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Abstract

Throughout  the  past  decade,  studying  ancient  genomes  provided  unique  insights  into  human

prehistory,  and  differences  between  modern  humans  and  other  branches  like  Neanderthals  can

enrich our understanding of the molecular basis of unique modern human traits. Modern human

variation and the interactions between different hominin lineages are now well studied, making it

reasonable to go beyond fixed changes and explore changes that are observed at high frequency in

present-day humans. Here, we identify 571 genes with non-synonymous changes at high frequency.

We suggest that molecular mechanisms in cell division and networks affecting cellular features of

neurons  were  prominently  modified  by  these  changes.  Complex  phenotypes  in  brain  growth

trajectory and cognitive traits are likely influenced by these networks and other changes presented

here. We propose that at least some of these changes contributed to uniquely human traits, and

should be prioritized for experimental validation.
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Introduction

Homo sapiens appears to be a “very special primate” (Pääbo 2014). Our position among animal

species stands out largely thanks to the composite complexity of our cultures, social structures and

communication systems. It seems reasonable that this “human condition” is rooted, at least in part,

in the properties of our brain, and that these can be traced to changes in the genome on the modern

human lineage. This phenotype in the population called “anatomically modern humans” emerged in

Africa likely before the deepest divergence less than 100,000-200,000 years ago (Schlebusch et al.

2012; Kuhlwilm et al. 2016), although complex population structure may reach back up to 300,000

years ago (Hublin et al. 2017; Schlebusch et al. 2017; Skoglund et al. 2017). Except for some early

dispersals (Rabett 2018), humans most likely peopled other parts of the world than Africa and the

Middle East permanently only after around 65,000 years ago. It has been claimed that the brain of

modern humans adopted a specific, apomorphic growth trajectory early in life that gave rise to the

skull shape difference between modern humans and extinct branches of the genus Homo (Hublin et

al. 2015). Importantly, the growth pattern might differ between the populations (Gunz et al. 2010;

Neubauer et al.  2018), while the brain size and encephalization of humans and Neanderthals is

similar, with slightly larger brains in the latter (Trinkaus and Howells 1979; Schoenemann 2004;

Hublin  et  al.  2015).  This  ontogenic  trajectory,  termed  the  “globularization  phase”,  might  have

contributed to cognitive changes that underlie behavioral traits in which humans differ from their

extinct relatives, despite mounting evidence for their cognitive sophistication  (Gunz et al. 2012;

Hublin et al. 2015; Wynn et al. 2016; Boeckx 2017; Hoffmann et al. 2018).

We are now in a favorable position to examine the evolution of human biology with the help of

the fossil record, in particular thanks to breakthroughs in paleogenomics: The recent reconstruction

of the high quality genomes of members of archaic Homo populations (Meyer et al. 2012; Prüfer et

al.  2014; Prüfer et  al.  2017) has opened the door to new comparative genomic approaches and

molecular analyses. The split of the lineages leading to modern humans and other archaic forms

(Neanderthals and Denisovans) is estimated to around 600,000 years ago (Kuhlwilm et al. 2016),

setting  the  timeframe for  truly  modern  human-specific  changes  after  this  split,  but  before  the

divergence of modern human populations (Fig.  1).  Together with efforts to explore present-day

human diversity  (Auton et  al.  2015),  this  progress has allowed to narrow down the number of

candidate  point  mutations  from ~35 million  differences  since  the  split  from chimpanzee  when

comparing only reference genomes (Consortium 2005) to 31,389 fixed human-specific changes in a

previous seminal study (Pääbo 2014). Other types of more complex changes like structural variants

most likely contributed to human-specific traits. For example, it is well known that since the split

from chimpanzees functional differences arose through gene duplications in ARHGAP11B and other

genes (Florio et al. 2015; Ju et al. 2016), copy number variants in SRGAP2 and other genes (Dennis

et al. 2012; Dumas et al. 2012; Suzuki et al. 2018) or regulatory deletions (McLean et al. 2011). In
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these cases, the variants arose before the split of humans and Neanderthals, but the differences in

structural variation that exist between the hominin lineages  (Chintalapati et al. 2017) need to be

explored  in  more  detail,  with  advancement  of  technologies  in  ancient  DNA sequencing  and

computational methods. This will result in complementary lists of changes for understanding the

human condition  outside  the  scope of  this  study.  Beyond that,  parts  of  the  genome which  are

complex  and  not  yet  examined  by  conventional  sequencing  platforms  (O’Bleness  et  al.  2012)

possibly harbor important human-specific changes as well.

Some of the single nucleotide changes have been linked to putative functional consequences

(Castellano et al.  2014; Pääbo 2014; Prüfer et al.  2014), and evidence is mounting that several

molecular changes affecting gene expression in the brain were subject to selective pressures (Green

et al. 2010; Somel et al. 2013; Zhou et al. 2015; Racimo 2016; Peyrégne et al. 2017). Furthermore,

the genomic impact of interbreeding events is  not evenly distributed across the genome. Genes

expressed  in  regions  of  the  brain  regarded  as  critical  for  certain  cognitive  functions  such  as

language are depleted in introgressed archaic genetic material  (Sankararaman et al. 2014; Vernot

and  Akey  2014;  Sankararaman  et  al.  2016;  Vernot  et  al.  2016),  and  introgressed  alleles  are

downregulated in some of these brain regions, suggesting natural selection acting on tissue-specific

gene  regulation  (McCoy  et  al.  2017).  Thus,  it  seems  reasonable  to  conclude  that  there  were

differences between anatomically modern human and Neanderthal brains, and that these underlie at

least some of the characteristics of our lineage (Wynn and Coolidge 2004). We want to emphasize

that such recent differences are likely to be subtle when compared to those after the split from our

closest  living  relatives  on  a  scale  of  6-10  million  years  (Langergraber  et  al.  2012),  where

fundamental  changes  arose  since  the  divergence  from  chimpanzees  and  bonobos  (Varki  and

Altheide 2005; O’Bleness et al. 2012). The observation of recurrent gene flow between modern

human and archaic populations also implies a broad overall similarity, yet, such subtle differences

may still have contributed to the evolutionary outcome (Wynn et al. 2016). This does not imply a

superiority of humans, but specific changes that might have facilitated survival under the given

environmental conditions. Obviously, not all human-specific changes are beneficial: While most

mutations  may  be  rather  neutral  and  have  little  effect  on  the  phenotype,  some may  have  had

deleterious  effects  or  side-effects,  possibly  increasing  the  risks  for  neurodevelopmental  or

neurodegenerative disorders in humans  (Bufill et al. 2011; Bruner and Jacobs 2013; Bufill et al.

2013).

