1	
2	Human Papillomavirus Type 16 L1/L2 VLP Experimental Internalisation by Human
3	Peripheral Blood Leukocytes
4	
5	Running Title: HPV16 VLP internalisation in human leukocytes.
6	
7	Aurora Marques Cianciarullo ^{1,2#} , Vivian Szulczewski ^{1,2} , Erica Akemi Kavati ^{1,2} , Tania
8	Matiko Hosoda ^{1,2} , Elizabeth Leão ⁴ , Primavera Borelli ⁵ , Enrique Boccardo ⁶ , Martin Müller ⁷ ,
9	Balasubramanyam Karanam ⁸ , and Willy Beçak ^{1,9}
10	
11	¹ Laboratory of Genetics, Butantan Institute, Secretary of State for Health, 1500 Dr Vital
12	Brazil Avenue, Sao Paulo, SP 05503-900, Brazil.
13	
14	² Program of Postgraduate Interunits in Biotechnology USP-IBU-IPT, Institute of
15	Biomedical Sciences, University of Sao Paulo, 2415 Prof Lineu Prestes Avenue,
16	Biomedical III Building, University City, Sao Paulo, SP 05508-900, Brazil.
17	
18	³ Program of Professional Upgrading at Butantan Institute, Secretary of State for Health,
19	188 Dr Eneas de Carvalho Aguiar, Sao Paulo, SP 05403-000, Brazil.
20	
21	⁴ ELSME – Dr Elizabeth Leão Specialised Medical Services S/C Ltd., Sao Joaquim
22	Hospital, Real and Meritorious Portuguese Beneficence Association, 694 Martiniano de
23	Carvalho Street, Sao Paulo, SP 01321-000, Brazil.
24	

25	⁵ Laboratory of Experimental and Clinical Haematology, Department of Clinical and
26	Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, 580
27	B17 Prof Lineu Prestes Avenue, University City, Sao Paulo, SP 05508-900, Brazil.
28	
29	⁶ Laboratory of Oncovirology, Department of Microbiology, Institute of Biomedical
30	Sciences, University of Sao Paulo, 1374 Prof Lineu Prestes Avenue, Biomedical II
31	Building, University City, Sao Paulo, SP 05508-900, Brazil.
32	
33	⁷ Tumorvirus-specific Vaccination Strategies, Infection, Inflammation and Cancer Program,
34	German Cancer Research Centre (DKFZ), 242 Im Neuenheimer Feld, Heidelberg 69120,
35	Germany.
36	
37	⁸ Department of Pathology, Johns Hopkins University, Room 38, Cancer Research Building
38	2, 1550 Orleans Street, Baltimore, MD 21231, USA.
39	
40	⁹ Department of Biology, Federal University of the Latin-America Integration – UNILA,
41	1842 Silvio Americo Sasdelli Avenue, Vila A, Commercial Lorivo Building, Foz do
42	Iguaçu, PR 85866-000, Brazil.
43	
44	#Corresponding author: Aurora M. Cianciarullo, Laboratory of Genetics, Butantan
45	Institute, 1500 Dr Vital Brazil Avenue, Sao Paulo, SP 05503-900, Brazil, phone +5511
46	26279725, fax +5511 26279714, email: aurora.cianciarullo@butantan.gov.br
47	

48	Footnote: B.K. present addresses Department of Biology and Cancer Research, 1200 W.
49	Montgomery Road, Tuskegee University, Tuskegee, AL 36088, USA.
50	
51	Keywords: HPV16 L1/L2 VLP, HPV internalisation by lymphocytes, HPV membrane
52	receptors, cancer risk factor, public health.
53	
54	Grant support: This work was supported by grants from the Foundation for Research
55	Support of the State of Sao Paulo – FAPESP (Process number 2004/15122-5), Butantan
56	Institute and Butantan Foundation, Sao Paulo, SP, Brazil.
57	
58	Conflicts of interest: The authors disclose no potential conflict of interest with the
59	publication of this article.
60	
61	Authors email: aurora.cianciarullo@butantan.gov.br, emefjmlisboa@prefeitura.sp.gov.br,
62	erica.kavati@butantan.gov.br, hosodatania@yahoo.com.br, eleao@ibest.com.br,
63	borelli@usp.br, eboccardo@usp.br, martin.mueller@dkfz.de,
64	bkaranam@mytu.tuskegee.edu, wbecak@yahoo.com
65	
66	
67	
68	
69	
70	
71	

