other T cell subsets. As noted
by others[11], t-SNE expands low density areas and tends to ignore global relationships.
Thus, while some paths from HSC and MPP to differentiated populations were still apparent
- notably from HSC to monocytes, the overall structure was less clear, as no narrow “neck”
led to larger terminal clusters. t-SNE also separated basophils from their putative precursors
close to CMP and GMP and pDC from CLP. The density of events in the dimensionally-
reduced space also appeared less uniform in t-SNE, with large clusters in the t-SNE space
being less dense than the smaller ones. In contrast, the density of UMAP clusters appeared
more uniform, which could help avoid biases in interpreting phenotypic heterogeneity in large
versus small clusters (Figure S6).
From the scRNAseq dataset we analyzed collectively the transcriptomes of cells isolated
from Bone Marrow (BM), cKit+ BM and Peripheral Blood (PB) to facilitate identifying mature
versus progenitor cell populations (Figure 2C). We first removed low-abundance cell types
such as basophils and  eosinophils, contaminants such as mature erythrocytes as well as
outlier cells originating from unique samples and highly expressing mitochondrial transcripts
(Figure S7). Using published cell signatures specific for mouse BM cell populations[12], we
were able to identify cell clusters that corresponded to MPP, MEP, macrophages, B cells, T
cells and NK cells (Figure 2D). Consistently with the UMAP projection of the mass-cytometry
dataset, MPP were  found in the middle of a larger group of clusters that led to differentiated
cells originating from PB samples (Figure 2C). PB events consisted of distinct clusters of
lymphocytes (T, NK and B cells), macrophages, MEP and neutrophils (Figure 2D). Although
this does not prove that cells lying between MPPs and differentiated cells are committed
progenitors, these results suggest that UMAP could be used as a hypothesis generating tool
to identify putative markers for such cells.  By investigating a small cluster of cells lying in
between MPP and mature B cells in the UMAP projection, we were indeed able to identify
the pre-B cell marker Vpreb3[13]  and to hypothesize that Chchd10 could be another gene
marker  for  pre-B  cells  in  mouse  bone  marrow  (Figure  2E).  These  conclusions  and
hypotheses  would  have  been  more  difficult  to  draw  using  t-SNE   which  blurred  the
relationship of terminal clusters to MPPs (Figure 2D and Figure 2E).

Discussion 
Our analysis and example provided show that UMAP seems to yield representation that are
as meaningful  as t-SNE does,  particularly  in  its  ability  resolve  even subtly  differing  cell
populations.  In  addition,  it  provides  the  useful  and  intuitively  pleasing  feature  that  it
preserves more of the global structure, and notably,  the continuity of the cell  subsets. In
addition to making plots easier to interpret, we highlight that this also improves its utility for
generating hypotheses related to cellular development. On a practical level, UMAP outputs
are faster to compute and more reproducible than those from t-SNE. Altogether, based on its
ease of use, these results and our other experience so far, we anticipate that UMAP will be a
highly valuable tool that can be rapidly adopted by single-cell analysis community.

Methods
Datasets      
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The main characteristics of the datasets we analyzed are presented in Table 1.  For the
Wong et  al.  dataset,  based on live CD45+ cell  events available on FlowRepository (see
table) non-B (CD19-), non-monocyte (CD14-) were selected using FlowJo software. In order
to partially equalize weighting of each human tissue, a maximum of 10,000 events were
randomly sampled from each of the 39 samples prior to analysis. Other datasets were used
as described in the table.    
 

Dataset Identifier Single-cell 
technique

Organism Tissues Samples Single 
cells

Analyzed 
parameters

Wong FlowRepository 
FR-FCM-ZZTM

Mass-
cytometry

Human 8 distinct 
tissues

39 327,457 39

Samusik_01 FlowRepository 
FR-FCM-ZZPH

Mass-
cytometry

Mouse Bone 
marrow

1 86,864 38

Han Figshare 
865e694ad06d5
857db4b

Single-cell 
RNAseq

Mouse Bone 
marrow 
and blood

14 51,252 25,912

Transformations and pre-processing
For  the  bone  marrow  mass-cytometry  data  we  used  an  arcsinh  transformation  with  a
cofactor of 1, and a logicle transform (parameters w=0.25, t=16409, m=4.5, a=0) for the
Wong dataset. For the scRNAseq dataset we transformed count into reads per millions (thus
normalizing the number of counts per cells to 1).

