
Who is this gene and what does it do?

A toolkit for munging transcriptomics data in python

Charles K. Fisher,∗ Aaron M. Smith, and Jonathan R. Walsh

Unlearn.AI, Inc., San Francisco, CA 94108

(Dated: April 5, 2018)

Abstract
Transcriptional regulation is extremely complicated. Unfortunately, so is working with transcrip-

tional data. Genes can be referred to using a multitude of different identifiers and are assigned to

an ever increasing number of categories. Gene expression data may be available in a variety of units

(e.g, counts, RPKMs, TPMs). Batch effects dominate signal, but metadata may not be available.

Most of the tools are written in R. Here, we introduce a library, genemunge, that makes it easier to

work with transcriptional data in python. This includes translating between various types of gene

names, accessing Gene Ontology (GO) information, obtaining expression levels of genes in healthy

tissue, correcting for batch effects, and using prior knowledge to select sets of genes for further

analysis. Code for genemunge is freely available on Github.

∗ drckf@unlearn.ai; authors listed alphabetically.

1

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 10, 2018. ; https://doi.org/10.1101/299107doi: bioRxiv preprint

http://github.com/unlearnai/genemunge
mailto:drckf@unlearn.ai
https://doi.org/10.1101/299107
http://creativecommons.org/licenses/by/4.0/

I. OVERVIEW

munge: verb

1. to manipulate (raw data), especially

to convert (data) from one format to

another.

www.dictionary.com/browse/munge

Like any area that uses big data, transcriptomics data requires extensive munging – rote

but critical tasks such as cleaning data, selecting relevant data, structuring metadata, and

making labels interpretable. These tasks often need to be repeated on a given project as

the data and aims evolve, and tend to be similar between different analyses. To face these

challenges, a library of data munging tools can be extraordinarily useful. Such a library can

provide reliable and tested tools to cleanly separate munging tasks from analysis, making it

easier to start new projects and data processing pipelines less fragile.

This note introduces genemunge, a library of tools for working with human transcrip-

tomics data. genemunge is written in python and is available as a package through PyPI.

This initial version, v0.0, contains tools for tasks such as:

• Translating between conventions for gene symbols [1].

• Accessing Gene Ontology (GO) metadata [2–4].

• Using prior knowledge of biological and molecular processes to select gene sets [5, 6].

• Retrieving statistics on gene expression in healthy tissue [7–10].

• Converting expression data to TPM from counts or RPKM [11].

• Correcting for unobserved, and uninteresting, factors of variation (i.e., batch effects).

[12, 13].

The goal of genemunge, and its current use case for the authors, is to serve as a resource for

gene information that can return useful data structures and be integrated into processing

pipelines. The next section gives a few example use cases of the library.

2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 10, 2018. ; https://doi.org/10.1101/299107doi: bioRxiv preprint

https://doi.org/10.1101/299107
http://creativecommons.org/licenses/by/4.0/

II. EXAMPLE USE CASES OF GENEMUNGE

We consider a simple analysis where genemunge is useful. Suppose we want to find genes

associated with the immune system, select those with larger expression in the small intestine

than the stomach, and then retrieve basic information about those genes.

The following code snippets use the API from genemunge v0.0. We begin by importing

libraries required for the example.

1 import json

2 import numpy as np

3 import pandas as pd

4 import matplotlib.pyplot as plt

5

6 import genemunge

A. Searching the gene ontology for relevant genes

The Gene Ontology (GO) contains basic descriptors for each ontology entry [2–4]. Since

we want genes related to the immune system, we will do a keyword search for immune and

retrieve GO identifiers with this keyword. We can then obtain the associated genes.

8 # set up an object to search the gene ontology

9 searcher = genemunge.search.Searcher()

10

11 # get all of the GO identifiers associated with the word ’immune’

12 # set exact = False to walk through the ontology and grab all child terms

13 immune_identifiers = searcher.keyword_search([’immune’], exact=False)

14

15 # get all of the genes assigned to the immune_identifiers

16 immune_genes = searcher.get_genes(immune_identifiers)

We will then use prior knowledge to remove housekeeping genes. A list of housekeeping

genes curated by [6] is stored in genemunge.

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 10, 2018. ; https://doi.org/10.1101/299107doi: bioRxiv preprint

https://doi.org/10.1101/299107
http://creativecommons.org/licenses/by/4.0/

18 # get a list of housekeeping genes

19 housekeeping = searcher.get_housekeeping_genes()

20

21 # keep all of the immune related genes that are not housekeeping genes

22 variable_immune_genes = list(set(immune_genes) - set(housekeeping))

B. Obtaining statistics about gene expression

We can use genemunge to access summary statistics from the GTEx project (through

recount) about expression levels in healthy tissue [7–10]. The median expression value can

be used to find genes that are more expressed in the small intestine than the stomach.