The goal of this paper is to provide a revised, extended set of recent single nucleotide changes in

humans since their split from Neanderthals that could enrich our understanding of the molecular

basis of recent human condition. The previous focus on fixed alleles was reasonable given limited

data (Pääbo 2014), but having a better grasp of the magnitude of modern human variation and the

interaction between different hominin lineages seems a good reason to cast a wider net, and take

into account not only fixed differences but also high-frequency changes shared by more than 90%
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of  present-day  individuals.  Here,  we  present  a  revised  list  of  36  genes  that  carry  missense

substitutions  which are fixed across  thousands of  human individuals  and for  which all  archaic

hominin individuals sequenced so far carry the ancestral state. In total, 647 protein-altering changes

in 571 genes reached a frequency of at least 90% in the present-day human population. We attempt

to interpret this list, as well as some regulatory changes, since it seems very likely that some of

these  genes  would  have  contributed  to  the  human condition.  We discuss  some of  their  known

functions, and how these relate to pathways that might have been modified during human evolution

from the  molecular  level  to  cellular  features  and more  complex phenotypic  traits  (Fig.  1).  We

restrict our attention to genes where the literature may allow firm conclusions and predictions about

functional effects, since many genes likely have multiple different functions (Gratten and Visscher

2016). Obviously, it cannot be emphasized enough that ultimately, experimental validation will be

needed  to  confirm  our  hypotheses  concerning  alterations  in  specific  functions.  For  example,

transcription factors or enzymatically active proteins can be tested using cell cultures or  in vitro

assays, while brain organoids could be used to test differences in neuronal functions (Giandomenico

and Lancaster 2017), especially in combination with single-cell RNA sequencing (Camp et al. 2015;

Camp and Treutlein 2017). Ultimately, these variants can be introduced into model organisms like

mice to test complex features related to cognitive abilities or behavior  (Enard et al. 2009). Still,

given limitations to the amount of changes that can be tested at once, networks which are modified

by multiple changes cannot be tested with current technologies.

Results

Genetic differences between present-day humans and archaic hominins

Using publicly available data on one Denivosan and two Neanderthal individuals and present-

day human variation (Methods), we calculated the numbers of single nucleotide changes (SNCs)

which most likely arose recently on the respective lineages after their split from each other, and

their functional consequences (Table 1). Previously, a number of 31,389 sites has been reported as

recently fixed derived in present-day humans, while being ancestral in archaics (Pääbo 2014; Prüfer

et al. 2014). We find a smaller number of only 12,027 positions in the genome, in part because of

including another archaic individual and different filters, but mainly by a richer picture of present-

day human variation.  The 1,000 Genomes Project  as  well  as  other  sources  contributing  to  the

dbSNP database now provide data for thousands of individuals, which results in very high allele

frequencies  for  many loci  instead of  fixation.  Indeed,  29,358 positions  show allele  frequencies

larger than 0.995, demonstrating that the level of near-fixation is similar to the level of previously

presented fixation. The number of loci with high frequency (HF) changes of more than 90% in
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present-day humans is an order of magnitude larger than the number of fixed differences. The three

archaic individuals carry more than twice as many changes than present-day humans; however, we

emphasize that much of this difference is not due to more mutations in archaics, but rather the fact

that data for only three individuals is available, compared to thousands of humans. The variation

across  the  archaic  population  is  not  represented  equally  well,  which  makes  these  numbers  not

directly comparable. On the other hand, much less variation is found by the sequencing of each

additional Neanderthal individual compared to humans due to the low diversity of Neanderthals

(Fig. S36 in (Kuhlwilm et al. 2016)). This low diversity across their geographic range suggests that

most alleles observed as ancestral here will be the same state in other individuals. Furthermore, we

take variability into account due to gene flow or errors, decreasing the possibility that positions

ancestral in the archaic individuals studied to date turn out to be derived in most archaic individuals,

hence this extended catalog will likely not undergo drastic changes. However, changes in structural

variants or regions of the genome that are not accessible by current sequencing technologies will

most likely complement our results (O’Bleness et al. 2012).

Present-day humans carry 42 fixed amino acid-changes in 36 genes (Table 2, Fig. 2), while

Neanderthals carry 159 such changes. Additionally, modern humans carry 605 amino acid-changes

at  high  frequency  (human-lineage  high-frequency  missense  changes,  referred  to  as  HHMCs),

amounting to a total of 647 such changes in 571 genes (Table S1). Together with 323 SNCs on the

human lineage with low confidence (Methods, Table S2), almost 1,000 putative protein-altering

changes were found across most present-day humans. Generally, synonymous changes are found at

a similar magnitude as missense changes, but only few SNCs altering start and stop codons, and

thousands of changes in putative regulatory and untranslated regions. We admit that some of the

loci presented here are variable across the phylogenetic tree, or less reliable due to low coverage in

the archaics,  but  we accept  this  since  our  intention is  retrieve  an  inclusive picture  of  possibly

functional recent changes. The 42 protein-altering changes for which the ancestral allele has not

been observed in any present-day human, most of which have been presented before (Pääbo 2014),

constitute without doubt the strongest entry points into a molecular understanding of the human

condition,  and should be prime candidates for experimental validation.  Only one gene,  SPAG5,

carries three such SNCs, and four genes (ADAM18, CASC5, SSH2 and  ZNHIT2) carry two fixed

protein-coding  changes  in  all  modern  humans.  We  identified  15  SNCs  (in  AHR,  BOD1L1,

C1orf159, C3, DNHD1, DNMT3L, FRMD8, OTUD5, PROM2, SHROOM4, SIX5, SSH2, TBC1D3,

ZNF106, ZNHIT2) that have not been previously described as fixed differences between humans

and  archaics.  We  note  that  another  12  previously  described  (Pääbo  2014) protein-altering

substitutions  were  not  found  among  the  genotypes  analyzed  here  (in  C21orf62,  DHX29,

FAM149B1,  FRRS1L,  GPT,  GSR,  HERC5,  IFI44L,  KLF14,  PLAC1L,  PTCD2,  SCAF11).  These

genotype calls are absent from the files provided for the three archaic genomes due to different

genotype  calling  and  filtering  procedures  compared  to  the  original  publication  of  the  Altai
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Neanderthal  genome  (Prüfer  et  al.  2014;  Prüfer  et  al.  2017).  Hence,  some potentially  relevant

candidate changes were not included here, and future research is necessary to evaluate these as well.

Despite attempting an extended interpretation, our data is thus not fully exhaustive.

It is noteworthy that the number of fixed SNCs decreased substantially, and it is possible that

single individuals will be found to carry some of the ancestral alleles for the remaining fixed sites.

