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Abstract  

 

Mature microRNAs (miRNAs) are non-coding RNA that regulate most human genes through base-

pairing with their targets. Under a condition of transcriptional arrest, cells were manipulated by 

overexpressing miRNAs. We observed global time-dependent changes in mRNA retention which are 

not restricted to the overexpressed miRNA targets. We developed COMICS (Competition of MiRNA 

Interactions in Cell Systems), a stochastic computational iterative framework for identifying general 

principles in miRNA regulation. We show that altering the composition of miRNAs governs cell 

identity. We identified gene sets that exhibit a coordinated behavior with respect to an exhaustive 

overexpression of all miRNAs. Among the stable genes that exhibit high mRNA retention levels, 

many participate in translation and belong to the translation machinery. The stable genes are shared 

among all tested cells, in contrast to the sensitive, low retention genes that are cell-type specific. We 

conclude that the stochastic nature of miRNA action imparts an unexpected robustness to living 

cells. The use of a systematic probabilistic approach exposes design principles of miRNAs regulation 

toward cell states, cell identity, and the translational machinery. 
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Synopsis 

 

This study models the miRNA regulatory network in different cell-lines under a transcriptional arrest 

paradigm. The probabilistic model is implemented using a stochastic computational framework 

called COMICS. The molecular outcome under miRNA regulation scheme is revealed from 

thousands of simulations under exhaustive miRNA manipulations. 

 Transcription arrest emphasizes the impact of miRNA manipulations on gene expression. The 

composition of miRNA, and primarily the most abundant ones dominate mRNA attenuation 

in living cells.  

 Cell identity can be shifted by the cell-specific composition of the miRNAs but not the 

mRNAs. 

 An exceptional immunity of genes vis-a-vis any manipulations of miRNAs is a property of the 

translational machinery. It suggests a common signature with respect to the nature of the 

miRNA binding sites. 

 Changing the parameters of the miRNAs probabilistic model affects the dynamics of gene 

expression but not its steady state or the cell identity.  
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Introduction 

Mature microRNAs (miRNAs) are small, non-coding RNA molecules (∼22 nucleotides) that regulate 

genes through base-pairing with their cognate mRNAs, mostly at the 3′ untranslated region (3’-UTR) 

(Ameres & Zamore, 2013; Moore et al, 2015; Pasquinelli, 2012). In multicellular organisms, 

miRNAs act post-transcriptionally by affecting the destabilization and degradation of mRNAs, as 

well as interfering with the translation machinery (Chekulaeva & Filipowicz, 2009; Eichhorn et al, 

2014; Filipowicz et al, 2008). Transition between cell states are accompanied by alterations in the 

profile of miRNAs (Pelaez & Carthew, 2012). This applies, e.g., to cells that undergo quiescence 

(Cheung et al, 2012), differentiation (Yang et al, 2013), viral infection (Zhang et al, 2012) and cancer 

transformation (Bertoli et al, 2015; Lu et al, 2005).  

In humans there are ~2500 mature miRNAs that are derived from ~1900 genes (Ameres & Zamore, 

2013). The corresponding miRNA post-transcriptional regulatory network can be modeled as an 

edge-weighted bipartite graph with nodes corresponding to ~20,000 coding gene transcripts, and 

~2500 mature miRNAs. Edge weights represent the efficiency of the relevant miRNA-mRNA 

interactions. Studies of the miRNA-mRNA regulatory networks reveal that almost all coding genes 

have multiple putative miRNA binding sites (MBS) at their 3’UTR (Landgraf et al, 2007; Liang et 

al, 2007; Stark et al, 2005), and many miRNAs can possibly target hundreds of transcripts (Balaga et 

al, 2012; Rajewsky, 2006). The abundance of miRNAs in cells is extremely unbalanced, with a few 

highly expressed miRNAs, and hundreds of low abundance (Gaur et al, 2007). This miRNA-mRNA 

“many to many” relation underlies the capacity for noise reduction (Ebert & Sharp, 2012; Herranz & 

Cohen, 2010; Schmiedel et al, 2015) and robustness against environmental fluctuation (Li et al, 

2009).  

Most of our current knowledge on the specificity of miRNA-mRNA regulatory network is based on 

computational prediction tools (Peterson et al, 2014). However, available miRNA-target prediction 

tools suffer from a large number of false positives (Pinzon et al, 2017). In-vitro studies in which gene 

expression is monitored following individual miRNA overexpression or knockdown (Hausser & 

Zavolan, 2014) validated hundreds of miRNA-mRNA pairs. Furthermore, large-scale experimental 
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settings such as PAR-CLIP (Hafner et al, 2010), AGO-CLIP (Wen et al, 2011), IMPACT-seq (Tan et 

al, 2014) and other CLIP-based protocols provide more direct measures for the miRNAs-mRNAs 

interactions in living cells (Li et al, 2014a). The generation of miRNA-mRNA chimeras by CLASH 

(Helwak et al, 2013) has exposed the abundance of non-canonical binding sites and a large number 

of coding-region interactions. Unfortunately, many of the above protocols suffer from low coverage 

and poor consistency (discussed in (Chi et al, 2012)). Hundreds of novel miRNAs (Kozomara & 

Griffiths-Jones, 2013) have led to further expansion in the number of miRNA-targets predicted pairs. 

Current estimates suggest that in reality only ~60% of the human coding genes are regulated by 

miRNAs in a cellular context (Ha & Kim, 2014; Jonas & Izaurralde, 2015). Thus, the potential of 

many predicted miRNA-mRNA pairs to effectively regulate gene expression remains questionable 

(Betel et al, 2010; Helwak et al, 2013; Seok et al, 2016). A picture emerges in which poorly 

expressed miRNAs are not part of the post-translational regulation of gene expression (Hausser & 

Zavolan, 2014).  

The specifics of the miRNA-mRNA regulation in a particular cell type depend on the amounts and 

concentration of miRNAs and their stoichiometry. A key role in this regulatory mechanism is due to 

the availability of AGO protein, the catalytic component of the RNA silencing complex (RISC) 

(Janas et al, 2012; Wen et al, 2011). From the mRNA perspective, the number of molecules, the 

specific expressed variants and the positions of MBS along the relevant transcript (Jens & Rajewsky, 

2015) dictate the potential of miRNA interaction, but not necessarily the potential for successful 

gene expression attenuation (Agarwal et al, 2015). In vivo, the miRNA regulatory network and its 

dynamics is part of larger circuits that include master regulators and transcription factors (Bisognin 

et al, 2012; Friard et al, 2010). The properties of the network call for an unbiased probabilistic model 

to the end of improving predictions (Nam et al, 2005).  

A quantitative view of the miRNAs network in living cells challenges the level of competition, as 

formulated by the ceRNA hypothesis (Denzler et al, 2014; Salmena et al, 2011). Accordingly, an 

overexpression of MBS-rich molecules of RNA may displace miRNAs from their primary authentic 

targets (Denzler et al, 2016; Tay et al, 2014), resulting in an attenuation relief of specific mRNAs. As 

such, the availability of free and occupied MBS (Arvey et al, 2010), concentrations and binding 
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affinities are major determinants in governing the new steady state in a cells. The result of such a 

competition is an interplay between direct and indirect effects on gene expression (Yuan et al, 

2015a). Under this scheme, the functional potency of pairing of miRNAs to their targets is driven by 

the degree of complementarity (Seok et al, 2016). It was furthermore postulated that many weak sites 

contribute to target-site competition without imparting repression (Denzler et al, 2016). The 

dynamics of the miRNA-target regulatory network in view of direct and distal ceRNA regulation had 

been modeled (Nitzan et al, 2014).  

In this paper, we describe a quantitative stochastic model that challenges the cell steady-state in view 

of alteration in miRNAs’ abundance. The model operates at the cellular level and compares the 

overall trend of miRNA regulation in various cell lines. We have tested the validity of an iterative 

cell simulator to correlate with results extracted from experimental data, under the condition of 

transcriptional arrest. Based on a probabilistic exhaustive list of all miRNA-target pairings, we 

configure an iterative stochastic model and test it in view of an exhaustive set of miRNA 

overexpression manipulations. We show that genes that belong to the translational machinery and 

function in the translation process are in general unaffected by overexpression of the majority of 

miRNAs, while a small group of cell-specific gene set is extremely sensitive to the regulation across 

most miRNAs. We systematically analyzed the design principles of the miRNA-mRNA regulation in 

various cell types. We confirm that the stochastic nature of miRNA regulation imparts an unexpected 

robustness of the miRNA regulation in living cells.  

 

Results 

miRNAs stability and decay rate of mRNAs upon transcriptional arrest  

The nature and extent of miRNA regulation in living cells is depicted by the absolute quantities, 

composition and stoichiometry of the main players of the network, i.e., the miRNAs and mRNAs 

(Arvey et al, 2010). The goal of this study is to model the outcome of the miRNA-mRNA network 

under a simplified setting of transcriptional arrest, where synthesis of new transcripts (miRNA and 
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mRNAs) is prevented. To this end, we first tested the relative changes in the quantities of miRNAs 

and mRNAs in HeLa and HEK293 cell-lines in the presence of the transcriptional inhibitor 

Actinomycin D (ActD, Fig 1A). Overall, we mapped 539 and 594 different miRNAs expressed at 

time 0 in HeLa and HEK293 cells, respectively (Fig 1A). In addition, prior to ActD treatment, 

16,236 and 16,463 different expressed mRNAs (not including miRNAs) were mapped from HeLa 

(Dataset EV1) and HEK293 cells (Dataset EV2), respectively.  