24 # set up an object to describe genes

25 describer = genemunge.describe.Describer(’symbol’)

26

27 # find the absolute and relative expression levels of each gene of interest

28 expression_data = pd.DataFrame(index=variable_immune_genes,

29 columns=[’expression’, ’log ratio’])

30

31 # get the expression levels in healthy tissue (in TPM units)

32 stats = describer.tissue_stats[’median’].reindex(variable_immune_genes)

33 expression_data[’expression’] = stats[’Small Intestine’]

34

35 # control the log with a small pseudocount

36 pseudocount = 1. 0

37 expression_data[’log ratio’] = np.log1 0(

38 (pseudocount + stats[’Small Intestine’]) / (pseudocount + stats[’Stomach’]))

A scatter plot of the relative expression in the small intestine to the stomach against the

absolute expression in the small intestine is shown in Figure 1.

40 # plot the gene expression fraction

41 fig, ax = plt.subplots(figsize=(12, 8))

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 10, 2018. ; https://doi.org/10.1101/299107doi: bioRxiv preprint

https://doi.org/10.1101/299107
http://creativecommons.org/licenses/by/4.0/

42 plt.xticks(fontsize=16)

43 plt.yticks(fontsize=16)

44

45 ax.scatter(expression_data[’expression’], expression_data[’log ratio’])

46 ax.set_xlabel(’Small Intestine expression [TPM]’, fontsize=2 0)

47 ax.set_ylabel(’log1 0ratio (Small Intestine / Stomach)’, fontsize=2 0)

48 ax.set_xscale(’log’)

49 ax.set_xlim([0. 001, 1e5])

50 ax.set_ylim([-3, 4])

51 plt.savefig(’small_intestine_example.png’, bbox_inches=’tight’, dpi=3 00)

52 plt.show()

FIG. 1: Scatter plot showing the relative expression between the small intestine and the

stomach versus the absolute expression in the small intestine. Genes of interest are in the

upper arm.

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 10, 2018. ; https://doi.org/10.1101/299107doi: bioRxiv preprint

https://doi.org/10.1101/299107
http://creativecommons.org/licenses/by/4.0/

C. Converting between gene identifier types

In genemunge, the base representation of genes is in terms of their Ensembl ID (without

a version number). We will want to see the gene symbol in the results, so we convert the

gene symbols.

54 # set up an object to convert from ensembl to symbol

55 ensembl_to_symbol = genemunge.convert.IDConverter(’ensembl_gene_id’, ’symbol’)

56

57 # convert the immune identifiers to gene symbols

58 variable_immune_symbols = ensembl_to_symbol.convert_list(variable_immune_genes)

59

60 # reset the index of the dataframe

61 expression_data.index = variable_immune_symbols

We can then select genes with high relative expression. Of course, one should be careful

with this type of thing and do a differential expression analysis, but we’ll just wing it.

63 # select genes with high relative expression

64 target_genes = expression_data[expression_data[’log ratio’] > 1]

65 target_genes = target_genes.sort_values(by=[’expression’], ascending=False)

D. Displaying information about a gene

Finally, we can look at metadata and gene expression data from GTEx on one of these

genes (in this case, the most highly expressed gene).

67 # get some basic information about one of the immune genes

68 print(json.dumps(describer.get_gene_info(target_genes.index[0]), indent=2))

69

70 # make a plot of the expression of one of the immune genes across tissues

71 describer.plot_tissue_expression(target_genes.index[0], sortby=’median’,

72 filename=’gene_expr_example.png’)

The genemunge output of the gene info is

"ensembl": "ENSG 00000164816",

6

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 10, 2018. ; https://doi.org/10.1101/299107doi: bioRxiv preprint

https://doi.org/10.1101/299107
http://creativecommons.org/licenses/by/4.0/

"symbol": "DEFA5",

"name": "defensin alpha 5",

"ontology": {

"GO: 0005576": "extracellular region",

"GO: 005 083 0": "defense response to Gram-positive bacterium",

"GO: 005 0832": "defense response to fungus",

"GO: 003164 0": "killing of cells of other organism",

"GO: 0045 087": "innate immune response",

"GO: 001973 0": "antimicrobial humoral response",

"GO: 005 0829": "defense response to Gram-negative bacterium",

"GO: 0061844": "antimicrobial humoral immune response mediated by antimicrobial peptide",