Hence, it  is important to focus not only on fixed differences, but also consider variants at high

frequency. When analyzing the 647 HHMCs, 68 genes carry more than one amino acid-altering

change.  Among  these,  TSGA10IP (Testis  Specific  10  Interacting  Protein)  and  ABCC12 (ATP

Binding  Cassette  Subfamily  C  Member  12)  carry  four  such  changes,  and  seven  more  genes

(MUC5B, NPAP1, OR10AG1, OR5M9, PIGZ, SLX4, VCAN) carry three HHMCs. 1,542 genes carry

at least one HF missense change on the archaic lineage (archaic-lineage high-frequency missense

change, referred to as AHMC, Tables S3, S4). We find an overlap of 122 genes with HHMCs and

AHMCs, which is more than expected considering that among 1,000 sets of random genes of a

similar length distribution, no overlap of this extent was observed. The same genes seem to have

acquired missense changes on both lineages since their divergence more often than expected. We

find a high ratio of HHMCs over synonymous changes for chromosome 21 (1.75-fold), and a very

small ratio (0.18-fold) for chromosome 13. We do not find such extreme ratios for AHMCs and

corresponding  synonymous  changes,  suggesting  differences  in  the  distribution  of  amino  acid

changes between both lineages (Fig. S1).

Fixed
human

HF
human

Extended
human

Fixed
archaic

HF
archai

c

Extended
archaic

All 12,027 136,43
5 83,254 33,498 380,756 983

Non-
synonymous

42 647 327 167 1,921 13

Synonymous 41 843 363 193 2,123 14
Start/stop 1 14 10 3 48 2
Splice site 4 23 8 4 54 0

TFBS 28 226 126 87 914 1
Upstream 1,935 19,599 11,235 4,920 55,188 289

5' UTR 180 1,853 1,012 195 2,016 7
3' UTR 77 702 334 506 5,303 19

Downstream 1,922 19,704 11,673 4,956 55,832 281
miRNA 0 1 2 0 4 0

Regulatory
element

1,952 20,971 12,320 5,125 59,248 195

Table  1:  Summary  of  single  nucleotide  changes.  TFBS:  Transcription  factor  binding  sites.  UTR:

Untranslated Region. HF: High frequency. Fixed changes are a subset of HF changes.
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Ranking and enrichment

We assessed the impact of mutations for different deleteriousness scores (Table 2), finding 12

genes with deleterious HHMCs according to SIFT, three according to PolyPhen, and 16 when using

the Grantham score (>180), measuring the physical properties of amino acid changes. The C-score

and GWAVA can be used to rank all mutation classes, and we present the top candidates.

Then, we attempted a ranking of genes by the density of lineage-specific changes in the dataset.

As expected, the total number of segregating sites is correlated with gene length (Pearsons’ R =

0.93). This correlation is weaker for HF human SNCs (R = 0.73) and fixed human-specific SNCs (R

= 0.25), as well as for fixed (R = 0.37) and HF (R = 0.82) SNCs in archaics. We conclude that some

genes with a large number of human-specific changes might carry these large numbers by chance,

while others are depleted. Indeed, 17,453 (88.9%) of these genes do not carry any fixed human-

specific change, and 80.5% do not carry fixed archaic-specific changes. Of note, genes that have

attracted attention in the context  of traits  related to the “human condition” like  CNTNAP2 and

AUTS2 are  among  the  longest  genes  in  the  genome,  hence  changes  in  these  genes  should  be

interpreted with caution as they are not unexpected. We ranked the genes by the number of HF

changes in either modern humans or archaics, divided by their genomic lengths, and categorize the

top 5% of this distribution as putatively enriched for changes on each lineage (Table S5). We note

that  191 genes  (30.9%) fall  within  this  category  for  both  human  HF changes  and archaic  HF

changes, as a result of differences in mutation density. In order to distinguish a truly lineage-specific

enrichment, we calculated the ratios of HF changes for humans and archaics, defining the top 10%

of  genes  in  this  distribution  as  putatively  enriched  (Table  S5).  Among the  genes  enriched  for

changes on the modern human lineage, 18 carry no HF changes on the archaic lineage, and ten of

these also  fall  within the  5% of  genes  carrying  many changes  considering  their  length (ARSJ,

CLUAP1, COL20A1, EPPIN, KLHL31, MKNK1, PALMD, RIC3, TDRD7, UBE2H). These might be

candidates for an accumulation of changes, even though this is not identical to selective sweep

signals. Among these, the collagen COL20A1 and the Epididymal Peptidase Inhibitor EPPIN carry

HHMCs. ACAD10, DST and TTC40, which carry two HHMCs, might be other notable genes with a

human-specific enrichment.

Gene Ontology (GO) categories are neither enriched for HHMCs on the human lineage in a

hypergeometric test, nor for genes carrying AHMCs, HF changes in UTRs or transcription factor

binding sites.  However,  instead of singular changes that might be observed more often in long

genes, or genes that are more prone to mutations in hominins, the density of HF changes in a gene

might  yield  a  better  picture  of  lineage-specific  changes,  possibly  for  cumulative  changes.  We

applied a test for the ratio of the number of gene-wise HF changes on one lineage over the other

lineage, finding an enrichment for  12 GO categories on the human lineage (Table S6), with “soft

palate  development”,  “negative  regulation  of  adenylate  cyclase  activity”,  “collagen  catabolic

process” and “cell adhesion” in the biological process category. Among the cellular components
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category,  the  “postsynaptic  membrane”,  “spermatoproteasome  complex”,  “collagen  trimer”,

“dendrite” and “cell junction” show enrichment, as well as the molecular functions  “calcium ion

binding”, “histone methyltransferase activity (H3-K27 specific)” and “metallopeptidase activity”.

We find no GO enrichment for genes with an excess of changes on the archaic lineage. In order to

approach a deeper exploration of genes with associated complex traits in humans, we explored the

NHGRI-EBI GWAS Catalog  (MacArthur  et  al.  2017),  containing 2,385 traits.  We performed a

systematic enrichment screen, finding 17 unique traits enriched for genes with HHMCs, and 11 for

genes with AHMCs (Table S7). Changes in genes associated to “Cognitive decline (age-related)”,

“Rheumatoid arthritis” or “Major depressive disorder” might point to pathways that could have

been influenced by protein-coding changes on the human lineage. In archaics, genes are enriched,

among others,  for associations to traits  related to body mass index or cholesterol levels,  which

might reflect differences in their physiology.

We find a significant enrichment of  protein-protein interactions  (P = 0.006) among the gene

products of HHMC genes (Fig. S2), meaning that these proteins interact with each other more than

expected. Functional enrichment is found for the biological process “cellular component assembly

involved  in  morphogenesis”,  most  strongly  for  the  cellular  components  cytoskeleton  and

microtubule, as well as the molecular function “cytoskeletal protein binding”. Three proteins have

at least 20 interactions in this network and might be considered important nodes: TOP2A, PRDM10

and AVPR2 (Table S8). However,  proteins encoded by genes with synonymous changes on the

modern human lineage seem to be enriched for interactions as well (P = 0.003), as are proteins

encoded by genes with AHMCs (P = 1.68 x 10-14), with an enrichment in GO categories related to

the extracellular matrix and the cytoskeleton, and proteins with more than 40 interactions (Table

S8). We caution that these networks might be biased due to more mutations and possibly more

interactions in longer, multi-domain genes.