We tested the composition of miRNAs and mRNAs along 24 hrs post ActD treatment. The amount 

of miRNAs after 24 hrs from the application of the drug is practically unchanged. High correlations 

between miRNA expression of the untreated (t = 0 hr) and ActD treated for 24 hrs (Fig 1B) are 

evident for HeLa (Spearman rank correlation, r= 0.94) and HEK293 cells (Spearman rank 

correlation, r= 0.97). In contrast to the stability of miRNAs, the number of mRNAs types 

monotonically declines, in accordance with the effect of ActD on the bulk of short lived mRNAs 

(Fig 1A). A maximal variability in the profile of mRNAs is measured between 0 hr and 24 hrs for 

HeLa (Fig 1B, Spearman rank correlation, r= 0.84, top right) and HEK293 cells (Spearman rank 

correlation, r= 0.88, bottom right, right). The correlations of the pairs of all time points for HeLa are 

shown in Appendix Fig S1, and for HEK293 in Appendix Fig S2.  

Fig 1C follows the change in the expression level of individual genes in HeLa cells along 24 hrs 

from ActD treatment. All expressed genes were normalized according to the basal condition (i.e., 

100% expression at 0 hr). The change in the abundance of each mRNA, at each time point was 

quantified relative to the abundance at the starting time point. As >50% of the identified mRNAs are 

expressed at a very low level (Dataset EV1), we only report on the percentage of retention for genes 

that are expressed above a predetermined threshold (total 860 genes, Fig 1C). We illustrate how the 

distribution of the retention level (in %) of these 860 genes vary between two different time points 

(Fig 1D). The calculated average retention rate 8 hrs after ActD treatment is ~83%, and decreases to 

53% after 24 hrs. These results validate that the decay rate for most mRNAs is a gradual process that 

continues for 24 hrs. However, the trend for the attenuation in individual gene is already achieved by 

8 hrs from the initiation of transcription inhibition.  
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>>>Figure 1<<< 

Overexpression of specific miRNAs impacts targets and non-target mRNAs  

Fig 2 shows the results of direct and indirect effects of overexpressing hsa-mir-155 under the setting 

of transcriptional arrest. HeLa cells were transfected with the individual miRNA, and the effect of 

miRNA and mRNA composition was tested 24 hrs after cell exposure to ActD. We quantified the 

effect of hsa-mir-155 by considering its predicted targets. Specifically, for each miRNA, we split the 

list of all expressed genes to targets and non-targets using the high-quality TargetScan 7.1 prediction 

table (Agarwal et al, 2015) (see Materials and Methods).  

Retention rates of all genes relative to their starting point (i.e., overexpressed miRNAs prior to the 

transcriptional arrest) are shown (Fig. 2A). The average decay rates of the direct target genes (Fig 

2A, pink thick line) and non-target genes (Fig 2A, blue thick line) for hsa-mir-155 shows that the 

decay of direct targets is slightly faster compared with the rest of the non-target set (Fig 2A, right 

panels).  

The significance of the differences in the decay rate after 24 hrs of ActD treatment on HeLa cells for 

cells overexpressing hsa-mir-155 indicates faster degradation and an overall lower retention for hsa-

mir-155 targets in transfected vs. naïve cells (Fig 2B, upper panel). The observed shift in the relative 

mean statistics (Fig 2B) of direct targets is below significance (p-value = 0.12). More significant is 

the shift in the higher retention rates for the non-target genes (p-value 0.002, Fig 2B, compare solid 

and dashed line). This implies a certain degree of indirect stabilization of hsa-mir-155 non-target 

genes as a result of overexpression of hsa-mir-155. The same trend in the retention profiles was 

observed by analyzing HeLa cells overexpressing  hsa-mir-124a in HeLa cell (Appendix Fig S3).  

These results argue that under the described experimental settings, indirect effects are anticipated 

presumably due to a competition on MBS and the continuous changes in the stoichiometry of the key 

players which affect the probabilities of miRNA-target interactions.  

>>>Figure 2<<< 

Assessing the probabilistic approach for miRNA - mRNA interactions 
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The experimental results (Figs 1-2) emphasize the need for a systematic analysis of the miRNA-

mRNA interaction network acting under quantitative and stoichiometric constrains in living cells. It 

is evident that even under transcriptional arrest paradigm the high levels of overexpressed miRNA 

do not solely affect their direct target genes.  

Evidently, the molecular interactions of miRNA and mRNA within the cell is a stochastic process. 

The specific composition of miRNA and mRNA in cells, and their binding probabilities dictate the 

effectiveness of attenuation of gene expression. The miRNA-target prediction of TargetScan 

provides a sparse table of miRNA-MBS interactions and reports on 1,183,166 such pairs (see 

Materials and Methods). Each miRNA-MBS interaction is associated with a probabilistic score that 

is a proxy for the level of confidence for that interaction, and can be considered the probability of 

effective binding for any specific pair.  

To further investigate the properties and the design principles of the miRNA-mRNA interaction 

network, we developed an iterative simulator called COMICS (Competition of miRNAs Interactions 

in Cell Systems). Fig 3A illustrates the main flow in a single iterative cycle in COMICS. The 

probabilistic framework relies on a constant update of the cell state which is defined by the amounts 

and composition of miRNAs and mRNA types, and the balance of occupied and free molecules. 

COMICS iterations capture the stochastic process that takes place in living cells that are subjected to 

miRNA regulation.  

Fig 3B is a breakdown of COMICS process according to the fate of the regulated mRNAs. 

Specifically, it shows the sampling process driven by the composition of miRNAs and mRNAs and 

their measured amounts (Fig 3B, pink frames). Recall that the measured expression profiles of 

miRNAs and mRNAs is cell-type specific as evident from the list of mRNAs and miRNA from 

HeLa (Dataset EV1) and HEK293 (Dataset EV2). Each mRNA is characterized by the types and 

positioning of its MBS at the 3’-UTS of the transcript. The interaction prediction table is associated 

with a probability-based scores for any specific pairs of miRNA and MBS in the context of a specific 

mRNA. In each iteration, a miRNA is sampled randomly, according to the cell’s miRNA abundance 

and composition. Next, one of its target genes is chosen randomly according to the measured 
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expressed mRNAs distribution. In the following randomized step, the chosen miRNA and its target 

may possibly bind according to the reported probability. Following an actual binding event, the 

distribution of the miRNAs and the mRNAs are updated accordingly (Figs 3A-3B). The status of the 

mRNA following a successful pairing is changed (i.e., marked as prone to degradation). The new 

status of mRNA as ‘occupied’ does not prevent it from engaging in additional subsequent miRNA 

binding. For MBS that are in close proximity to each other, a minimal spacing is required, otherwise, 

the interaction will be prevented. The occupied mRNA is marked for degradation with some delay 

that mimics the likely instance of a cooperative binding on a target by multiple miRNAs prior to its 

degradation. Based on the validated stability of miRNAs (Fig 1B), once the occupied mRNA is 

removed, all miRNAs that were bound to it are relieved and return to the free miRNA pool. As a 

result, the stoichiometry of miRNA to mRNA is gradually changing with an increase in the apparent 

ratio of miRNAs to free mRNAs in the cell. 

Fig 3C shows the result of COMICS following one million iterations on HeLa cells. Note that 

following 1M iterations, the average retention of mRNAs is 43.5%, similar to the decay rate 

observed in living cells (Figs 1-2). Fig 3C shows the decay rate of 755 genes (with expression 

threshold (>0.02%). The output of the mRNAs along the 1M iteration run is reported in Dataset EV3.  

We challenged the validity of COMICS to capture the pattern of mRNA downregulation upon 

transcriptional arrest using the results from living cells. We applied two complementary tests: (i) 

Detecting a correlation between genes that were unoccupied by miRNAs (i.e., all genes that remain 

available following 24 hrs of ActD treatment, Fig 3D). (ii) Scoring the correspondence of genes that 

were occupied along the COMICS iterative run (100k iterations, Fig 3E) and their correspondence 

with published results from CLASH performed on HEK293 (Helwak et al, 2013). For the first test, 

we compare the COMICS performance with the experimental results considering a large set of genes 

that display high level of retention (>85%). This high retention set includes 122 genes in HeLa and 

158 genes in HEK293, respectively. We found that overall, the corresponding score (Jaccard score) 

is higher for HEK293 cells (Fig 3D). However, the statistical significance is maximal for 100k 

iteration in the case of HeLa cells (hypergeometric p-value of 0.00064) with high significance for 

matching results from COMICS simulator and the experimental results (Fig 3D).  
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Using the cell state data for HEK293 along the simulation process (up to 100k iterations), the overlap 

with the results presented by CLASH (Helwak et al, 2013) is highly significant. We compared all the 

pairs that were identified in CLASH experiment (Helwak et al, 2013) and expressed above a pre-

determined threshold in HEK293. The analysis on HEK293 indicates that as the number of the 

iterations increases, the overlap of the validated set of pairs increases, and remain highly significant 

throughout the process (Fig 3E, hypergeometric p-value 0.0014). Most importantly, the 

correspondence of the results of COMICS to the pairing observed by the CLASH methodology, is 

strongly dependent of the use of TargetScan miRNA-MBS probabilistic interaction table. Applying 

two randomization modes (see Materials and Methods and Appendix Text EV1) for the miRNA-

MBS interaction table, has led to a drop in the correspondence of the simulator and CLASH reported 

results (Fig 3E).  