Running UMAP and t-SNE
For  both  mass-cytometry  datasets  we  used  UMAP using  15  nn,  a  min_dist  of  0.2  and
euclidean  distance.  For  the  scRNAseq  dataset  we  computed 100  approximate  principal
components using the  IRLBA R package and used them as an input for both t-SNE and
UMAP. We then ran UMAP using 30 nearest neighbors (nn) and a min_dist of 0.1 and  using
the “correlation” metric. For t-SNE we ran the Barnes-Hut[14]  implementation of the t-SNE
algorithm through its R implementation in the Rtsne package, using default parameters.

Cell annotations
For the Samusik_01 dataset we used cell annotations provided by the authors and available
from the public repository. For the Wong et al. dataset we used Phenograph clustering (with
default parameters k=30) and manually labeled the clusters into broad cell populations. For
then Han et al. dataset we used the AUCell R package[15] , which computes the AUC of
gene sets within each single cell, using gene sets from the Haemopedia[12]  resource to
annotate  cell  lineages.  We  then  manually  thresholded  these  AUC  scores  to  obtain
categorical labels. Cells that were assigned to multiple lineages were set to unlabeled.

Figure legends
Figure 1
UMAP and t-SNE projections of the Wong et al. dataset colored according to A) broad cell
lineages,  B) tissue of  origin,  and for  C)  UMAP and  D) t-SNE,  the expression of  CD69,
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CD103,  CD45RO  and  CCR7.  For  C) and  D),  blue  denotes  minimal  expression,  beige
intermediate and red high expression.

Figure 2
A) UMAP and  B) t-SNE projection  of  the  Samusik_01  dataset.  Events  are  color-coded
according to manual gates provided by the authors of the dataset.  C)  UMAP and t-SNE
projections of the Han dataset, color-coded by tissue of origin or D) by cell populations.  E)
Expression of the V-set pre-B cell surrogate light chain 3 gene (Vpreb3) and Chchd10 genes
on the UMAP and t-SNE projections of the Han dataset. Blue denotes minimal expression,
beige intermediate and red high expression.

Supplementary Figure 1
Runtime of both UMAP (red) and t-SNE (blue) on randomly-selected subsets of the Wong
dataset using various sampling sizes. 3 subsamples were selected for each subset size and
input to both algorithms. Vertical lines represent standard deviations - and are too short to be
visible for most data points. 

Supplementary Figure 2
A) Phenotypic  characterization  of  the  phenograph  clusters.  Each  cluster  medoid  is
represented after column-wise Z-score transformation. B) Identification of each phenograph
cluster of both UMAP (left) and t-SNE. For clarity, only twelve clusters are shown per plot.

Supplementary Figure 3
Datapoints  were colored according to  their  position  on the UMAP (left)  or  t-SNE (right)
projection for the full Wong dataset. Then 3 subsets of various sizes were randomly selected
and input to UMAP and t-SNE. The resulting projections were colored according to the full
dataset projections in order to compare positions across random subsets and replicates.

Supplementary Figure 4
UMAP and  t-SNE projections  of  the  Wong dataset  individually  color-coded  by  tissue  of
origin.

Supplementary Figure 5
Expression of Ter119 (a marker for mature erythrocytes) on the UMAP projection of the
Samusik_01 dataset.

Supplementary Figure 6
Heatmap of the density of a 300x300 square grid of the UMAP or t-SNE projections for the
Samusik_01 dataset. The number of events in each bin is color-coded.

Supplementary Figure 7
Top: UMAP projection of  the full  Han dataset  annotated by AUC scores for  various cell
lineages (red : high score, blue : low score). Bottom: full Han dataset colored by sample
type, Sample ID and pre-filtering status.
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