72 ABSTRACT

Human papillomavirus (HPV) accounts for hundreds of thousands of new cases of cervical 73 cancer yearly, and half of these women die of this neoplasia. This study investigates the 74 possibility of HPV16 to infect human peripheral blood leukocytes in *ex vivo* assays. We 75 have developed a leukocyte separation method from heparinized blood samples aiming 76 77 cellular integrity and viability. We have expressed humanized L1 and L2 viral capsid 78 proteins in HEK293T epithelial human cells, transiently transfecting them with vectors encoding humanized HPVL1 and L2 genes. Recombinant L1/L2 capsid proteins and 79 80 structured virus-like particles interacted with human peripheral blood mononuclear cells – lymphocytes and monocytes – and were internalised through a pathway involving CD71 81 transferrin receptors. This was observed, at a percentile of about 54% T-CD4, 47% T-CD8, 82 83 48% B-CD20, and 23% for monocytes-CD14. The group of polymorph nuclear cells: neutrophils-eosinophils-basophils group did not internalise any VLPs. Blockage assays 84 with biochemical inhibitors of distinct pathways, like chlorpromazine, rCTB, filipin, 85 86 nystatin, liquemin, and sodium azide also evidentiated the occurrence of virus-like particles' indiscriminate entrance via membrane receptor on mononuclear cells. This study 87 shows that HPV16 L1/L2 VLPs can interact with the plasma membrane surface and 88 89 successfully enter lymphocytes without requiring a specific receptor.

90

91 **IMPORTANCE**

Human papillomaviruses (HPVs) belong to the *Papillomaviridae* family and are classified
in Alpha papillomavirus, Beta papillomavirus, Gamma papillomavirus, and Mu
papillomavirus genera, based on DNA sequence of the L1 gene. They are associated with
the development of benignant skin warts, cell transformation and malignant tumours. L1 is

96	its major capsid protein, and L2 is the minor HPV capsid protein. HPV type 16 is
97	considered a high-risk Alpha papillomavirus due to the association with 50% of cervical
98	cancers worldwide. The most frequent HPV-associated cancer type is cervical cancer, but
99	etiological association has also been demonstrated for carcinomas of the penis, vulva,
100	vagina, anus and oropharynx – including base of the tongue and tonsils – regions. This
101	study indirectly investigates the possibility of HPV16 to infect other cell types in vitro,
102	particularly human peripheral blood leukocytes.

103

104 INTRODUCTION

105 In 1974, zur Hausen's researches pointed to the HPV as the major aetiological agent in 106 cervical cancer and, later, its DNA was detected in tumours found in other anogenital 107 regions (1-3). Today, there are more than 200 different types of well characterized HPVs, 108 of which approximately 40 types infect the genital tract. The most frequently found are types 6 and 11 that induce benignant skin warts formation, and types 16 and 18 which are 109 110 associated to cancer development. There are at least 12 HPV types that according to the Agency for Research on Cancer (IARC) are considered oncogenic to humans (4, 111 Papillomavirus Episteme (PaVE); http://pave.niaid.nih.gov/#home). Among them, HPV16 112 113 and HPV18 are those responsible for approximately 70% of all cervical cancers (4, 5). In 114 2025, the projected global estimate of cervical cancer is expected to rise to 720,415 new 115 cases per year, and it is expected that half of these women will die of this neoplasia (5). 116 However, the difficulty to obtain enough viable wild types or recombinant HPV particles has limited researches to distinct aspects of virus biology (6). All viruses enter host cells to 117 survive, replicate and evade the immune system. So far, the entry of HPV and its traffic 118 through the host cells are still not completely elucidate (7). Several studies describe this 119

120	process like a complex set of interactions among different pathways, receptors, co-receptors
121	and co-factors. In keratinocytes, HPV seems to be internalised via clathrin-dependent
122	endocytic mechanisms, but it might use alternative uptake pathways to enter cells, such as a
123	caveolae-dependent route, among others depending on viral type (6-9).
124	Currently, HPV is recognised as one of the main causes of infection-related cancer
125	worldwide, as well as the causal factor of other diseases. Infection with high-risk HPV
126	types is the aetiological cause of cervical cancer and is strongly associated with a
127	significate fraction of penile, vulvar, vaginal, anal and oropharyngeal cancers (10, 11).
128	HPVs are responsible for approximately 88% of anal cancer and 95% of anal intraepithelial
129	neoplasia grades 2/3 lesions, and 40%-50% of penis and vulvar cancers (10). In
130	oropharyngeal cancers, HPV DNA was detected in 35%-50% cases (10). In all HPV-
131	positive non-cervical cancers, HPV16 is the most common HPV type detected, followed by
132	HPV types 18, 31, 33 and 45. Among the non-cancerous HPV-associated conditions,
133	genital warts and recurrent respiratory papillomatosis are surely linked to HPV6 and 11
134	(10). In addition, it was demonstrated recently that HPV16 virus-like particles (VLPs)
135	L1/L2 interact with haematopoietic precursor stem cells, present in the amniotic fluid from
136	healthy pregnant women (12). Whereas new pathologies are increasingly being associated
137	to the HPVs; the responsibility and costs of HPV-associated diseases and cancer remain an
138	important public health issue in all countries, regardless of their economic developmental
139	level (13). Due to the continuous worldwide propagation of HPV it is necessary to
140	investigate the possibility of HPV internalisation by different human cell types. In the
141	present study, we addressed the capacity of HPV16 L1/L2 VLP entrance/uptake of – in
142	peripheral blood leukocytes in vitro.