We further tested COMICS for mimicking the competition of miRNAs and the trend of mRNAs 

regulation in living cells. This was performed by testing the sensitivity and the robustness of the 

simulation results with respect to changes in a broad range of parameters (Appendix Text EV1). 

Importantly, changing the binding probabilities from the TargetScan interaction table (see Materials 

and Methods) by two randomization procedures has drastically reduced the correlations at the end of 

the simulation run. For details see Appendix Text EV1. Additionally, extensive changes in the sets of 

the operational parameters used by COMICS were tested. Overall, the output of the different 

simulation runs was consistent and implies the robustness of the system to a wide range of 

parameters (see Appendix Text EV1). 

To account for the variation in the result due to the stochastic nature of the samplings (Fig 3B) along 

the simulation, we repeated 3 simulation runs. We show that without changing any of the parameters, 

the final retentions of the genes after 100k iterations in each simulation run are highly correlated 

(Pearson correlations 0.86-0.88, Appendix Fig. S4).  

>>>Figure 3<<< 

 

Alteration in miRNA profiles but not the mRNAs determines cell identity  
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The gene expression profiles for miRNAs and mRNAs of the 3 tested cell-lines are quite different 

(Fig. 4A and Dataset EV5). HeLa, HEK293 and MCF-7 cells are representatives for fibroblasts, cells 

from kidney and breast origin, respectively. We compared the dominant miRNA profiles as 

processed by COMICS for these cell-types (Fig 4A). The difference in evident in comparing the 

fraction and composition of the miRNAs that occupy 90% of the total amounts of miRNA in each 

cell (i.e. 45k out of 50k molecules of miRNA per cell). The unified set for all three cell line miRNAs 

is shown (total 28 miRNAs). Differences among cells is evident from the presence or absence of 

specific miRNAs (hsa-let-7, hsa-mir-16, Fig 4A). More significant is the large deviation in 

expression of miRNAs in a specific cell (e.g., hsa-mir-21), and the fraction that is occupied by a 

small set of dominating miRNAs.  

To further test the impact of the unique miRNA profile for the cell identity, we applied COMICS but 

activated the simulation process using input extracted from the miRNA profile of one cell type and 

tested it in the context of mRNA composition of the other cell. We repeated such artificial settings 

for all 9 combinations (of which 6 are artificial) as shown in Fig 4B. In all the settings, the outcome 

of the retention profile fully resembles the profile of the cell providing the miRNA profile. For 

example, by including in COMICS input the data of miRNA profile from HeLa (according to 

Dataset EV5), the correlation of the retention profile in the end of the simulation run is in the range 

of 0.9 for input of the mRNA of any of the other cell types. On the other hand, the input of miRNA 

of MCF-7 or HEK293 using the authentic mRNA profile resulted is a Pearson correlation r= 0.53 

and r=0.46, respectively. A similar trend is observed for the HEK293 that shows a high correlation of 

r=0.93 and r=0.9 when applied on the background of mRNA from HeLa or MCF-7, respectively (Fig 

4B).  

>>>Figure 4<<< 

Simulating miRNA overexpression by COMICS reveals stabilization of non-target genes  

The COMICS system was used to simulate exhaustive overexpression experiments while testing 

explicitly the effect of miRNA-mRNA probabilities on the mRNA decay. We activated COMICS by 

manipulating the abundance of hsa-mir-155 from the naive cell state (x1, no overexpression) to 
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another 7 levels for hsa-mir-155 amounts (x0.5, x3, x9, x18, x90, x300 and x1000). The addition of 

miRNA molecules is considered in a probabilistic framework. Thus, in practical terms, 

overexpression of a single specific miRNA changes the distribution of all other expressed miRNAs 

(Fig 5A). The probability of miRNA and target to engage in a successful interaction is dependent on 

the interaction strength converted to the miRNA-MBS scoring (Fig 3B). The scheme in Fig 5A 

shows that at an overexpressed factor x300 for hsa-mir-155, almost 20% of all miRNAs are occupied 

by this miRNA and it reaches almost 50% at the extreme overexpression level (x1000). It is 

important to note that the calculated fraction of miRNAs in the cell following overexpression is an 

immediate reflection of its original abundance in the naïve cell. These amounts are characteristic for 

the different cell types.  

Fig 5B shows the gradual change in the retention of each gene (above a predetermined threshold) 

along 100k iterations of COMICS simulation process. Each panel shows the results of the simulation 

that starts from the abundance of hsa-mir-155 in the naïve cell (control). Fig 5B show the gradual 

alteration in the dynamic of the gene retention following the increase in different overexpression 

levels (determined by the multiplication factor).  

We found that the final retention level is sensitive to the overexpression factor (Fig 5C). In the case 

of hsa-mir-155 in HeLa cells, elevating the miRNA from x18 to x90 caused a drop in the average 

retention of its targets followed by a steep drop in retentions at overexpressing factor of x1000. A 

minor but consistent increase in the retention of non-target genes is observed along the elevation in 

the overexpression level for of hsa-mir-155.  

>>>Figure 5<<< 

A unified pattern of mRNA retention is associated with overexpression of miRNAs  

To determine whether the composition and stoichiometry of miRNAs and mRNA are dominant 

features in determining the design principles of many cell states, we performed an exhaustive and 

systematic manipulations of cellular miRNAs. We applied COMICS simulations on overexpression 

experiments for miRNA families. For HeLa cells, 248 miRNAs were compiled and match their 

representation in the miRNA-MBS TargetScan prediction table (some miRNA are identified as 
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miRNA family). We multiply the basal abundance (x1) of each of these miRNA families by several 

factors: x3, x9, x18, x90, x300 and x1000. For each such factor (f), a final retention table was 

computed. The result for HeLa cells is a table with 773 genes (rows) whose initial expression level 

exceeds a pre-determined threshold, and 248 miRNA (columns). Each of these miRNA was 

overexpressed by the tested factor. Therefore, each cell in the matrix Mfij is the final retention of 

gene i after 100k iterations of COMICS for the overexpressed experiment of miRNA j (Fig 6A, 

Dataset EV6). For unexpressed miRNA, a standard minimal level of expression is defined as x1 level 

(see Materials and Methods). 

Inspecting Mfij for each overexpression condition reveals the presence of a substantial set of genes 

that are characterized by final retention above 85% for 90% of the tested miRNAs in the 

overexpression experiments (i.e., high retention criterion satisfied by at least 225 or 248 tested 

miRNAs). We refer to them as cross-miRNAs stable genes. We found such stable genes for Hela 

(185 genes), HEK293 (176 genes) and MCF-7 (124 genes). For a full detailed analysis of cross-

miRNAs stable genes see Dataset EV7. These results imply that a set of genes in each cell type are 

resistant to gene expression attenuation regardless of which miRNA is overexpressed.  

The matrix Mf also reveals a small defined gene set that is globally sensitive to miRNA regulation. 

Specifically, these are genes with retention rate below 50% for 90% of the tested miRNAs among 

all overexpression experiments. These genes are referred to as cross-miRNAs sensitive genes. We 

report on these sensitive genes for Hela (23 genes), HEK293 (34 genes) and MCF-7 (22 genes). For 

a full detailed analysis of cross-miRNAs sensitive genes see Dataset EV8. These results imply that a 

set of genes in each cell type are sensitive to gene expression attenuation regardless of which 

miRNA is overexpressed.  

The retention matrices [Mfij (x300)] for HeLa (Fig 6B) and HEK293 (Fig 6C) are colored by high 

retention (red) and low retention (blue) levels. The matrices represent clustering by genes and 

miRNAs. Analyzing the matrices by the clustering dendrogram shows that the set of sensitive genes 

(cluster of blue rows) in both cell types is distinguished from all other genes. However, the richness 

of the retention pattern is demonstrated by zooming at any section of the Mfij (x300). It is also 
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evident that some miRNAs are naturally clustered by a similarly profile of their columns. We tested 

whether the type of the cell dictates the characteristic of the retention profiles, and whether cells that 

were manipulated by overexpressing miRNAs established a new cell states that are different from 

their naïve states. Fig 6D and 6E compare the average retention observed for each of the shared 

genes in the HeLa and HEK293. Large difference is observed in the distribution of genes for HeLa 

and HEK29 when the profile in Mfij (x1) and Mfij (x300) are compared. This global view suggests 

that each manipulated cell converges to it unique cell state and potentially reflects the different 

sensitivity of the analyzed genes to the unique cell specific miRNA composition.  