Regulatory changes might have been important during our evolution  (Wray 2007), hence we

tested for an overrepresentation of transcription factors. We find 78 known or putative transcription

factors among the HHMC genes (Table S9) on the modern human lineage  (Chawla et al. 2013),

which  is  not  overrepresented  among  genes  with  HHMCs  (with  49.2%  of  random  genes  sets

containing fewer HHMCs). Despite no enrichment as a category, single transcription factors on the

modern human lineage might have been important, particularly those with an excess of modern

human over archaic HF changes (AHR, MACC1, PRDM2, TCF3, ZNF420, ZNF516). Others, like

RB1CC1 (Prüfer et al. 2014) or  PRDM10 and NCOA6 (Peyrégne et al. 2017) have been found in

selective sweep screens, suggesting contributions of individual transcription factors, rather than the

class of proteins. We also tested for an enrichment of gene expression in different brain regions and

developmental stages (Miller et al. 2014; Grote et al. 2016), using the HF synonymous changes on

each lineage as background sets. We find an enrichment of gene expression in the orbital frontal

cortex at infant age (0-2 years) for genes with HHMCs, but no enrichment for genes with AHMCs.
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Furthermore,  when testing the genes with HHMCs and using the set  of genes with AHMCs as

background,  “gray  matter  of  forebrain"  at  adolescent  age  (12-19  years)  is  enriched,  while  no

enrichment was found for genes with AHMCs.

Fixed
HHMCs

ADAM18, ADSL, AHR, ANKMY1, ANKRD30A, BBIP1, BOD1L1, C1orf159, C3, CASC5, CDH16,
DCHS1, DNHD1, DNMT3L, FRMD8, GBP5, GLDC, GREB1L, GRM6, KIF26B, LMNB2, NCOA6,

NOTO, OTUD5, PRDM10, PROM2, RFNG, SCAP, SHROOM4, SIX5, SPAG5, SSH2, TBC1D3,
ZNF106, ZNF185, ZNHIT2

Selection
2014 C11orf80, CKAP5, GREB1L, HMCN1, NLRX1, PDZD3, PRDM2, RB1CC1

Selection
2015 MSS51, NCOA6, OMD, SPAG17, SPAG5

Selection
2016

ACE, ADSL, ALMS1, ANKRD30A, BZRAP1, DNAH1, GREB1L, KMT2C, NWD1, PROM2, RASA1,
STAB1, STARD9, ZNF106

Selection
2017

ADSL, AKAP8, BAP1, BBIP1, BCAR3, CAPN5, CR2, CSMD2, DNAH1, ENTHD1, FAAH, FRMD8,
GBP5, GBP7, GPR157, GTF3C5, HERC5, HERC6, HMCN1, HRASLS5, KATNA1, KIF15, KIF18A,

LYST, MKL1, MYH3, NAALADL1, NCOA6, PRDM10, PRDM2, PROM2, PTPRC, RNF44, SCAP,
SLC12A8, SLC25A45, SLITRK1, TIGD3, TMEM235, TRGV4, TTC6, VOPP1, ZNF501, ZNF502,

ZNHIT2

Grantham ABHD14A-ACY1, ACY1, ABHD14A, CCDC158, CCDC30, DNHD1, EML2, ERI1, GBA3, GREB1,
OR1K1, TTC6, UBQLN3, UIMC1, ZBP1, ZNF510, ZNHIT2

SIFT BEND2, CCT6B, COPA, CUL4B, GBP7, KRTAP10-10, MEPE, NHEJ1, OR1K1, SLC6A15, TPO,
ZNF510

PolyPhen-2 FSHR, NLN, TPO

CADD
C11orf80, C5orf66, CCT6B, CDH15, CEP128, CPM, FGF21, FMN2, FUT1, H2AFY, HERC6,
KCNK5, KPNA4, KRT33A, KRT8P12, MUM1, NR1H2, OPRM1, PDSS2, ROCK1, RPS15P9,

SLC22A31, SUCLG2P4, TMPRSS7, UNC5D
GWAVA ANK2, COPA, CTRC, CYP2B6, MAPK10, MCTP1, SLC38A6, SYT1, YTHDC1

Table 2: Genes with fixed non-synonymous changes on the human lineage, genes under positive selection

with HHMCs, and deleterious candidate HHMCs. Selection 2014: Prüfer et al., 2014. Selection 2015: Zhou

et al., 2015. Selection 2016: Racimo, 2016. Selection 2017: Peyrégne et al., 2017.

Discussion

The  enrichment  of  broad  categories  above  suggests  that  traits  related  to  brain  functions  are

prominently represented by HHMCs. It should be noted that such results would be less clear if we

just focused on completely fixed changes, given the drastically reduced number of genes harboring

such changes. Here, we will further examine the possible impact on the brain that some of these

changes might have, paying special attention to hypotheses formulated in earlier work on modern

human-specific changes. Our extended catalog of changes appears to provide additional support for

some of these hypotheses.

Cell division and the brain growth trajectory

It has been proposed previously that protein-coding changes in cell cycle-related genes are highly

relevant candidates for human-specific traits (Pääbo 2014; Prüfer et al. 2014). Indeed, three genes

(CASC5, SPAG5, and KIF18A) have been singled out as involved in spindle pole assembly during

mitosis  (Pääbo 2014). Other genes with protein-coding SNCs (NEK6 and  STARD9/KIF16A) turn
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out to be implicated in the regulation of spindle pole assembly as well  (O’Regan and Fry 2009;

Torres et al.  2017). Among the 15 fixed protein-coding changes identified here but absent from

previous analyses (Pääbo 2014; Prüfer et al. 2014), some might have also contributed to complex

modifications of pathways in cell division, like  AHR (Puga et al. 2002) or  DNHD1 (Bader et al.

2011) (Supplementary Information 1), as well as other genes with HHMCs, like CHEK1 (Zachos et

al. 2017) or the gene encoding for the protein TOP2A (Yoshida and Azuma 2016), which shows the

largest  number  of  interactions  with  other  HHMC-carrying  proteins,  suggesting  a  function  as

interaction hub in the cell division complex (Supplementary Information 1). Taken together, these

changes  suggest  that  the  cell  cycle  machinery  might  have  been modified  in  a  specific  way in

humans compared to other hominins.