144 MATERIAL AND METHODS

145 **Production of HPV16 L1/L2 VLPs**

- 146 The production of VLPs was carried out throughout the recombinant protein expression
- 147 HPV16 L1 and L2 in epithelial human cells of the HEK293T lineage, cultured as
- 148 previously described (14). Transfection of these cells occur in a transient way using
- 149 pUF3L1h and pUF3L2h vectors, which are regulated by the human cytomegalovirus
- 150 promoter containing complete sequences of genes L1 and L2 a method already described
- in detail (14, 15). In this study, besides being used to produce VLPs containing both capsid
- 152 proteins, HEK293T cell line was also used as a control factor on interaction assays with
- 153 human peripheral blood leukocytes. All assays performed in this study were analysed in

154 duplicate, being representative of at least four independent tests.

155

156 **Blood collection**

157 Blood samples from 10 healthy female volunteers, ages ranging from 35 to 55, were

requested based on epidemiological data associated with genital HPV infection (16). The

screening of the volunteers was based on recent blood, Pap smears and colposcopy tests

- and on data filled out by the candidate on a written informed consent form and on a
- 161 questionnaire, for the purpose of laboratory research. Volunteers who did not present Pap
- and colposcopy results within reference values were dismissed. Blood samples were
- 163 collected in sterile tubes containing heparin for interaction assays with leukocytes and
- 164 EDTA for blocking assays , and were processed quickly, within a maximum of 2-hours

165 after collection. During this interval, they were stored at 4° C.