We analyzed the specificity of the unified pattern for Mfij that was found for HeLa, HEK-293 and 

MCF-7. We tested the overlap in the resulting sets of cross-miRNAs stable genes and cross-miRNAs 

sensitive genes from these cells (Fig. 7A). In the present analysis we consider only genes that are 

common to all three cell types and are expressed at >0.04%. Of those, the numbers of cross-miRNAs 

stable genes that appear in all three cells are 78 (MCF-7), 102 (HeLa) and 110 genes (HEK-293). Of 

these, 48 genes are common to all three types. The overlap of this number of genes is statistically 

very significant (chi-square test p-value 1.35e-08, Fig 7A). It argues that these stable genes are 

designed to resist miRNA regulation under a wide range of overexpression settings and across cell 

types. The list of these 48 genes that are shared by all three cell lines is shown in Dataset EV9.  

Cross-miRNAs sensitive genes are cell specific  

We next carry out a similar analysis for cross-miRNAs sensitive (Dataset EV8). These sets are much 

smaller with 6 (MCF-7), 12 (HeLa) and 17 genes (HEK293) and no sensitive genes are common to 

all three cell types (Fig 7B). We conclude that these cell-specific sensitive genes are exhibit an 

exceptional sensitivity to miRNA regulation.  

We analyzed the cross-miRNA sensitive lists from the different cell lines using annotation statistics 

tools (see Materials and Methods). This analysis shows only a moderate enrichment for terms 

associated with mRNA regulation and processing. For example, among the 23 sensitive genes from 

HeLa (Fig. 7B) numerous genes are related to transcription processing and modifications, other 

annotations are for RNA poly-adenylation, and RNA-related metabolic processes (Dataset EV10). 
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Among the sensitive genes are PCBP1 and PCBP2, single-stranded nucleic acid binding proteins that 

were identified in an mRNP complex, and play a role in viral internal ribosome entry site (IRES). 

Another small set of proteins include major pre-mRNA-binding proteins from the heterogeneous 

nuclear ribonucleoproteins family (HNRNPK and HNRNPA1). HNRNPA1, involved in the 

packaging and transport of poly(A) mRNA from the nucleus to the cytoplasm. It was recently 

proposed that HNRNPA1 binds specific miRNA hairpins and acts in miRNA biogenesis (Treiber et 

al, 2017). Inspection of the sensitive gene set from MCF-7 (22 genes) shows borderline statistical 

significance for regulation of transcription from RNA polymerase II promoter. HEK293 (34 genes) 

resulted in enrichment for translational processes (including mitochondria and viral translation). We 

conclude that in each cell type a small set (22-34 genes) that is extremely sensitive, but there is no 

unified functional coherence among these cell specific sets.  

Cross-miRNAs stable genes are enriched in the translation machinery  

We applied annotation enrichment tools (see Materials and Methods) to the set of cross-miRNA 

stable genes from HeLa cells (185 stable genes, Dataset EV7). This analysis reveals that they are 

extremely enriched by terms associated with many aspects of translation, including translational 

elongation (GO:0006414), mitochondrial translation (GO:0032543), SRP-dependent cotranslational 

protein targeting to membrane, translational termination (GO:0006415) and more. These annotations 

are associated with highly significant statistics (corrected FDR p-value = ~1*e-77). Clusters of 

enriched annotations were compiled using the DAVID gene expression tool. The score of the top 

clusters is 53, depicting e-53 as the average enrichment for all annotations in that cluster. The top 

clusters are scored by tens of coherent annotations, all related to the structure of the ribosome, 

elongation machinery and fidelity of translation. For example, the annotation of translational 

elongation (GO:0006414) shows an enrichment of 43.5 with FDR p-value of 5.53e-87. The results of 

the most significant annotation clusters are shown in Dataset EV10. A similar significant enrichment 

remains as we apply the statistical tests using more specific background lists (e.g., the set of HeLa 

expressing genes from Dataset EV1 and the set of genes that appears in the analyzed Mfij (Dataset 

EV6). Significant enrichment for clusters of annotation for protein translation and the translation 

machinery was duplicated for any of the cross-miRNA stable gene lists derived from HEK293 (176 
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genes) and MCF-7 (123 genes), Dataset EV8), with a DAVID clustering annotation scores of the top 

cluster of 56.5 and 39.9, respectively. The strongest enrichment of the annotations terms for tested 

cell-types, extends to genes participating in translation initiation, elongation and co-translation to the 

ER membranes. 

>>>>Figure 6<<<< 

Fig 7C shows the partition of 48 shared genes that are common to all three cell lines (Dataset EV9) 

by their protein function. The dominant role of translational machinery (DAVID clustering 

enrichment score 49.4) is shown by the enrichment corrected score for translation elongation and 

cytosolic ribosome (FDR p-value of 1.18e-67 and 9.36e-60, respectively, Dataset EV9). 

Translational machinery component with small and large subunits (35 genes), elongation factors 

(EIF4A1, EEF1D and EEF1B2) and nucleolin (NCL) account for 79% of this list and are key factors 

in ribosomal production and its function. The list includes also actin, myosin and tubulin (total 4 

genes) that are major cytoskeletal components essential to cell shape and physiology.  

We conclude that the cross-miRNA stable gene set signify the translational machinery. Thus, the 

translational machinery highlights a functional gene set that are immune to the regulatory layer of 

miRNAs. This observation applies to all tested cells. 

Finally, we tested the properties that characterize genes associated with the cross-miRNA stable and 

sensitive genes in view of all genes that participate in the simulation process (Dataset EV7 and 

Dataset EV8). Four properties were tested: (i) the number of targeting miRNAs (Fig 7D), (ii) the 

number of MBS (Fig 7E). The other two features are: (iii) the initial expression level (Fig 7F) and 

(iv) the binding potential according to the expression of the most dominant miRNAs (Fig 7G). 

Features (iii-iv) are cell-type specific. The detailed t-test statistics of the results for all three cells are 

provided in Table EV1. The genes in the stable set are characterized by having fewer MBS and 

fewer targeting miRNA relative to the other (i.e., not stable and not sensitive) genes (t-test 6.48E-21 

and 5.64E-15, respectively). The significance of the statistics for the initial expression of these gene 

is marginal in all cell types. However, the most significant feature that differentiate the stable from 

the sensitive set (t-test 2.52E-22, Fig. 7G) is associated with the immunity of the stable set to be 
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targeted by the most abundant miRNA (based on the miRNA list in Fig 4A). Therefore, the stable 

genes are unlikely to be effectively regulated by any of the most abundant miRNAs. This trend is 

evident from the statistics for the three analyzed cell lines (Table EV1).  

>>>>Figure 7<<<< 

The analysis for the 4 quantitative features was replicated using the sensitive and stable dataset from 

HEK293 and MCF-7 (Appendix Fig. S6). For example, the average number of MBS for a stable 

gene is 24.2 (vs. 62.5 for the sensitive gene set) in HEK293 cells. The most abundant miRNA 

expressed in HEK293 is hsa-mir-7 (25% of all miRNAs) targets only 3.5% of the stable genes but 

94% of the genes among the cross-miRNA sensitive gene set have a MBS.  

We conclude that a comparison between the stable and sensitive genes reveals a signal for MBS 

evolution. Despite the great difference in overall miRNA composition of cell lines (Fig 4A), several 

of the miRNAs are shared across many cell-types (e.g., hsa-mir-21, hsa-let-7 and hsa-mir-92). The 

stable genes are critical gene of the translational machinery, are mostly excluded from having MBS 

that could engage in binding of a dominant miRNA players in multiple cells. 

Discussion  

miRNAs stability as a major determinant in cell regulation  

Cells’ behavior cannot be trivially predicted from direct measurement of their composition of 

miRNAs and mRNAs (Arvey et al, 2010; Landgraf et al, 2007). Most insights on the regulation of 

gene expression by miRNAs are based on global observations (e.g., CLIP and CLASH (Li et al, 

2013)), or knockdown or overexpression of a specific miRNA, in a specific cell type or tissue 

(Thomas et al, 2010). Based on many such studies, it was concluded that detailed quantitative 

considerations of miRNA and mRNA govern the dynamics and the steady state of gene expressed 

(Bosson et al, 2014; Hausser & Zavolan, 2014). Nevertheless, the underlying rules for post-

transcriptional regulation by miRNAs are still missing (Erhard et al, 2014).  

We studied cellular outcome following miRNA regulation under a simplified condition of 

transcriptional arrest, using ActD and focusing on mRNA retention profiles. The post-translation 
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regulation of miRNAs is not limited to mRNA attenuation. However, it was shown that under such 

condition of transcriptional arrest the dominant effect of miRNAs is via their influence on mRNA 

stability and not on translation repression (Bethune et al, 2012). As most miRNAs are transcribed by 

RNA Polymerase II, it was essential to assess the effect of transcription arrest on the abundance of 

miRNAs. The results shown in Fig 1B substantiate the notion of an extreme stability of miRNAs at 

least during 24 hrs from cells’ exposure to the drug. In the time frame of our experiments, AGO-2 is 

insensitive to transcriptional or translational arrest (Olejniczak et al, 2013).  