It  has  been  claimed  (Prüfer  et  al.  2014) that  genes  with  fixed  non-synonymous  changes  in

humans  are  also  more  often  expressed  in  the  ventricular  zone  of  the  developing  neocortex,

compared to fixed synonymous changes. Since the kinetochore-associated genes  CASC5, KIF18A

and  SPAG5  are  among  these  genes,  it  has  been  emphasized  that  this  “may  be  relevant

phenotypically  as the orientation of  the mitotic  cleavage plane in  neural  precursor  cells  during

cortex development is thought to influence the fate of the daughter cells and the number of neurons

generated (Fietz and Huttner 2011)” (Prüfer et al. 2014). Several fixed SNCs on the modern human

lineage are observed for  CASC5 (two changes) and  SPAG5 (three changes), which is also among

genes with a relatively high proportion of HF changes (Table S5). The changes in KIF18A, KIF16A

and  NEK6  can no longer be considered as fixed, but occur at very high frequencies (>99.9%) in

present-day humans. We attempted to determine whether an enrichment of genes with HHMCs on

the human lineage can be observed in the ventricular zone (Miller et al. 2014), but instead find an

enrichment in the intermediate zone, where less than 5% of random gene sets of the same size are

expressed. However, synonymous HF changes also show an enrichment in this layer, as well as

genes with AHMCs (Table S10), suggesting an overrepresentation of genes that carry mutations in

the coding regions rather than lineage-specific effects. We were able to broadly recapitulate the

observation of an enrichment of expression in the ventricular zone if restricting the test to genes

with non-synonymous changes at a frequency greater than 99.9% in present-day humans, which is

not observed for corresponding synonymous and archaic non-synonymous changes (Table S10).

Among the 28 genes expressed in the ventricular zone that carry almost fixed HHMCs, four might

be enriched for HF changes in humans (HERC5, LMNB2, SPAG5, VCAM1),  and one shows an

excess of HF changes on the human compared to the archaic lineage (AMKMY1). Other notable

genes discussed in this study include ADSL, FAM178A, KIF26B, SLC38A10, and SPAG17.

The  centrosome-cilium  interface  is  known  to  be  critical  for  early  brain  development,  and

centrosome-related  proteins  are  overrepresented  in  studies  on  the  microcephaly  phenotype  in

humans  (Megraw et al.  2011). We find 126 genes (Table S9) with 143 HHMCs that putatively

interact with proteins at the centrosome-cilium interface  (Gupta et al. 2015). Some of the genes
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listed here and discussed in this study, such as FMR1, KIF15, LMNB2, NCOA6, RB1CC1, SPAG5

and TEX2,  harbor not only HHMCs, but an overall high proportion of HF changes on the human

lineage. Although an early analysis suggested several candidate genes associated to microcephaly,

not all of these could be confirmed by high-coverage data. Among eleven candidate genes (Green et

al. 2010), only two (PCNT, UCP1) are among the HHMC gene list presented here, while most of

the other changes are not human-specific, and only PCNT has been related to microcephaly (Li et

al.  2015).  Nevertheless,  more changes  related  to  microcephaly are  found on both lineages,  for

example  in  ATRX  (K.  Ritchie  et  al.  2014) or  CASC5  (Genin  et  al.  2012) (Supplementary

Information 3).

Changes in genes associated with brain growth trajectory differences lead not necessarily to a

decrease but also an increase of brain size  (Montgomery et al. 2011), suggesting that the disease

phenotype of macrocephaly might point to genes relevant in the context of brain growth as well.

One of the few genes with several HHMCs,  CASC5, has  been found to be associated with gray

matter volume differences  (Shi et al. 2017). It has been claimed that mutations in  PTEN alter the

brain growth trajectory and allocation of cell types through elevated Beta-Catenin signaling (Chen

et al. 2015). This well-known gene, critical for brain development  (Li et al. 2017), has not been

highlighted in the context of human-specific changes, while we find that  PTEN falls among the

genes with an excess on the modern human over the archaic lineage, suggesting that regulatory

changes in this gene might have contributed to human-specific traits. This is also the case for the

HHMC-carrying transcription factor TCF3, which is known to repress Wnt-Beta-Catenin signaling

and maintain  the  neural  stem cell  population  during  neocortical  development  (Kuwahara  et  al.

2014). Changes in these and other genes (Supplementary Information 3) like CCND2 (Mirzaa et al.

2014),  GLI3 (Jamsheer et al. 2012), or RB1CC1 (Wang et al. 2013), for which a regulatory SNC

has been suggested to modify transcriptional activity (Weyer and Pääbo 2016) and which carries a

signature of  positive selection  (Prüfer  et  al.  2014),  could have contributed to  the brain growth

trajectory changes hypothesized to give rise to the modern human-specific globular braincase shape

during the past several 100,000 years (Gunz et al. 2012; Hublin et al. 2015; Neubauer et al. 2018).

Finally, we find changes that might have affected the size of the cerebellum, a key contributor to our

brain shape (Kochiyama et al. 2018; Neubauer et al. 2018), such as HF regulatory SNCs in ZIC1

and  ZIC4  (Blank et  al.  2011), an excess of  HF mutations in  AHI1 (Cheng et  al.  2012),  and a

deleterious HHMC in ABHD14A, which is a target of ZIC1 (Hoshino et al. 2003).

Cellular features of neurons

To form critical networks during the early development of the brain, axonal extensions of the

neurons in the cortical region must be sent and guided to eventually reach their synaptic targets.

Studies conducted on avian vocal learners (Pfenning et al. 2014; Wang et al. 2015) have shown a

convergent differential regulation of axon guidance genes of the SLIT-ROBO families in the pallial
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motor nucleus of the learning species, allowing for the formation of connections virtually absent in

the brains of vocal non-learners. In modern humans, genes with axon-guidance-related functions

such as FOXP2, SLIT2 and ROBO2 have been found to lie within deserts of archaic introgression

(Sankararaman  et  al.  2016;  Vernot  et  al.  2016;  Kuhlwilm  2018),  suggesting  incompatibilities

between modern humans and archaics for these regions. Our dataset contains a fair amount of genes

known to impact brain wiring: Some of the aforementioned microtubule-related genes, specifically

those associated with axonal transport and known to play a role in post-mitotic neural wiring and

plasticity  (Lüders  2016),  are  associated  with  signals  of  positive  selection,  such  as  KIF18A

(McVicker et  al.  2016) or  KATNA1  (Ahmad et al.  1999; Karabay et al.  2004).  Furthermore, an

interactor of  KIF18A, KIF15 (Kevenaar et al. 2017),  might have been under positive selection in

modern  humans  (Peyrégne  et  al.  2017),  and  contains  two  HHMCs.  Versican  (VCAN),  which

promotes neurite outgrowth (Wu et al. 2004), carries three HHMCs, and SSH2 (two HHMCs) might

be involved in neurite outgrowth (Cuberos et al. 2015). PIEZO1, which carries a non-synonymous

change that is almost fixed in modern humans, is another factor in axon guidance  (Koser et al.