166

167 Leukocytes' separation

 rpm for 7 minutes at 5°C in a Sorvall[®] RT 6000 Refrigerated Centrifuge (Du Pont, Wilmington-DE, USA) with a horizontal angle rotor. The plasma supernatant containing platelets and leukocytes was gently removed and transferred with the aid of a Pasteur pipette to a new tube. An aliquot was collected for total and differential counts, performed in a Neubauer chamber, diluted (ratio 1:1) in Trypan blue and smears were stained by May- Grünwald-Giemsa in order to determine their composition. Leukocytes sedimented were centrifuged again at 1,200 rpm, for 3 minutes, at 5°C, to remove platelets. Leukocytes precipitates were resuspended in 0.85% saline solution for subsequent tests (17). The Neubauer chamber counts and smears containing distinct cell types were analysed by light microscopy, with a Leica DMIL I microscope (Leica Microsystems GmbH, Vienna, AUT). Interaction assays of HEK293T cells and HPV16 L1/L2 VLPS HEK293T cells (2x10⁴ cells/ml) were plated and maintained under growth conditions, washed with PBS and incubated with 120 µg of VLPs in DMEM without FBS, for 4-hours at 37°C and 5% CO₂. After this, cells were washed twice with PBS for 3 minutes each in order to remove non-interactive particles. Cells were then fixed with 2%PFA (Paraformaldehyde, Sigma-Aldrich) in PBS for 1-hour, at 4°C, and washed three times with PBS, 5 minutes each. Plates were kept at 4°C until immunofluorescence assays. Controls 	168	Whole blood was collected in heparin at a concentration of 0.1 mg/ml, centrifuged at 1,000
 platelets and leukocytes was gently removed and transferred with the aid of a Pasteur pipette to a new tube. An aliquot was collected for total and differential counts, performed in a Neubauer chamber, diluted (ratio 1:1) in Trypan blue and smears were stained by May- Grünwald-Giemsa in order to determine their composition. Leukocytes sedimented were centrifuged again at 1,200 rpm, for 3 minutes, at 5°C, to remove platelets. Leukocytes precipitates were resuspended in 0.85% saline solution for subsequent tests (17). The Neubauer chamber counts and smears containing distinct cell types were analysed by light microscopy, with a Leica DMIL I microscope (Leica Microsystems GmbH, Vienna, AUT). Interaction assays of HEK293T cells and HPV16 L1/L2 VLPS HEK293T cells (2x10⁴ cells/ml) were plated and maintained under growth conditions, washed with PBS and incubated with 120 µg of VLPs in DMEM without FBS, for 4-hours at 37°C and 5% CO₂. After this, cells were washed twice with PBS for 3 minutes each in order to remove non-interactive particles. Cells were then fixed with 2% PFA (Paraformaldehyde, Sigma-Aldrich) in PBS for 1-hour, at 4°C, and washed three times with PBS, 5 minutes each. Plates were kept at 4°C until immunofluorescence assays. Controls 	169	rpm for 7 minutes at 5°C in a Sorvall [®] RT 6000 Refrigerated Centrifuge (Du Pont,
 pipette to a new tube. An aliquot was collected for total and differential counts, performed in a Neubauer chamber, diluted (ratio 1:1) in Trypan blue and smears were stained by May- Grünwald-Giemsa in order to determine their composition. Leukocytes sedimented were centrifuged again at 1,200 rpm, for 3 minutes, at 5°C, to remove platelets. Leukocytes precipitates were resuspended in 0.85% saline solution for subsequent tests (17). The Neubauer chamber counts and smears containing distinct cell types were analysed by light microscopy, with a Leica DMIL I microscope (Leica Microsystems GmbH, Vienna, AUT). Interaction assays of HEK293T cells and HPV16 L1/L2 VLPS HEK293T cells (2x10⁴ cells/ml) were plated and maintained under growth conditions, washed with PBS and incubated with 120 µg of VLPs in DMEM without FBS, for 4-hours at 37°C and 5% CO₂. After this, cells were washed twice with PBS for 3 minutes each in order to remove non-interactive particles. Cells were then fixed with 2%PFA (Paraformaldehyde, Sigma-Aldrich) in PBS for 1-hour, at 4°C, and washed three times with PBS, 5 minutes each. Plates were kept at 4°C until immunofluorescence assays. Controls 	170	Wilmington-DE, USA) with a horizontal angle rotor. The plasma supernatant containing
 in a Neubauer chamber, diluted (ratio 1:1) in Trypan blue and smears were stained by May- Grünwald-Giemsa in order to determine their composition. Leukocytes sedimented were centrifuged again at 1,200 rpm, for 3 minutes, at 5°C, to remove platelets. Leukocytes precipitates were resuspended in 0.85% saline solution for subsequent tests (17). The Neubauer chamber counts and smears containing distinct cell types were analysed by light microscopy, with a Leica DMIL I microscope (Leica Microsystems GmbH, Vienna, AUT). Interaction assays of HEK293T cells and HPV16 L1/L2 VLPs HEK293T cells (2x10⁴ cells/ml) were plated and maintained under growth conditions, washed with PBS and incubated with 120 µg of VLPs in DMEM without FBS, for 4-hours at 37°C and 5% CO₂. After this, cells were washed twice with PBS for 3 minutes each in order to remove non-interactive particles. Cells were then fixed with 2%PFA (Paraformaldehyde, Sigma-Aldrich) in PBS for 1-hour, at 4°C, and washed three times with PBS, 5 minutes each. Plates were kept at 4°C until immunofluorescence assays. Controls 	171	platelets and leukocytes was gently removed and transferred with the aid of a Pasteur
 Grünwald-Giemsa in order to determine their composition. Leukocytes sedimented were centrifuged again at 1,200 rpm, for 3 minutes, at 5°C, to remove platelets. Leukocytes precipitates were resuspended in 0.85% saline solution for subsequent tests (17). The Neubauer chamber counts and smears containing distinct cell types were analysed by light microscopy, with a Leica DMIL I microscope (Leica Microsystems GmbH, Vienna, AUT). Interaction assays of HEK293T cells and HPV16 L1/L2 VLPs HEK293T cells (2x10⁴ cells/ml) were plated and maintained under growth conditions, washed with PBS and incubated with 120 µg of VLPs in DMEM without FBS, for 4-hours at 37°C and 5% CO₂. After this, cells were washed twice with PBS for 3 minutes each in order to remove non-interactive particles. Cells were then fixed with 2%PFA (Paraformaldehyde, Sigma-Aldrich) in PBS for 1-hour, at 4°C, and washed three times with PBS, 5 minutes each. Plates were kept at 4°C until immunofluorescence assays. Controls 	172	pipette to a new tube. An aliquot was collected for total and differential counts, performed
 centrifuged again at 1,200 rpm, for 3 minutes, at 5°C, to remove platelets. Leukocytes precipitates were resuspended in 0.85% saline solution for subsequent tests (17). The Neubauer chamber counts and smears containing distinct cell types were analysed by light microscopy, with a Leica DMIL I microscope (Leica Microsystems GmbH, Vienna, AUT). Interaction assays of HEK293T cells and HPV16 L1/L2 VLPs HEK293T cells (2x10⁴ cells/ml) were plated and maintained under growth conditions, washed with PBS and incubated with 120 µg of VLPs in DMEM without FBS, for 4-hours at 37°C and 5% CO₂. After this, cells were washed twice with PBS for 3 minutes each in order to remove non-interactive particles. Cells were then fixed with 2%PFA (Paraformaldehyde, Sigma-Aldrich) in PBS for 1-hour, at 4°C, and washed three times with PBS, 5 minutes each. Plates were kept at 4°C until immunofluorescence assays. Controls 	173	in a Neubauer chamber, diluted (ratio 1:1) in Trypan blue and smears were stained by May-
 precipitates were resuspended in 0.85% saline solution for subsequent tests (17). The Neubauer chamber counts and smears containing distinct cell types were analysed by light microscopy, with a Leica DMIL I microscope (Leica Microsystems GmbH, Vienna, AUT). Interaction assays of HEK293T cells and HPV16 L1/L2 VLPS HEK293T cells (2x10⁴ cells/ml) were plated and maintained under growth conditions, washed with PBS and incubated with 120 µg of VLPs in DMEM without FBS, for 4-hours at 37°C and 5% CO₂. After this, cells were washed twice with PBS for 3 minutes each in order to remove non-interactive particles. Cells were then fixed with 2%PFA (Paraformaldehyde, Sigma-Aldrich) in PBS for 1-hour, at 4°C, and washed three times with PBS, 5 minutes each. Plates were kept at 4°C until immunofluorescence assays. Controls 	174	Grünwald-Giemsa in order to determine their composition. Leukocytes sedimented were