It is expected that miRNA stability is mostly attributed to AGO-2 that stabilizes the leading strand in 

the cytoplasm (Winter & Diederichs, 2011). The number of miRNA (and AGO proteins) relative to 

the number of MBS had been estimated from experimental data (Bosson et al, 2014; Janas et al, 

2012). These estimates suggest that the number of AGOs proteins limit the pool of RISC loaded 

miRNAs which plays a role in gene expression attenuation. AGO-2 is estimated to account for 60% 

of the AGOs in cells. While the number of AGO-2 molecules is unknown, it was estimated at around 

~15k in HeLa cells (Janas et al, 2012) and ~100k in skin tissue (Wang et al, 2012). We consider the 

miRNA pool that is constrained by the amount of AGOs to be at the order of 50k molecules in a cell. 

COMICS simulations are started with a molecular ratio of 2:1 ratio between miRNA to mRNA, 

accounting for the AGO-bound active miRNAs. For the probabilistic formulation of cells under 

varying levels of miRNA overexpression, the sampling is governed by the recalculated composition 

of miRNAs, assuming that loading of the leading strand of miRNA on AGO proteins is driven by 

such distribution of that miRNAs (Fig 5A).  

miRNA composition is a major determinant in establishing cell identity 

We developed the COMICS platform to handle cells that undergo a wide range of miRNA 

manipulations, and to monitor mRNA retention profiles at the simulation’s endpoint (100k iterations, 

Fig 2B, Fig 3A). Altogether, thousands of simulation processes were completed to test the impact of 

altering the expression of hundreds of miRNA families. For example, in HeLa cells, 250 miRNAs 

(Fig 5) were considered, with each miRNA being altered by increasing factors of overexpression, 

from the base default level (x1) to x1000 (Fig 5, 8 factors). The same protocol was applied to test 
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miRNA regulation in the other cell types (HEK293 and MCF-7). General trends could be drawn 

from the results of thousands of COMICS simulations. The main observations hold across most 

(>90%) of the expressed miRNAs. Specifically, we show that there is a relatively larger set (about 

20% of the reported genes) that are exceptionally stable (Fig 7, Dataset EV7). The overlap of these 

sets of genes in the three cell types is statistically very significant, thus suggesting that the identity of 

these genes reflects a strong evolutionary signal of stability in the face of extreme increase in almost 

all miRNAs.  

The other phenomenon that COMICS revealed is the presence of a small set of genes (about 3% of 

the reported genes) that are extreme sensitivity to down-regulation by almost every miRNA. 

However, the identity of these genes is cell-type specific. Fig 7A shows the minimal overlap that is 

found between any pair of cells for the sensitive genes. The strong signal of cross-miRNA behavior 

suggests that it is the miRNA composition of each cell that dominates the identity of the most 

sensitive genes, many of which participate in transcription regulation. To further test the impact of 

the actual miRNA profile on cell identity using COMICS, we ran the simulation on artificial 

combinations of miRNA and mRNA profiles that come from different cell types. In all these 

artificial settings, the outcome of the retention profile was more similar to the cell providing the 

miRNA profile (Fig 4B) and not dictated by the mRNA composition. Our results are in accord with 

the notion of miRNA profiles as a major determinant for cell identity (He et al, 2012). Indeed, 

specific profiles of miRNAs are associated with varying malignancy states (Bockmeyer et al, 2011; 

Volinia et al, 2006). A transition among cell types is attributed to the expression of a specific 

miRNAs (e.g. miR-34a (Bu et al, 2013)). It was shown that miRNA profile is carefully regulated to 

promote and stabilize cell fate choices (Shenoy & Blelloch, 2014). In this study we discuss genes 

that belong to cross-miRNA stable or sensitive sets, however the retention profiles for most genes 

and along the different overexpression levels provides a rich picture and is far more complex as 

illustrated (Figs 6A, 6B zoom-in panels). 

COMICS accounts for the effect of the most abundant miRNA  
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The stable and sensitive gene sets differ in a statistically significant manner in almost every relevant 

quantitative feature (Fig 7). As shown for HeLa cells (Figs 6D-6G), the numbers of MBS at the 3’-

UTR and the number of different targeting miRNAs are much higher in the sensitive set compared 

with stable genes. However, the most significant difference between the sensitive and stable sets (p-

value = 1.57E-23) concerns the sensitivity to miRNA expression level (Fig. 6F). As shown in Fig. 

4A, a small number of miRNAs together comprises 90% of all miRNA molecules in any cell-type. 

Based on the mass conservation principle, we can expect that highly expressed miRNAs would play 

a key role in miRNA-mRNA interactions. This principle is indeed implemented in COMICS 

sampling protocol, and dominant miRNAs are sampled more frequently to interact with their 

possible targets. Evidently, the probability of a successful interaction for mRNA molecule grows the 

more MBS that it carries to which some highly abundant miRNAs can bind. Remarkably, and 

perhaps counterintuitively, it is the stable set has higher initial counts (Fig 6E). This provides 

additional support to the claim that miRNAs dominate the system, whereas the initial abundance of 

mRNAs plays only a minor role. The statistical observations regarding the dominant role of the 

highly expressed miRNAs shown in Fig 7G apply to the other tested cell types. For example, 

targeting by hsa-mir-21 is prevalent among the cross-miRNA sensitive genes. The hsa-mir-21 

occupies 27% and 32% of total miRNAs in the naïve MCF-7 and HeLa cells, respectively (Dataset 

EV5). The hsa-mir-21 occupies 58 and 73 MBS among the 22 and 34 sensitive genes identified in 

MCF-7 and HEK293, respectively (Dataset EV8). 

Even in settings with high levels of overexpression, the impact of miRNAs which are highly 

expressed in the naïve cells, prior to the overexpression manipulation (Fig 4A) remains substantial. 

Such miRNAs would still constitute a significant fraction of the miRNA cellular pool and are 

therefore likely to be selected by the probabilistic sampling protocol (see Fig 3A).  

Fig 7 offers insights on the properties of the stable genes in the various cell lines (Appendix Fig. S6). 

Combining the statistical observations (Fig 7D-6G, Table EV1) with the functional annotation of the 

cross-miRNA stable genes suggests an evolutionary signature for these genes. This evolutionary 

signal could be detected thanks to the unbiased approach taken by COMICS and the exhaustive 

testing of different cells under many perturbations by all conserved miRNAs. In all the tested cells, a 
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strong enrichment in translation annotations was shown (including elongation, rRNA metabolic 

process co-translation to the ER and related functions, Datasets EV9 and EV10). We propose that an 

evolutionary signal unifies many of the ribosomal proteins and the observed components of the 

translation machinery. The driving force of evolution acting on targets and their MBS underlying the 

structure of miRNA network in many organisms (Berezikov, 2011). This evolution signal combines 

high expression with low density of MBS at the 3’-UTR (Fig. 7E). Even more critically, it relies on 

the low sensitivity of these mRNAs to the effect of highly abundant miRNAs (Fig. 7G). In cancer 

cells, the most abundant miRNA genes (e.g., hsa-mir-21, hsa-mir-30, hsa-mir-15/16) are involved in 

cancer development and even minor changes in their expression govern transition in cell states 

(Volinia et al, 2010). 

We propose that the translation machinery has evolved to maximal robustness vis-a-vis miRNA 

regulation. The stable genes, enriched with the translation components, are resistant to changes in the 

presence of abundant miRNAs. The immunity of the translation system to miRNA regulation 

suggests that it may be part of a global cell strategy (Lopez-Maury et al, 2008). Accordingly, there is 

a fundamental difference between transcription and translation processes. While transcription system 

can quickly respond to the needs dictated by changes in the environment (e.g., post-transcription 

regulation of the sensitive set), the translational machinery is stable and much less prone to 

variations. The immunity from miRNA regulations of the translational machinery is achieved by the 

relatively high expression levels (Fig 7F), but most significantly the insensitivity to most abundant 

miRNA in the cell.  

Alteration in COMICS simulation parameters only slightly change cells’ steady state  

We tested the reliability of the picture provided by COMICS of the miRNA-mRNA competition in 

living cells. This testing was done by rigorously varying the simulator’s operational parameters and 

checking the sensitivity and robustness of the results (Appendix Text EV1).  

Our simulations operate with a total of 50k miRNAs and 25k mRNAs. These numbers are at the 

lower range of the amounts estimated in most living cells. We showed that changing the number of 

molecules, while keeping the stoichiometry only slows the dynamics, with a minimal impact on the 
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endpoint (Appendix Fig S5). 

Sampling of miRNAs and mRNA and assessing their pairing is done according to a table of 

probability scores that represents a rich computational-experimental body of knowledge (Agarwal et 

al, 2015). Once two molecules are successfully paired, our tables of probabilities get appropriately 

updated (Fig 3A). We show that the mRNA retention statistics at the endpoint of the simulation runs 

of COMICS is surprisingly robust under a wide range of parameters (Appendix Fig S4 and Fig 5). 

From computational considerations and based on numerous empiric observations, each pair of 

miRNA-target is assigned a score that reflects the calculated degree of downregulation (e.g., (Betel 

et al, 2010). Correlating the profile of overexpressed miRNAs from in-vitro experiments with the 

outcome of downregulated genes allows a refinement of the miRNA-target prediction scores (Bloom 

et al, 2014; Li et al, 2014b), and inferring a probabilistic measure for the effectiveness for each 

prediction. Along this line, TargetScan prediction tool reports on the probability of a given MBS and 

its combination to effectively interact with the miRNA at hand (Agarwal et al, 2015). The underlying 

scoring method takes into account 14 sequence features and integrates them into a probabilistic 

framework of repression effectiveness. We show that the values calculated in the TargetScan 

interaction table ((Agarwal et al, 2015)) are the most sensitive parameters for the implementation of 

COMICS (Appendix Fig S4). If we run the simulation after the MBS interaction values undergo a 

constrained randomization modification, then our self-correlations drop drastically (Fig 3E, 

Appendix Text EV1). In all our simulations we use the same TargetScan probabilities table. The 

approach offered by COMICS allows us to develop more refined models for different cell types. 