2016), as well as NOVA1 (Jensen et al. 2000), which is an interactor of ELAVL4 (Ratti et al. 2008), a

gene that codes for a neuronal-specific RNA-binding protein and might have been under positive

selection in humans (Zhou et al. 2015; Peyrégne et al. 2017). Furthermore, we find one of the most

deleterious regulatory SNCs in the Netrin receptor UNC5D, which is critical for axon guidance

(Takemoto et al. 2011).

We also detect changes in genes associated with myelination and synaptic vesicle endocytosis,

critical to sustain a high rate of synaptic transmission, including  DCX  (Yap et al.  2012),  SCAP

(Verheijen et al. 2009), RB1CC1 (Menzies et al. 2015), ADSL (Jurecka et al. 2012) and PACSIN1

(Widagdo et al. 2016) among others (Supplementary Information 2). It is noteworthy that among

traits  associated  with  cognitive  functions  such  as  language  or  theory  of  mind,  the  timing  of

myelination appears to be a good predictor of computational abilities (Skeide and Friederici 2016;

Grosse Wiesmann et al. 2017). Computational processing might have been facilitated by some of

the changes presented here, at least in some of the circuits that have expanded in our lineage (Mars

et al. 2018), since subtle maturational differences early in development  (Dubois et al. 2016) may

have had a considerable impact on the phenotype. In this context, it is worth mentioning that in our

dataset, several genes carrying HHMCs and associated with basal ganglia functions (critical for

language and cognition) stand out, like  SLITRK1  (Abelson et al. 2005) and  NOVA1  (Jelen et al.

2010;  Konopka  et  al.  2012;  Alsiö  et  al.  2013;  Zhou  et  al.  2015;  Popovitchenko  et  al.  2016)

(Supplementary Information 4). Finally, in the broader context of cognition, we find an enrichment

of HHMCs in genes associated to “Alzheimer's disease (cognitive decline)” and “Cognitive decline

(age-related)”, with seven associated genes (COX7B2, BCAS3, DMXL1, LIPC, PLEKHG1, TTLL2

and VIT). Among genes influencing behavioral traits (Supplementary Information 4) are  GPR153

(Sreedharan et al. 2011), NCOA6 (Takata et al. 2018), or the Adenylosuccinate Lyase (ADSL) (Fon
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et al.  1995), for which the ancestral  Neanderthal-like allele has not been observed in 1,000s of

modern  human  genomes  and  which  has  been  pointed  out  before  as  under  positive  selection

(Castellano et al. 2014; Racimo et al. 2014; Racimo 2016; Peyrégne et al.  2017) We know that

archaic hominins likely had certain language-like abilities  (Dediu and Levinson 2013; Dediu and

Levinson  2018),  and  hybrids  of  modern  and  archaic  humans  must  have  survived  in  their

communities  (Fu  et  al.  2015),  underlining  the  large  overall  similarity  of  these  populations.

However, genes associated with axon guidance functions, which are important for the refinement of

neural circuits including those relevant for speech and language, are found in introgression deserts

(Jeong et al. 2016; Lei et al. 2017), which seems to be a unidirectional and human-specific pattern

especially in the  FOXP2 region  (Kuhlwilm 2018). We suggest that  modifications of a complex

network in  cognition or learning took place in  modern human evolution  (Boeckx and Benítez-

Burraco 2014), possibly related to other brain-related (Bastir et al. 2011; Hublin et al. 2015; Boeckx

2017; Bryant and Preuss 2018), vocal tract  (Gokhman et al. 2017) or neural changes  (Belyk and

Brown 2017).

The craniofacial phenotype

In previous work on ancient genomes  changes related to craniofacial  morphology have been

highlighted (Castellano et al. 2014; Gokhman et al. 2017), and we find an enrichment of genes with

an excess  of  HF SNCs on the  modern  human lineage  for  soft  palate  development  (Table  S6).

Among genes harboring an excess of HF SNCs associated with specific facial features, we find

RUNX2,  EDAR,  and GLI3 (Adhikari et al. 2016),  NFATC1 (Kim and Kim 2014),  SPOP (Cai and

Liu 2016), DDR2 (Zhang et al. 2011) and NELL1 (Zhang et al. 2012), possibly carrying changes in

regulatory  regions,  while  mutations  in  the HHMC-carrying gene  encoding for  the  transcription

factor ATRX cause facial dysmorphism (Moncini et al. 2013). In addition, genes with HHMCs such

as  PLXNA2  (Oh  et  al.  2012),  EVC2  (Kwon et  al.  2018),  MEPE  (Gullard  et  al.  2016),  OMD

(Tashima et al. 2015), and SPAG17 (Teves et al. 2015) are known to affect craniofacial bone and

tooth morphologies. These genes appear to be important in determining bone density, mineralization

and remodeling, hence they may underlie differences between archaic and modern human facial

growth (Lacruz et al. 2015). Some of these facial properties may have been present in the earliest

fossils attributed to  H. sapiens,  like the  Jebel Irhoud fossils  (Hublin et al. 2017), deviating from

craniofacial features which emerged in earlier forms of Homo (Lacruz et al. 2013), and may have

become established before some brain-related changes discussed here (Stringer 2016; Neubauer et

al. 2018). The gene encoding the transcription factor  PRDM10 stands out for carrying  HHMCs,

being found in selective sweep regions and the second-most interacting protein within the HHMC

dataset. Although little is known about PRDM10, it may be related to dendrite growth (Siegel et al.

2002) and neural crest related changes that contributed to the formation of our distinct modern face

(Park and Kim 2010). Other craniofacial morphology-related genes, such as DCHS2 (Adhikari et al.
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2016), HIVEP2 (Jones et al. 2010), HIVEP3 (Imamura et al. 2014), FREM1 (Lee et al. 2017), and

FRAS1 (Talbot et al. 2016) harbor AHMCs, while another bone-related gene, MEF2C (Verzi et al.

2007), shows an excess of HF changes on the archaic lineage. These changes may underlie some of

the prominent derived facial traits of Neanderthals (Rak 1986).

Life history and other phenotypic traits

Apart  from  their  consequences  for  cognitive  functions,  it  has  been  suggested  that  changes

involved in synaptic plasticity might be interpreted in a context of neoteny (Somel et al. 2009; Liu

et al.  2012; Peyrégne et  al.  2017; Sherwood and Gómez-Robles 2017), with the implication of

delayed maturation in  humans  (Bednarik 2013) and a  longer  timeframe for brain development.