 Neubauer chamber counts and smears containing distinct cell types were analysed by light microscopy, with a Leica DMIL I microscope (Leica Microsystems GmbH, Vienna, AUT). Interaction assays of HEK293T cells and HPV16 L1/L2 VLPs HEK293T cells (2x10⁴ cells/ml) were plated and maintained under growth conditions, washed with PBS and incubated with 120 µg of VLPs in DMEM without FBS, for 4-hours at 37°C and 5% CO₂. After this, cells were washed twice with PBS for 3 minutes each in order to remove non-interactive particles. Cells were then fixed with 2%PFA (Paraformaldehyde, Sigma-Aldrich) in PBS for 1-hour, at 4°C, and washed three times with PBS, 5 minutes each. Plates were kept at 4°C until immunofluorescence assays. Controls 	175	centrifuged again at 1,200 rpm, for 3 minutes, at 5°C, to remove platelets. Leukocytes
 microscopy, with a Leica DMIL I microscope (Leica Microsystems GmbH, Vienna, AUT). Interaction assays of HEK293T cells and HPV16 L1/L2 VLPs HEK293T cells (2x10⁴ cells/ml) were plated and maintained under growth conditions, washed with PBS and incubated with 120 µg of VLPs in DMEM without FBS, for 4-hours at 37°C and 5% CO₂. After this, cells were washed twice with PBS for 3 minutes each in order to remove non-interactive particles. Cells were then fixed with 2%PFA (Paraformaldehyde, Sigma-Aldrich) in PBS for 1-hour, at 4°C, and washed three times with PBS, 5 minutes each. Plates were kept at 4°C until immunofluorescence assays. Controls 	176	precipitates were resuspended in 0.85% saline solution for subsequent tests (17). The
 Interaction assays of HEK293T cells and HPV16 L1/L2 VLPs Interaction assays of HEK293T cells and HPV16 L1/L2 VLPs HEK293T cells (2x10⁴ cells/ml) were plated and maintained under growth conditions, washed with PBS and incubated with 120 µg of VLPs in DMEM without FBS, for 4-hours at 37°C and 5% CO₂. After this, cells were washed twice with PBS for 3 minutes each in order to remove non-interactive particles. Cells were then fixed with 2%PFA (Paraformaldehyde, Sigma-Aldrich) in PBS for 1-hour, at 4°C, and washed three times with PBS, 5 minutes each. Plates were kept at 4°C until immunofluorescence assays. Controls 	177	Neubauer chamber counts and smears containing distinct cell types were analysed by light
 Interaction assays of HEK293T cells and HPV16 L1/L2 VLPs HEK293T cells (2x10⁴ cells/ml) were plated and maintained under growth conditions, washed with PBS and incubated with 120 µg of VLPs in DMEM without FBS, for 4-hours at 37°C and 5% CO₂. After this, cells were washed twice with PBS for 3 minutes each in order to remove non-interactive particles. Cells were then fixed with 2%PFA (Paraformaldehyde, Sigma-Aldrich) in PBS for 1-hour, at 4°C, and washed three times with PBS, 5 minutes each. Plates were kept at 4°C until immunofluorescence assays. Controls 	178	microscopy, with a Leica DMIL I microscope (Leica Microsystems GmbH, Vienna, AUT).
 HEK293T cells (2x10⁴ cells/ml) were plated and maintained under growth conditions, washed with PBS and incubated with 120 µg of VLPs in DMEM without FBS, for 4-hours at 37°C and 5% CO₂. After this, cells were washed twice with PBS for 3 minutes each in order to remove non-interactive particles. Cells were then fixed with 2%PFA (Paraformaldehyde, Sigma-Aldrich) in PBS for 1-hour, at 4°C, and washed three times with PBS, 5 minutes each. Plates were kept at 4°C until immunofluorescence assays. Controls 		
 washed with PBS and incubated with 120 µg of VLPs in DMEM without FBS, for 4-hours at 37°C and 5% CO₂. After this, cells were washed twice with PBS for 3 minutes each in order to remove non-interactive particles. Cells were then fixed with 2%PFA (Paraformaldehyde, Sigma-Aldrich) in PBS for 1-hour, at 4°C, and washed three times with PBS, 5 minutes each. Plates were kept at 4°C until immunofluorescence assays. Controls 	179	
 at 37°C and 5% CO₂. After this, cells were washed twice with PBS for 3 minutes each in order to remove non-interactive particles. Cells were then fixed with 2%PFA (Paraformaldehyde, Sigma-Aldrich) in PBS for 1-hour, at 4°C, and washed three times with PBS, 5 minutes each. Plates were kept at 4°C until immunofluorescence assays. Controls 		Interaction assays of HEK293T cells and HPV16 L1/L2 VLPs
 order to remove non-interactive particles. Cells were then fixed with 2%PFA (Paraformaldehyde, Sigma-Aldrich) in PBS for 1-hour, at 4°C, and washed three times with PBS, 5 minutes each. Plates were kept at 4°C until immunofluorescence assays. Controls 	180	·
 (Paraformaldehyde, Sigma-Aldrich) in PBS for 1-hour, at 4°C, and washed three times with PBS, 5 minutes each. Plates were kept at 4°C until immunofluorescence assays. Controls 	180 181	HEK293T cells ($2x10^4$ cells/ml) were plated and maintained under growth conditions,
186 PBS, 5 minutes each. Plates were kept at 4°C until immunofluorescence assays. Controls	180 181 182	HEK293T cells ($2x10^4$ cells/ml) were plated and maintained under growth conditions, washed with PBS and incubated with 120 µg of VLPs in DMEM without FBS, for 4-hours
	180 181 182 183	HEK293T cells $(2x10^4 \text{ cells/ml})$ were plated and maintained under growth conditions, washed with PBS and incubated with 120 µg of VLPs in DMEM without FBS, for 4-hours at 37°C and 5% CO ₂ . After this, cells were washed twice with PBS for 3 minutes each in
187 were performed in the absence of VLPs and/or the denaturation thereof, by heating at	180 181 182 183 184	HEK293T cells $(2x10^4 \text{ cells/ml})$ were plated and maintained under growth conditions, washed with PBS and incubated with 120 µg of VLPs in DMEM without FBS, for 4-hours at 37°C and 5% CO ₂ . After this, cells were washed twice with PBS for 3 minutes each in order to remove non-interactive particles. Cells were then fixed with 2%PFA
20. A sto performed in the assence of vibro and/or the dendulution thereof, by nouting at	180 181 182 183 184 185	HEK293T cells $(2x10^4 \text{ cells/ml})$ were plated and maintained under growth conditions, washed with PBS and incubated with 120 µg of VLPs in DMEM without FBS, for 4-hours at 37°C and 5% CO ₂ . After this, cells were washed twice with PBS for 3 minutes each in order to remove non-interactive particles. Cells were then fixed with 2%PFA (Paraformaldehyde, Sigma-Aldrich) in PBS for 1-hour, at 4°C, and washed three times with
188 100°C for 10 minutes (18, adapted).	180 181 182 183 184 185	HEK293T cells $(2x10^4 \text{ cells/ml})$ were plated and maintained under growth conditions, washed with PBS and incubated with 120 µg of VLPs in DMEM without FBS, for 4-hours at 37°C and 5% CO ₂ . After this, cells were washed twice with PBS for 3 minutes each in order to remove non-interactive particles. Cells were then fixed with 2%PFA (Paraformaldehyde, Sigma-Aldrich) in PBS for 1-hour, at 4°C, and washed three times with
189	180 181 182 183 184 185 186 187	HEK293T cells (2x10 ⁴ cells/ml) were plated and maintained under growth conditions, washed with PBS and incubated with 120 µg of VLPs in DMEM without FBS, for 4-hours at 37°C and 5% CO ₂ . After this, cells were washed twice with PBS for 3 minutes each in order to remove non-interactive particles. Cells were then fixed with 2%PFA (Paraformaldehyde, Sigma-Aldrich) in PBS for 1-hour, at 4°C, and washed three times with PBS, 5 minutes each. Plates were kept at 4°C until immunofluorescence assays. Controls were performed in the absence of VLPs and/or the denaturation thereof, by heating at