A dynamic view of miRNA regulation  

The dynamics of AGO-miRNA search complex is driven by the need to accelerate the search, while 

maintaining high specificity (Jo et al, 2015; Klein et al, 2017). Under the described protocol, we 

consider AGO-miRNA to be sampled according to its relative abundance, followed by a second 

random sampling, for any of the mRNA potential candidates (based on their probability). According 

to the sparse interaction affinity matrix from TargetScan (see Methods), most sampling interaction 

are futile, and on average only 3% of iterations end in a successful binding. This model mimics the 
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search process of miRNAs is living cells as studied by single molecule microscopy analyses 

(Chandradoss et al, 2015).  

Another aspect of the miRNA-mRNA dynamics concerns the ceRNA paradigm (Denzler et al, 

2016). Activation of ceRNA in cells is strongly dependent on an induction of specific transcripts 

(e.g. circular RNA, pseudogene (Thomson & Dinger, 2016)) that may alter the availability and 

composition of MBS (Tay et al, 2014). Accordingly, the MBS accessibility may result in 

redistribution of already occupied MBS by competition. In practice, the extent of de-repression due 

to MBS shuffling is limited (Bosson et al, 2014). A quantitative test on the direct and indirect effects 

of manipulating miR-122 in liver cells (Denzler et al, 2014) shows that the abundance of miRNAs 

and their binding sites precludes the proposed ceRNA effects under all physiological contexts 

(Broderick & Zamore, 2014). The situation in which miRNAs are competing by reshuffling their 

binding is supported in living cells only in extreme cases and under artificial extreme parameters. 

Based on this careful quantitation, it was proposed that low-abundance miRNAs, even with targets of 

highest-affinity sites are unlikely to experience any meaningful repression (Denzler et al, 2014). 

Indeed, the simulator explicitly guarantees that low-abundance miRNAs are sampled with low 

probability, and are thus unlikely to dictate the repression and the outcome of the mRNA retention 

level. The probabilistic nature of COMICS simulation makes it an ideal tool for testing this 

paradigm.  

There are several improvements and extensions to COMICS that we intend to explore in the future. 

This includes a synergistic cooperativity of miRNA binding at different non-overlapping MBS 

(Balaga et al, 2012; Friedman et al, 2014), and the possible induction of preselected mRNA, for 

assessing the quantitative parameters associated with the ceRNA paradigm. An exhaustive 

application of the COMICS framework can be used for testing unresolved questions and emerging 

principles of miRNA regulation in vivo (Denzler et al, 2014; Hausser & Zavolan, 2014; Yuan et al, 

2015b).  

Materials and Methods 

Cell culture  
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Human cell line of HeLa (cervix epithelial, # CCL-2) and HEK-293 (embryonic kidney, # CRL-

1573) were purchased from the cell-line collection of ATCC. Cells were cultured at 370C, 5% CO2 in 

Dulbecco's Modified Eagle Media (DMEM, Sigma), supplemented with 10% FBS (Life 

Technologies), and 1% antibiotics mixture (Sigma‐Aldrich, Cat # P4333). Cells were maintained for 

2 weeks and passing and splitting cells was carried out at 70-80% confluence.  

 

Transcription arrest and miRNA overexpression 

Overexpression of miRNAs was performed by transfected HeLa cells and HEK-293 with miRNA 

expression vectors that are based on the miR-Vec system, under the control of CMV promotor 

(Origene). Cell transfection was done using Lipofectamine 3000 (Invitrogen) as described by the 

manufacturer. Cells at 70% to 80% confluency were transfected with 1.5g purified plasmid DNA 

containing hsa-mir-155 and hsa-mir-124a (kindly contributed by Noam Shomron, Tel Aviv 

University). Medium was changed 6 hrs post-transfection and fresh media was added 24 hrs post-

transfection. Control empty vector expressing GFP (0.15g) was mixed with the CMV-miR 

expressing vectors. Cells were monitored by fluorescent microscopy in a parallel culture at 36 and 48 

hrs post transfection. The efficiency of cell transfection was >75% of the HeLa cells and ~100% of 

the HEK293 according to the GFP expression at 48 hrs post transfection. Transcription inhibition 

was achieved by adding to cultured HeLa and HEK293 cells media containing Actinomycin D 

(ActD, 10 μg/ml in DMSO), or the appropriate control (i.e. DMSO). Cells were treated with ActD 

(10 μg/mL, Sigma) 24 hrs post-transfection. Cells were cultured in 6-well plates and following 

treatment were lysed in 1 ml TRIzol (Invitrogen) at the indicated time points (0 hrs, 2 hrs, 8 hrs, 24 

hrs).  

 

RNA library preparations  

At the indicated time points, HeLa cells and HEK293 cells were harvested using a cell-scraper. 

Purification of total RNA containing miRNA extracted from ~106 cells using QIAzol Lysis Reagent 

RNeasy plus Universal Mini Kit (QIAGEN, GmbH, Hilden, Germany). To ensure homogenization a 

QIAshredder (QIAGEN, GmbH, Hilden, Germany) mini-spin column has been used. To the upper 
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aqueous phase 1.5 volumes of 100% ethanol added, and mix thoroughly. Sample has been 

transferred up to an RNeasy Mini spin column and centrifuge for 15s at ≥8000g at room temperature, 

and the mixture was processed according to the manufacturer’s standard protocol. Samples with an 

RNA Integrity Number (RIN) >8.5, as measured by Agilent 2100 Bioanalyzer, were considered for 

further analysis. mRNA libraries were generated using the Illumina Truseq RNA V2 library Seq 

protocols.  

miRNA library preparation  

High quality RNA was determined by Agilent 2100 bioAnalyzer. For small RNA library 

construction, ~1 µg of RNA was used. RNA was ethanol precipitated to enrich for small RNA. Small 

RNA libraries were prepared according to NEBNext Small RNA Library Prep Set for Illumina 

(Multiplex Compatible) Library Preparation Manual. Adaptors were then ligated to the 5’ and 3’ 

ends of the RNA, and cDNA was prepared from the ligated RNA and amplified to prepare the 

sequencing library. The amplified sequences were purified on 4% E-Gel Agarose gels 

(ThermoFisher # G401004), and sequences representing RNA <200 nt were extracted. Data used are 

derived from at least two biological duplicates. The average values of the two independent sets is 

reported. 

TargetScan probabilistic miRNA-mRNA pairing  

The probabilistic framework interaction table was adapted from the scores provided by TargetScan 

(Agarwal et al, 2015). Accordingly, high probability of successful interactions is calculated from a 

combination of strongly supported miRNA-mRNA pairs that comply with many features from 

sequence, secondary structure and evolution conservation. The complete miRNA-mRNA table 

include 8.22 M pairs that covers also poorly conserved interactions. We compiled the version of 

TargetScanHuman (Release 7.1) that reports on 19,475 genes (28,353 transcripts). We extracted the 

TargetScan mRNA CWCS scores (cumulative weighted context++ score), which is proxy for the 

predicted repression based on the different properties of the MBS sites. The CWCW estimates the 

score by compiling the contribution of multiple MBS according to a miRNA family and the relative 

positioning at the 3’-UTR of the transcript. The predicted repression scores range from 0-1, and are 
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identical for all representation of the relevant miRNA family members (Agarwal et al, 2015). We 

used a compressed version of the table that report only on pairs that are supported by conserved 

miRNAs with 1,183,166 pairs, covering 18953 genes and 289 miRNA families.  

 

RNA deep sequencing analysis 

RNA extracted from HeLa and HEK293 cells were taken from independent library preparations and 

were processed in the same sequencing slides according to standard Illumina Protocol (Trapnell et al, 

2012). Next Generation sequencing was performed on small RNA (<200 nt) molecules and for 

mRNA by standard RNA-Seq Illumina Protocol. Each of the 48 RNA-sequencing samples covers the 

mRNA and miRNA sets (24 sets for the ActD treated on two cells types, at 4 times points with two 

sets of miRNA overexpression and a set for the control transfected by an empty vector). Each sample 

consisting of ~25M total reads of length 100 for each read for mRNA detection, and ~10M total 

reads for the miRNA detection.  