"GO:19 0571 0": "positive regulation of membrane permeability",

"GO: 0051673": "membrane disruption in other organism",

"GO: 0005796": "Golgi lumen",

"GO: 0005615": "extracellular space",

"GO: 0002227": "innate immune response in mucosa",

"GO: 0034774": "secretory granule lumen",

"GO: 00428 03": "protein homodimerization activity",

"GO: 0019731": "antibacterial humoral response",

"GO: 003 0133": "transport vesicle",

"GO: 0071222": "cellular response to lipopolysaccharide"

}

and the gene expression profile from GTEx is shown in Figure 2. As expected, DEFA5 is

highly expressed in the small intestine and, in this case, nowhere else.

E. Other stuff we aren’t covering

This example does not use all of the features of genemunge. For example, one could also

use genemunge to identify transcription factors, or look up the lengths of genes and use them

to convert data from counts to TPM units. You can even perform unsupervised correction

of batch effects using the Remove Unwanted Variation (RUV) algorithm [12, 13]. You can

read more about all of the amazing things genemunge can do in the documentation.

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 10, 2018. ; https://doi.org/10.1101/299107doi: bioRxiv preprint

https://doi.org/10.1101/299107
http://creativecommons.org/licenses/by/4.0/

FIG. 2: Gene expression profile in healthy tissue from GTEx for an example gene.

III. SUMMARY

genemunge was built to make working with transcriptomics data easier. It provides a

simple way to select genes of interest in an analysis and return useful metadata about them.

We find that it is a useful component of a larger analysis and data processing pipeline. Our

intent on open sourcing the package is to engage with the computational biology commu-

nity and build it into a broadly useful tool. We welcome feedback, feature requests, and

contributions on genemunge through GitHub.

[1] E. A. Bruford, M. J. Lush, M. W. Wright, T. P. Sneddon, S. Povey, and E. Birney, Nucleic

acids research 36, D445 (2007).

[2] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis,

K. Dolinski, S. S. Dwight, J. T. Eppig, et al., Nature genetics 25, 25 (2000).

[3] G. O. Consortium, Nucleic acids research 32, D258 (2004).

[4] S. Carbon, A. Ireland, C. J. Mungall, S. Shu, B. Marshall, S. Lewis, A. Hub, and W. P. W.

Group, Bioinformatics 25, 288 (2008).

[5] K. Chawla, S. Tripathi, L. Thommesen, A. Lægreid, and M. Kuiper, Bioinformatics 29, 2519

(2013).

[6] E. Eisenberg and E. Y. Levanon, Trends in Genetics 29, 569 (2013).

[7] L. J. Carithers, K. Ardlie, M. Barcus, P. A. Branton, A. Britton, S. A. Buia, C. C. Compton,

D. S. DeLuca, J. Peter-Demchok, E. T. Gelfand, et al., Biopreservation and biobanking 13,

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 10, 2018. ; https://doi.org/10.1101/299107doi: bioRxiv preprint

https://doi.org/10.1101/299107
http://creativecommons.org/licenses/by/4.0/

311 (2015).

[8] L. J. Carithers and H. M. Moore, “The genotype-tissue expression (gtex) project,” (2015).

[9] A. C. Frazee, B. Langmead, and J. T. Leek, BMC bioinformatics 12, 449 (2011).

[10] L. Collado-Torres, A. Nellore, K. Kammers, S. E. Ellis, M. A. Taub, K. D. Hansen, A. E. Jaffe,

B. Langmead, and J. T. Leek, Nature biotechnology 35, 319 (2017).

[11] G. P. Wagner, K. Kin, and V. J. Lynch, Theory in biosciences 131, 281 (2012).

[12] J. A. Gagnon-Bartsch and T. P. Speed, Biostatistics 13, 539 (2012).

[13] L. Jacob, J. A. Gagnon-Bartsch, and T. P. Speed, Biostatistics 17, 16 (2015).

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 10, 2018. ; https://doi.org/10.1101/299107doi: bioRxiv preprint

https://doi.org/10.1101/299107
http://creativecommons.org/licenses/by/4.0/

	Who is this gene and what does it do? A toolkit for munging transcriptomics data in python
	Abstract
	Overview
	Example use cases of genemunge
	Searching the gene ontology for relevant genes
	Obtaining statistics about gene expression
	Converting between gene identifier types
	Displaying information about a gene
	Other stuff we aren't covering

	Summary
	References