190 Interaction assays of human leukocytes and HPV16 L1/L2 VLPs

191	Leukocytes ($2x10^4$ cells/ml) of healthy volunteers were incubated with 120 µg of VLPs
192	produced in this study and RPMI without FBS for 4-hours at $37^{\circ}C$ and 5% CO ₂ , under
193	gentle agitation. Cells were centrifuged at 1,000 rpm for 7 minutes and cell pellets washed
194	three times with PBS, 5 minutes each. Then, cells were fixed with 2% PFA in PBS for 1-
195	hour, at 4°C. After this step, the centrifugation and PBS washing processes were repeated.
196	Samples were kept at 4°C until immunofluorescence assays. Controls were the same as
197	described above for HEK293T cells.
198	
199	Interaction assays of leukocytes, transferrin and HPV VLPs
200	The same protocol described above was employed, with minor changes described below.
201	Leukocytes were incubated with 120 μ g of VLPs in separate samples, as follows: the
202	HPV16 L1/L2 VLPs produced in this study, and L1 VLPs of HPV6, 11, 16 and 18 from
203	Gardasil [®] vaccine, used as control, kindly provided by Merck Sharp & Dohme. RPMI
204	without FBS, together with transferrin (Tf) conjugated to fluorochrome $TexasRed^{$ [®] }
205	(Molecular Probes TM), were added (ratio 1:60, Tf:RPMI). Samples were kept for 15, 45, 60
206	and 120 minutes in an incubator at 37 $^{\circ}$ C and 5% CO ₂ , under gentle agitation. The other
207	procedures remained unchanged.
208	
209	Blocking assays for membrane receptors
210	Leukocytes of healthy donors were counted and incubated in RPMI medium overnight over

- coverslips containing poly-L-lysine (Sigma-Aldrich), at 37°C and 5% CO₂. Then, cells
- 212 were washed and a fresh medium was placed together with specific biochemical inhibitors
- of ligand uptake (Table 1), used isolated or associated, and incubated for 2 hours (18). After
- incubation, cells were washed and 120 μ g of HPV16 L1/L2 VLPs (19) were added and

incubated with medium for 4 hours. Cells were washed again and fixed in 2% PFA

solution. Immunofluorescence assays were carried out to detect the VLP-PBMC interaction

by confocal microscopy, using specific antibodies to recognise L1 and L2 proteins. Z-axis

3D images were obtained to confirm the presence of VLPs within cells.