The sequencing data, after removal the adaptors and filtering out low quality sequences, were 

aligned to mirBase (Release 21). In addition, the filtered high-quality fragments were mapped to the 

human transcriptome of hg19 gtf file from UCSC provided by Galaxy. Specifically, the sequenced 

small RNA were trimmed using Cutadapt ver. 1.13 and quality filtered using FASTX toolkit. Short 

reads (~30 nt long) were mapped to miRNA using mapped to miRNA genes using miRExpress 2.0 

(Kim et al, 2009). Longer reads were aligned against human genome hg19 using TopHat 2.1.1, 

allowing 90% sequence identity and a maximum of two mismatches, with a limit of two genome 

alignment matches. For mRNA expression evaluation, mapped reads were submitted to Cufflinks 

toolkit version 2.2.1. Out of the mapped reads, only reads of length >= 17 were considered. miRNA 

sequences refer to mapped, high quality reads that are aligned to any of the pre-miRNA as defined 

by miRbase databases (ver. 21) (Kozomara & Griffiths-Jones, 2013) 

Normalizations of mRNA expression and miRNA families 

For analysis of all experimentally tested samples an estimation of mRNA molecules per cell was 

assigned to 25,000 molecules at time 0 (prior to activation of the transcription inhibition protocol). 
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Ten of the highly expressed genes were selected from the top ranked list of mRNA. These genes 

were selected as being stable throughout the 24 hrs of the ActD protocol, along all four time points. 

These genes were used as anchor genes. According to their quantification and the total quantity of 

the gene expression distribution a correction was implemented based on these anchored genes. For 

the rest of the analysis, reported genes are those with an overall expression which is above the 

threshold of 5 molecules after the quantification correction procedure (>0.02% expression). For 

miRNA normalization we estimated 50,000 molecules per cells and only miRNAs with more than 1 

molecule after quantification were considered. The identified miRNAs were compiled to their 

families. Within a miRNA family, we combine the expression of miRNAs that are marked by either 

5p or 3p, as well as duplicated miRNAs that are annotated according to their genomic positions. 

From original list of 303 miRNAs we compiled a list of 250 miRNA families. This transformation 

was applied to the TargetScan scoring tables and the most significant score of miRNA representative 

was assigned to its family.  

Probabilistic based miRNA-mRNA simulator 

The simulator input are the number of molecules for the expression profiles of miRNAs (total 50k 

molecules) and mRNAs (total 25k molecules) in the specific cell type, and a table of miRNA-mRNA 

interaction prediction extracted from TargetScan. In addition, the simulator, called COMICS 

(COmpetition of MiRNA Interactions in Cell Systems) supports a wide set of configurable 

parameters: (i) the number of total miRNA; (ii) the number of mRNA molecules in the cell; (iii) the 

number of iterations for completing the run; (iv) the number of iteration interval between miRNA-

mRNA binding event and the mRNA removal; (v) a random removal of unbounded mRNAs 

according to predetermined decay rate of the mRNA as extracted and extrapolated from experimental 

data of mRNA half-life; (vi) addition of newly transcribed mRNAs during a configurable number of 

iterations interval; (vii) miRNAs or genes overexpression according to a selected multiplication 

factor for the degree of overexpression. (vii) incorporation of alternative miRNA-target mapping. It 

is also possible to activate the simulator by a set of random genes as an initial state of pre-existing 

iterations prior to the simulation run.  
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In each run, a random miRNA is chosen from the predetermined available miRNAs distribution. 

Next, a target is chosen randomly according to the available targets distribution. mRNA that is 

already bounded by other miRNA molecules can be a putative target for the chosen miRNA, if the 

relevant binding site is not overlapping other occupied MBS on the same molecule. Overlapping 

binding sites are considered for neighboring MBS that are <50 nucleotides apart. Note that MBS that 

physically overlap in their sequence are already removed by TargetScan with the notion that 

overlapping sites cannot be occupied at the same time. A binding event will occur according to the 

miRNA-mRNA binding probability as extracted from TargetScan interaction table (or other 

prediction tables). The conversion of the interaction scores to the binding probabilities was done 

according to TargetScan score: p = 1 – 2score. Upon a binding event, the free miRNA and mRNA 

distributions are updated, and the bounded mRNA molecules are marked as being occupied. An 

occupied molecule is removed after 1000 iterations following a successful binding event (a tunable 

parameter for halting an instant mRNA degradation). For mRNA to be eliminated, at least one MBS 

must be reported as occupied. During those iterations it is still available to bind other miRNAs in any 

of its non-overlapping binding sites. After mRNA removal, the bound miRNAs are released and 

return to the free miRNA pool and becomes eligible to engage in further binding events.  

Overexpression scheme is based on multiplication of the available miRNA amount by all 7 factors 

(from x1 to x1000). This addition of miRNA molecules calls for calculating a new miRNA 

distribution while remaining with the same amount of miRNA in the cell. In case the miRNA had not 

detected in naïve cell, an arbitrary starting minimal amount of 0.01% (equivalent of 5 molecule/ 

cell). 

Statistics and Bioinformatics  

P-values were calculated using a paired and unpaired t-test, Fisher exact test, Kolmogorov Smirnov 

(KS) test or Chi-square tests. For testing the correspondence of two sets of different sizes, we have 

used the Jaccard score (J-score) that is the size of the intersection divided by the size of the union of 

the sample sets and it is range from 0 to 1 (no correspondence to a complete overlap, respectively). 

Statistical values are that are based on correlations were performed using standard Python statistical 

package. For annotation enrichment statistics and visualization Enrich (Kuleshov et al, 2016) was 
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used. For testing the effect of different background gene lists for the enrichments statistics we 

applied DAVID (Huang et al, 2007) clustering enrichment score is based on one tail Fisher exact 

corrected for the number of gene ontology annotation that are used. GOrilla ranked list enrichment 

score that is based on Hyper Geometric statistics for any selected background (Eden et al, 2009). 

Enrichment was performed in view of genes that are potential candidates for our analysis and against 

the set of genes that express with a minimum of 0.02% of the mRNA overall expression.  
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Expanded View 

Data availability 

The mapped mRNAs and miRNAs for HeLa and HEK293 cells are listed in Datasets EV1 and EV2, 

respectively. The output of the % retention along 1M COMICS iterations at a 10k resolution from 
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HeLa as input is shown in Datasets EV3. The output of the % retention along 100k COMICS 

iterations at a 1k resolution is shown in Datasets EV4. List of the cross miRNA stable genes for three 

cell types is in Datasets EV4. The lists of miRNA expression levels for 3 cells as input for COMICS 

are in Dataset EV5. The Matrix of the miRNA retention levels for 248 miRNAs and 773 genes are in 

Dataset EV6. Lists of the stable genes for the three cells are in Dataset EV7. Lists of the stable genes 

for the three cells are in Dataset EV8. The results from enrichment tests for functional annotation for 

stable genes that are shared among 3 cell lines (48 genes) are in Dataset EV9. The results from 

enrichment tests for functional annotation for stable genes for 3 cell lines are in Dataset EV10.  

Appendix Text EV1 presents the alteration of the operational parameters of COMICS.  Table EV1 

summarize the statistics of characteristics for sensitive and stable sets for 3 cell lines. Appendix Fig 

S1 and Fig S2 show the time point correlations of the expression of miRNAs and mRNAs from 

HeLa and HEK293, respectively. Appendix Fig S3 shows the retention profile for hsa-mir-124a in 

HeLa cells. Appendix Fig S4 shows the results of repeated runs and randomization protocol for the 

probabilistic miRNA-mRNA interaction table. Appendix Fig S5 shows the results of alteration of 

COMICS parameters. Appendix Fig S6 shows the boxplots of four quantitative characteristics of the 

sensitive and stable sets for HEK293 and MCF-7 cell lines.  

 

Figure Legends 

Figure 1. Expression profiles of miRNA and mRNA under transcription arrest  

A. Counting of miRNA miRNAs (left) and mRNAs (right) for the 4 different time points 

for HeLa (top) and HEK293 (bottom). The samples were collected at 0 hr, 2 hrs,8 hrs 

and 24 hrs following transcription inhibition by ActD. Source data is available in Dataset 

EV1 (HeLa) and Dataset EV2 (HEK293). 

B. Expression of miRNAs (left) and mRNAs (right) in pairs of 4 different time points for 

HeLa (top) and HEK293 (bottom). The samples were collected at 0 hr, 2 hrs,8 hrs and 24 

hrs following transcription inhibition by ActD. The expression is presented by 
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logarithmic scale (log10). Spearman correlation (r) is listed for each pair along with the p-

value of the significance. Source data is available in Dataset EV1 (HeLa) and Dataset 

EV2 (HEK293). 

C. Relative abundance of each expressed mRNAs at four different time points for HeLa 

cells. At time 0, the relative abundance is set to 100%, and at each proceeding time 

points the abundance relative to time 0 is reported. Each line in the graph represent one 

gene (mRNA). Only genes with a minimal expression level of 0.02% expression are 

listed (equivalent to 97 fpkm, total of 860 genes). The bolded blue line represents the 

average of all reported genes at each time point.  

D. Compilation of mRNA retention distribution (PDF) of all the reported genes after 8 hrs 

and 24 hrs from initiation of transcription inhibition by ActD. All genes with a retention 

level ≥100 are combined (at 100% retention). 

Figure 2: Retention profile of mRNAs following overexpressing miRNAs in HeLa cells  

A. Relative mRNA retention in HeLa cells that were transfected and overexpressed with 

hsa-mir-155. Measurement were taken at 4 time points as indicated. The retention plots 

are partitioned to target genes (i) (pink, left panels) and (ii) non-target genes (blue, 

middle panels). In (iii), the average retention patterns for of hsa-mir-155 targets (pink 

line) and non-targets (blue line) are shown.  