However, given their similar brain sizes (Hofman 1983), humans and Neanderthals might both have

needed a long overall maturation time (Ponce de León et al. 2017; Rosas et al. 2017). Accordingly,

notions like neoteny and heterochrony are unlikely to be fine-grained enough to capture differences

between  these  populations,  but  early  differences  in  infant  brain  growth  between  humans  and

Neanderthals  (Gunz et al. 2010; Hublin et al. 2015) could have rendered our maturational profile

distinct during limited developmental periods and within specific brain regions, imposing different

metabolic requirements  (Bruner et al. 2014). One of the brain regions where such differences are

found is the orbitofrontal cortex (OFC) (Bastir et al. 2011), and we find that the OFC at infant age

(0-2 years) is enriched for the expression of genes that carry HHMCs compared to synonymous

SNCs. We suggest that the development of the OFC in infants might have been subject to subtle

changes  since the split  from Neanderthals  rather  than a  general  developmental  delay,  which  is

particularly interesting given that this brain region has been implied in social cognition (Beer et al.

2006) and learning (Miller et al. 2018).

Genes carrying HHMCs are enriched for expression in the gray matter of the forebrain at the

adolescent age compared to AHMC-carrying genes, hence additional human-specific modifications

during this period might have taken place,  possibly linked to changes in myelination described

above.  It  has  been  suggested  that  differences  in  childhood  adolescence  time  existed  between

humans and Neanderthals, after a general developmental delay in the hominin lineage (Smith and

Tompkins  1995;  Bock  and  Sellen  2002).  Dental  evidence  suggests  an  earlier  maturation  in

Neanderthals than modern humans (Smith et al. 2010), and it has been claimed that Neanderthals

might  have  reached  adulthood  earlier  (Ramirez  Rozzi  and  de  Castro  2004).  Furthermore,  an

introgressed indel from Neanderthals causes an earlier onset of menarche in present-day humans

(Chintalapati et al. 2017), supporting at least the existence of alleles for earlier maturation in the

Neanderthal population. Among the genes carrying fixed HHMCs, NCOA6 has also been linked to

age at menarche and onset of puberty (Day et al. 2017), as well as placental function (Antonson et

al. 2003). This putative transcription factor is enriched in HF changes and has been suggested to

have been under positive selection on the modern human lineage (Racimo et al. 2014; Peyrégne et
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al. 2017). The HHMC is located nearby and three 5’-UTR variants within a putatively selected

region (Zhou et al. 2015), with an estimated time of selection at around 150 kya (assuming a slow

mutation rate). Even though this gene carries an AHMC as well, it remains possible that modern

humans acquired subtle differences in their reproductive system through lineage-specific changes in

this gene. A delay in reproductive age may influence overall longevity, another trait for which our

data set yields an enrichment of genes with HHMCs (SLC38A10, TBC1D22A and ZNF516).

The male reproductive system might have been subject to changes as well, since we find that

several proteins in spermatogenesis seem to carry two HHMCs: Sperm Specific Antigen 2 (SSFA2),

Sperm Associated Antigen 17 (SPAG17), ADAM18 (Zhu et al. 1999) and WDR52 (Tang et al. 2017),

out  of  which  ADAM18  and  SPAG17  also  carry  AHMCs.  Lineage-specific  differences  in  genes

related to sperm function or spermatogenesis might have been relevant for the genetic compatibility

between humans and Neanderthals.  Another  gene harboring a  HHMC with similar  functions is

EPPIN (Wang et al. 2005), which shows no HF changes on the archaic, but 27 such SNCs on the

modern human lineage. The gene encoding for the Testis Expressed 2 protein (TEX2) is enriched for

HF changes in both humans and archaics, with one HHMC and five AHMCs, but its function is not

yet known. Another possible SNC that might be relevant in this context is a splice site change in

IZUMO4,  since proteins encoded by the IZUMO family form complexes on mammalian sperm

(Ellerman et al. 2009). The adjacent exon is not present in all transcripts of this gene, suggesting a

functional role of this splice site SNC. Finally, genes in the GO category “spermatoproteasome

complex” are enriched for an excess of HF changes on the human lineage.

It has been found that Neanderthal alleles contribute to addiction and, possibly, pain sensitivity in

modern  humans  (Simonti  et  al.  2016;  Dannemann  et  al.  2017).  In  this  context,  an  interesting

protein-truncating SNC at  high  frequency in  humans is  the loss  of  a  stop codon in the  opioid

receptor OPRM1 (6:154360569), potentially changing the structure of the protein encoded by this

gene in some transcripts. Other mutations in this gene are associated to heroin addiction (Shi et al.

2002),  and  pain  perception  (Tan  et  al.  2009),  but  also  sociality  traits  (Pearce  et  al.  2017).

Interestingly, a recent study found a pain insensitivity disorder caused by a mutation in  ZFHX2

(Habib et al. 2017),  which carries an AHMC, and three HHMCs are observed in  NPAP1, which

might be associated with the Prader-Willi syndrome, involving behavioral problems and a high pain

threshold (Buiting et al. 2007). Such changes may point to differences in levels of resilience to pain

between Neanderthals and modern humans.

Conclusion

The  long-term evolutionary  processes  that  led  to  the  human condition  (Pääbo 2014) is  still

subject to debate and investigation, and the high-quality genomes from archaic humans provide

opportunities to explore the recent evolution of our species. We want to contribute to an attempt to
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unveil the genetic basis of specific molecular events in the time-window after the split from these

archaic populations and before the emergence of most of the present-day diversity. We sought to

combine different sources of information,  from genome-wide enrichment analyses to  functional

information  available  for  specific  genes,  to  identify  threads  linking  molecular  needles  in  this

expanded haystack.  In  doing so,  we have mainly built  on existing proposals  concerning brain-

related changes, but we have divided the observations into different biological levels, from cellular

changes  through  brain  organization  differences  to  complex  phenotypic  traits.  Only  future

experimental work will determine which of the changes highlighted here contributed significantly to

making  us  “fully  human”.  We  hope  that  our  characterization  and  presentation  of  some  new

candidate genes will help prioritize inquiry in this area, since the specific type of validation depends

on each candidate gene or network.

Methods

We used  the  publicly  available  high-coverage  genotypes  for  three  archaic  individuals:  One

Denisovan (Meyer et al. 2012), one Neanderthal from the Denisova cave in Altai mountains (Prüfer

et al. 2014), and another Neanderthal from Vindija cave, Croatia  (Prüfer et al. 2017). The data is

publicly available under http://cdna.eva.mpg.de/neandertal/Vindija/VCF/, with the human genome

version hg19 as reference, covering ~1.8 billion base pairs of the genome (Prüfer et al. 2017). We

applied further filtering to remove sites with less than 5-fold coverage and more than 105-fold

coverage in the Altai Neanderthal or 75-fold coverage in the other archaic individuals, if such cases

occurred. We also removed sites with genotype quality smaller than 20, and heterozygous sites with

strong allele imbalance (<0.2 minor allele frequency). Although these permissive filters increase

power compared to previous studies, we caution that in some cases genotypes might be incorrect.