219

220 Immunofluorescence assays for internalisation analysis

221 Leukocytes were washed and fixed as already described. Samples were incubated in PBS

containing 1% BSA for 5 minutes under gentle agitation. Later, cells were incubated with

the primary antibodies (suppl. Data – Table 1); diluted in PBS containing 0.01% Tween[®]

224 20 and 0.5% BSA – pH 8 – for 2 hours, under gentle agitation, at room temperature. They

were then washed three times with PBS for 10 minutes each, followed by incubation with

the corresponding secondary antibodies (suppl. Data – Table 2); conjugated with

fluorochromes; and diluted in PBS containing 0.01% Tween[®] 20 and 1.5% BSA for 1 hour,

under light stirring, at room temperature. Once more, they were washed three times with

229 PBS for 10 minutes each. Samples of leukocytes with transferrin and VLPs were labelled

with Phalloidin conjugated AlexaFluor[®] 594, incubated for 20 minutes. Immediately after

that, they were rinsed twice with PBS for 10 minutes each. Aliquots of cell suspension from

both items assayed were adhered over silanized slides, and mounted with 5 μ l Mowiol[®] and

coverslips. Samples were kept at 4°C until CLSM analysis, using Confocal Laser Scanning

234 Microscope Zeiss 510 Meta of the Butantan Institute (FAPESP Process No. 2000/11624-5;

235 Carl Zeiss GmbH, Jena, DEU).

236

237 **RESULTS**

238 Leukocytes' identification

239	After isolation of leukocytes from healthy donors, control smears stained by May-
240	Grünwald-Giemsa method showed cell morphology preservation (17), presenting a positive
241	correlation with the control blood smears. Counts indicated approximately 98%
242	lymphocytes; 0.7% monocytes; 1.5% polymorph nuclear cells; 0.1% red blood cells and
243	0.1% platelets. The ultrastructure was well preserved for all cell types analysed, with well-
244	defined and intact membranes (17). The efficiency and speed of the method for obtaining
245	leukocytes, preserving morphology and cell viability was confirmed.
246	
247	Analysis of interaction between HEK293T cells and HPV16 L1/L2 VLPs
248	HEK293T cells interaction with HPV16 L1/L2 VLPs was analysed by
249	immunofluorescence. We emphasize that the genome of this cell line does not contain any
250	HPV DNA sequences, but it contains Adenovirus DNA and SV40 T-Ag. After 4-hours at a
251	37°C interaction, cells were washed in order to remove any particles or proteins that did not
252	interacted with HEK293T cells. Then, cells were fixed and stained with the primary
253	antibody Camvir-1 (BD Biosciences – suppl. Data – Table 1) for L1 proteins and with L1
254	conformation-specific anti-VLP antiserum (Biodesign – suppl. data – Table 1). It was
255	therefore possible to observe the internalisation of VLPs in some cells. In these cells VLPs
256	were found in the cytoplasm, near the core region (suppl. data – Img. 1 A-D), stained with
257	anti-VLP. These results were confirmed by the overlap of images (suppl. data – Img. 1 A
258	and C), and by the most thoroughly detailed internalisation display on the Z-axis scanning
259	sections (suppl. data – Img. 1 B and D). The morphological evaluations show that probably
260	the VLPs' internalisation occurs simultaneously with a large number of particles, similar to
261	the formation of endocytic vesicle structures (suppl. data – Img. 1 C, white arrow). These
262	results suggest that after 4 hours, structured VLPs (suppl. data – Img. 1 A-D), as well as

263	non-structured VLPs – such as pentameric and monomeric forms of L1 stained with
264	Camvir-1 (suppl. data – Img. 1 E) –, were internalised in epithelial cells from the human
265	kidney (HEK293T), across the cell membrane (suppl. data – Img. 1 B and D). The negative
266	controls showed no immunostaining for L1 and VLPs and no changes in cell morphology
267	were detected (suppl. data – Img. 2).
268	
269	Analysis of interactions between human leukocytes and HPV16 L1/L2 VLPs
270	L1/L2 particles were added to human leukocytes, for 4-hours at 37°C, and prepared for
271	indirect CLSM immunofluorescence analysis, in order to investigate the possibility of
272	interaction between the leukocytes and the HPV16 L1/L2 VLPs. Results indicate an
273	interaction of VLPs with peripheral blood mononuclear cells (PBMC) – T and B
274	lymphocytes and monocytes – from healthy women volunteers (Fig. 1). Structured HPV16
275	L1/L2 VLPs also interacted with and were internalised by leukocytes (Figs. 2 and 3). After
276	4-hours of interaction, in most leukocytes examined, these particles were found in the cell
277	cytoplasm, as was the case with HEK293T. These results were confirmed by the images'
278	overlap (Figs. 1 A, B and D; Figs. 2 and 3), and the detailed internalisation, as shown on
279	the Z-axis scanning sections (Fig. 2 C). Fig. 1 C (green arrow) shows VLPs across the cell
280	membrane. The Z-axis' sweep cuts were able to demonstrate the internalisation of the VLP
281	with a larger number of particles similar to the formation of endocytic vesicles structures
282	(Fig. 2 A, white arrow), like those found in HEK293T cells (suppl. data – Img. 1 C, white
283	arrow), a phenomenon endorsed by morphological evaluations. In Fig. 3, the interaction of
284	leukocytes with the VLPs is illustrated, showing the colocalisation of HPV16 $L1/L2$
285	proteins recognised by anti-L1 (green) and anti-L2 (red), respectively. This colocalisation
286	was expected in VLPs that are composed of these two proteins, as it might be seen from the