B. Distribution of genes retention after 24 hrs from ActD treatment, according to their 

labels as targets (upper panel, pink) and non-targets (lower panel, blue). The plots 

compare the retention of genes from the control (smooth line), and from hsa-mir-155 

overexpressed condition (dashed line). The number of genes that are included in the 

analyses are shown in parentheses. Target genes are marked by pink lines (top) and the 

non-target genes by blue lines (bottom). Note the shift in the distribution in the non-

target genes towards the genes with higher retention level. All genes with a retention 

level ≥100 are shown as 100% retention. 

Figure 3: Scheme of the COMICS platform and performance of the simulation process  
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A. A schematic view for a single iteration of COMICS simulation. The iteration step is 

repeated 100k times (unless indicated differently). After each successful interaction step 

(i.e. a valid binding of miRNA with MBS on mRNA molecule), the entire distributions 

of the miRNA and mRNA in the cells are updated. Therefore, the next iteration is 

slightly changed due to the refinement of mRNA composition and the availability of the 

free pool of miRNAs. On average, only 3% successful iterations occur from a total of 

100k sampling events. The input for the simulator varies according to the profiles of the 

cell-type under study.  

B. The outline of the major steps of COMICS operation from the mRNA perspective. The 

composition of the miRNA in the cells is obtained from the experimental measurement 

(at time point of 0 hr) but normalized to have 50k miRNAs and total of 25k mRNA. For 

HeLa cells, these are 3666 types of mRNAs that are included in the analysis (i.e. above a 

minimal threshold, see Materials and Methods). Sampling of the miRNA and mRNAs 

are done according to their distribution and the probability of the interaction is driven 

from the score of TargetScan MBS interaction scores (with 1.2 M values). A dashed 

mRNA shown after N iterations signifies an occupied transcript that is still halted (e.g., 

delay of 1k iterations) prior to its degradation, and releasing the bound miRNAs to the 

pool. In the end of the simulation, two sets of mRNAs are considered, an occupied set 

that is validated against miRNA-MBS pairs from CLASH data and the unoccupied 

mRNA set that is tested in view of the experimental results under transcriptional 

inhibition scheme (Fig 1-2).  

C. The retention of HeLa expressed genes along COMICS simulation run. In this setting, 

1M iteration steps were performed. For this input of COMICS simulation on HeLa cells, 

3666 types of mRNA and 110 of miRNAs are included in the input. These numbers 

account for the 50k and 25k molecules of miRNAs and mRNAs, respectively. Each grey 

line represents the retention profile of a single type on mRNA. The blue line shows the 

average retention profile. After 1M iterations, the average retention level is 43.5%, 

Altogether, for 1M iterations, 11k successful events had been reported. For clarity of 
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presentation, only mRNA above a predefined expression are presented (see Materials 

and Methods). Total of 755 genes with a minimal expression of 0.02% are shown. 

D. Validation of COMICS performance in view of the results from transcription arrest in 

HeLa (grey) and HEK293 cells (orange). At each of the indicated steps of the COMICS 

simulation run, the overlap in gene retention for the set of genes that remain stable 

(defined as >85% retention) was measured by calculating the Jaccard score. The 

statistical significance associated with the correspondence of the results (measured by p-

value of the fisher exact test) are indicated by asterisks * <0.05 and **, <0.005.  

E. Testing COMIC performance and dependency on the information in TargetScan 

interaction matrix. COMICS simulation performance in HEK293 was compared to the 

bounded pairs as reported from CLASH data on HEK293 (see Materials and Methods). 

The histogram shows the performance in term of the significant of the overlap of the 

reported COMICS results (100k iterations) using TargetScan probabilistic converted 

matrix (grey), and two versions of randomization for the interaction table (see Materials 

and Methods). The statistical test was based on the 251 genes that are reported as pairs 

miRNA-mRNA pairs by CLASH and expressed above the minimal expression threshold 

used for COMICS simulation protocol. The use of the TargetScan matrix shows 

significant results versus CLASH data (at the significant range p-value of e-4 to e-6). 

Applying any of the randomization for the miRNA-MBS interaction table, caused a drop 

in the performance to non-significant values.  

Figure 4. Abundant miRNA and shuffling cell-specific miRNA profiles  

A. Heatmap of miRNA from HeLa, HEK293 and MCF-7 cell-lines in view of the abundance of 

each miRNA (color in log scale) in each cell-type. The joint list of miRNAs includes the 

most abundant miRNAs that occupies 90% of the miRNA molecules (i.e. 45k out of 50k) in 

each cell-type. The fraction occupied by each of the listed miRNA, for each of the cell-type 

is available in Database EV5.  
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B. Pairs of miRNA and mRNA are shown according to their origin. Pearson correlation of the 

endpoint of the genes following 100k iterations and testing any of the genes that are above 

the minimal expression (5 molecules, 0.02% of mRNA). The number of mRNAs that are 

considered in the analyses are the 516 to the pair of HeLa and HEK293; 285 for the pair of 

HeLa and MCF-7 and 305 to the pair of HEK293 and MCF-7. The p-value of the 

correlations are very significant for all pairs. All p-values correlation values are < 1*e-15.  

Figure 5. miRNA overexpression paradigm using COMICS platform  

A. Schematic The relative percentage of each miRNA abundance is separated by 

vertical line. The miRNAs percentage is sorted from lowest (left side) to highest 

(right side). Seven different hsa-mir-155 over expression simulations are shown (x1, 

x3, x9, x18, x90, x300 and x1000) from bottom to top. The percentage of hsa-mir-

155 is marked in pink.  

B. Over expression simulation of hsa-mir-155 in eight different factors, where hsa-mir-

155 target genes are marked in pink and all other non-target genes are marked in 

blue. The average retentions of both gene groups are plotted in bold lines.  

C. Average final retention of the different simulation runs, using different 

overexpression factors of hsa-mir-155 as shown in B, of hsa-mir-155 target and non-

target genes. 

 

Figure 6: A scheme of the over expression matrix by a single factor  

 

A. The different columns stand for the different pre-miRNA over-expressed by factor f, and the 

rows stand for the different genes.  

B. Heatmap of the range of the retention for genes that were overexpressed at a factor x300. 

Each row is associated with a miRNA. The clustering is performed by the row (i.e. genes). 

The matrix includes 250 expressed miRNAs in HeLa cells.  
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C. Zoom in of a small section of the heatmap of the range of the retention for genes that were 

overexpressed at a factor x300. Each row is associated with a miRNA. The clustering is 

performed by the row (i.e. genes). The matrix includes 250 expressed miRNAs in HeLa cells 

D. HeLa and HEK293 average final retention comparison in control simulation (no over 

expression). Each point stand for each gene 

E. HeLa and HEK293 average final retention comparison. Each point stand for each gene in all 

248 overexpression condition (each row in the heatmap presented in B, C) using over 

expression factor x300. 

Figure 7: Comparison of sensitive and stable gene sets in different cell type 

A. Overlap of the cross-miRNA stable genes in HeLa, HEK293 and MCF7 cells. Only genes 

that are expressed in at least two cells are listed. The gene list of the stable genes is available 

in Dataset EV6 

B. Overlap of the cross-miRNA sensitive genes in HeLa, HEK293 and MCF7 cells. Only genes 

that are expressed in at least two cells are listed. The gene list of the stable genes is available 

in Dataset EV7 

C. Partition of the stable genes expressed in HeLa, HEK293 and MCF-7 cells to their functional 

annotations: (i) small ribosomal subunit (18 genes), (ii) large ribosomal subunit (17 genes), 

(iii) cytoskeleton (5 genes), (iv) translation elongation (3 genes) (v) 4 aditional genes – NCL, 

ATP5J2, CALR and MIF. For detailed list see Dataset EV8. 

D. Comparison of the number of targeting miRNA of sensitive genes, stable genes, and other 

(not sensitive and not stable in HeLa cells. Statistics of the comparisons are significant for 

the comparison of stable genes set and both sensitive and other gene sets (ttest p-values of 

7.53e-11 and 6.48e-21, respectively), and no significant difference between sensitive and 

other gene sets. Full statistics are shown in Table EV1. 

E. Comparison of the number of MBS of sensitive genes, stable genes, and other (not sensitive 

and not stable in HeLa cells. Statistics of the comparisons are significant for the comparison 

of stable genes set and both sensitive and other gene sets (ttest p-values of 2.07e-9 and 5.6e-
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15, respectively), and no significant difference between sensitive and other gene sets. Full 

statistics are shown in Table EV1 

F. Comparison of the initial abundance of sensitive genes, stable genes, and other (not sensitive 

and not stable in HeLa cells. Statistics of the comparisons are significant for the comparison 

of stable genes set and both sensitive and other gene sets (ttest p-values of 0.017 and 0.015, 

respectively), and no significant difference between sensitive and other gene sets. Full 

statistics are shown in Table EV1 

G. Comparison of the of the average expression of the targeting miRNA of each gene, of 

sensitive genes, stable genes, and other (not sensitive and not stable in HeLa cells. 

Significant differences between all three gene sets were found (ttest p-values 2.52e-22, 

3.07e-9 and 8.7e-11 for the comparison of stable-sensitive, stable-other and sensitive-other, 

respectively. 
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