We added the genotype and coverage for the exome and chromosome 21 sequences of the Vindija

and El Sidrón Neanderthals from previous studies  (Castellano et al. 2014; Kuhlwilm et al. 2016),

with 75-fold and 50-fold coverage cutoffs, respectively. These studies provided data for the same

Vindija individual (Prüfer et al. 2017).

We applied the Ensembl Variant Effect Predictor VEP (McLaren et al. 2016) in order to obtain

inferences  for  protein-coding  and  regulatory  mutations,  scores  for  SIFT  (Kumar  et  al.  2009),

PolyPhen (Adzhubei et al. 2010), CADD (Kircher et al. 2014) and GWAVA (G.R.S. Ritchie et al.

2014), and allele frequencies in the 1000 Genomes and ExAC human variation databases (Auton et

al. 2015; Lek et al. 2016). We used the inferred ancestral allele from published data on multiple

genome alignments (Paten et al. 2008), and at positions where this information was not available,

the macaque reference allele,  rheMac3  (Yan et al. 2011). We determined the allele frequencies in

present-day humans using the dbSNP database build 147  (Sherry et al.  2001). We retrieved the
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counts for each allele type, and summarized the counts of non-reference alleles at each position.

Grantham scores (Grantham 1974) were calculated for missense mutations.

Data processing and database retrieval was performed using bcftools/samtools v1.0  (Li 2011),

bedtools v2.16.2 (Quinlan and Hall 2010), and R/Bioconductor (Huber et al. 2015), with rtracklayer

(Lawrence et  al.  2009) and biomaRt  (Durinck et  al.  2005) packages, and plotting with Rcircos

(Zhang et  al.  2013). We analyzed all positions where at least two alleles (human reference and

alternative allele) were observed among the human reference and at least one out of three of the

high-coverage  archaic  individuals,  in  at  least  one  archaic  chromosome.  The  22  autosomal

chromosomes and the X chromosome were analyzed, in the absence of Y chromosome data for the

three  female  archaic  individuals.  The  data  for  4,409,518  segregating  sites  is  available  under

[http:tbd.database]. The following subsets were created:

Fixed differences: Positions where all present-day humans carry a derived allele, while at least

two out of three archaics carry the ancestral allele, accounting for potential human gene flow into

Neanderthals.

High-frequency (HF) differences: Positions where more than 90% of present-day humans carry a

derived  allele,  while  at  least  the  Denisovan  and  one  Neanderthal  carry  the  ancestral  allele,

accounting for different types of errors and bi-directional gene flow.

Extended high-frequency differences: Positions where more than 90% of present-day humans

carry a derived allele, while one of the following conditions is true: a) Not all archaics have reliable

genotypes,  but  those that  have carry the ancestral  allele.  b)  Some archaics carry an alternative

genotype that is not identical to either the human or the ancestral allele. c) The Denisovan carries

the ancestral allele, while one Neanderthal carries a derived allele, which allows for gene flow from

humans into Neanderthals. d) The ancestral allele is missing in the EPO alignment, but the macaque

reference sequence is identical to the allele in all three archaics.

We also created corresponding lists of archaic-specific changes. Fixed changes were defined as

sites where the three archaics carry the derived allele, while humans carry the ancestral allele at

more than 99.999%. High-frequency changes occur to less than 1% in present-day humans, while at

least  two archaic  individuals  carry  the derived allele.  An extended list  presents  high-frequency

changes where the ancestral allele is unknown, but the macaque allele is identical to the present-day

human allele.

A ranking of mutation density was performed for genes with protein-coding sequences and their

genomic regions as retrieved from Ensembl. For each gene, unique associated changes as predicted

by VEP were counted. A ranking on the number of HF changes per gene length was performed for

all genes that span at least 5,000 bp in the genome and carry at least 25 segregating sites in the

dataset (at any frequency in humans or in archaics), in order to remove genes which are very short

or poor in mutations. The top 5% of the empirical distribution was defined as putatively enriched

for changes on each lineage. The ratio of lineage-specific HF changes was calculated for the subset
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of genes where at least 20 lineage-specific HF changes were observed on the human and the archaic

lineages combined. The top 10% of the empirical distribution was defined as putatively enriched for

lineage-specific changes.

We performed enrichment tests using the R packages ABAEnrichment  (Grote et al. 2016) and

DescTools (Signorell 2017). We used the NHGRI-EBI GWAS Catalog (MacArthur et al. 2017), and

overlapped the associated genes with protein-coding changes on the human and archaic lineages,

respectively. We counted the number of HF missense changes on each lineage and the subset of

those associated to each trait (“Disease trait”), and performed a significance test (G-test) against the

number of genes associated to each trait, and all genes in the genome, with a P value cutoff at 0.1.

This suggests a genome-wide enrichment of changes for each trait. We then performed a G-test

between the numbers of HF missense changes on each lineage, and the subset of each associated to

each trait  (P-value cutoff at  0.1),  to  determine a  difference between the two lineages.  We then

performed an empirical test by creating 1,000 random sets of genes with similar length as the genes

associated to each trait, and counting the overlap to the lineage-specific missense changes. At least

90% of these 1,000 random sets were required to contain fewer missense changes than the real set

of  associated  genes.  Only  traits  were  considered  for  which  at  least  10  associated  loci  were

annotated.

Gene Ontology (GO) enrichment was performed using the software FUNC (Prüfer et al. 2007),

with a significance cutoff of the adjusted p-value < 0.05 and a family-wise error rate < 0.05. When

testing missense changes, a background set of synonymous changes on the same lineage was used

for the hypergeometric test. When testing genes with relative mutation enrichment, the Wilcoxon

rank  test  was  applied.  Enrichment  for  sequence-specific  DNA-binding  RNA  polymerase  II

transcription factors and transcription factor candidate genes from (Chawla et al. 2013), and genes

interacting at the centrosome-cilium interface (Gupta et al. 2015) was tested with an empirical test

in which 1,000 random sets of genes were created that matched the length distributions of the genes

in the test list. The same strategy was applied for genes expressed in the developing brain (Table

S10)  (Miller  et  al.  2014).  Protein-protein interactions  were analyzed using  the STRING online

interface v10.5  (Szklarczyk et al. 2017) with standard settings (medium confidence, all sources,

query  proteins  only)  as  of  January  2018.  The  overlap  with  selective  sweep  screens  considers

HHMCs within 50,000 bp of the selected regions (Prüfer et al. 2014; Zhou et al. 2015; Peyrégne et

al. 2017).
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Figure Legends

Figure 1: Conceptual summary of this study.

Figure  2:  Features  discussed  in  this  study.  From  inside  to  outside:  Genes  with  HHMCs  and

signatures of positive selection (compare Table 2), genes with fixed non-synonymous SNCs on the

human lineage, HHMCs, AHMCs, karyogram of human chromosomes.
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