287	images' overlap (Fig. 3). Fig. 3 B shows the internalisation of VLPs by leukocytes in a
288	significant amount when compared to other interactions. At least 15 fields were analysed
289	per experiment, containing from 4 to 10 cells per field. The presence of structures similar to
290	vacuoles can also be observed (Fig. 3 B, blue arrow). Control assays showed no
291	immunostaining, neither with the antibodies used to detect L1 and L2 separately, nor with
292	structured HPV16 L1/L2 VLPs (suppl. data – Img. 3).
293	
294	Identification of human PBMC interactions with VLPs
295	These cells were treated with antibodies in order to recognise specific cell membrane
296	receptors for each type (suppl. data – Table 1), and analysed by indirect
297	immunofluorescence using CLSM to identify PBMC interactions with HPV16 VLPs, after
298	4-hours incubation at 37°C. HPV16 VLPs interacted with <i>ex vivo</i> PBMC (Figs. 4-6). These
299	results were confirmed by the images' overlap (Figs. 4 and 5) and displayed detailed
300	internalisation on the Z-axis sections (Fig. 6). T and B lymphocytes showed greater
301	competence to internalise VLPs, at around 47%-52% of cells (Table 2). Through
302	morphological assessments, T-lymphocytes that internalised VLPs and were recognised by
303	anti-CD8 showed endocytic vesicles-like structures (Fig. 4 B, white arrow). Only 23% of
304	monocytes that were identified by anti-CD14 antibody interacted with the VLPs (Table 2).
305	
306	Analysis of the colocalisation of VLPs and transferrin (Tf) in human PBMC
307	After 15 minutes, no colocalisation between L1 VLPs and exogenous Tf was detected
308	(Fig.7). Moreover, it was possible to show the internalisation of VLPs during this period.
309	After 45 minutes, colocalisation of VLPs with exogenous Tf in the cytoplasm of human

BMC (Fig. 8 and 9, yellow arrows), and also with the TfR or CD71, was observed (Fig. 9

311	A-B, yellow arrows) suggesting that the iron pathway may be used to HPV internalisation.
312	All results were confirmed by the images' overlap, respectively (Figs. 7-9).
313	We compared the kinetics of internalization of Tf and TfR (CD71) with the colocalisation
314	of HPV16 L1/L2 VLPs produced in this study and with control HPV6, 11, 16, 18 L1 VLPs
315	derived from the Gardasil [®] vaccine (Fig. 10). After only 15 minutes of interaction it was
316	possible to observe colocalisation of TfR and Tf (Fig. 10 A-B, purple arrows) with both
317	L1/L2 VLPs (Fig. 10 A) as well as with Gardasil L1 VLPs (Fig. 10 B). By means of
318	morphological analysis, we were able to demonstrate the colocalisation of both VLPs $-L1$
319	and L1/L2 – with Tf and TfR in the leukocytes' cytoplasm, after a 45-minutes interaction
320	period (Fig. 10 C-D, white arrows). This colocalisation among VLPs, Tf and TfR was
321	found in approximately 50% of analysed cells. Within 60 minutes of interaction, we
322	observed a feeble colocalisation between Tf and VLPs in about 30% of the cells (Fig. 10 E-
323	F, orange arrows). No colocalisation was observed in the tests after 120 minutes. The
324	colocalisation was evidentiated in detail by three-dimensional figures stacked in Z-axis
325	(Fig. 10). The negative controls showed no signs of L1 and VLPs. However, it was possible
326	to observe exogenous Tf internalisation (suppl. data – Img. 4). Comparative testing of
327	L1/L2 VLPs produced in this study and of control L1 VLPs from Gardasil® vaccine
328	showed no significant differences in the analysed results.
220	

329

330 Analysis of the blocking assays of PBMC membrane receptors

After successful identification of VLPs within leukocytes and their colocalisation with Tf
and TfR, a variety of biochemical inhibitors, known to inhibit distinct cellular processes,
was used to demonstrate the involvement of these and other different pathways of VLPs
entry in PBMC.

335	Chlorpromazine inhibits clathrin-mediated endocytosis of various plasma membrane
336	proteins. Nystatin is a sterol-binding agent that disassembles caveolae in the membrane.
337	rCTB (Clostridium toxin B) acts by shortening the actin filaments' length, by inhibiting its
338	process in vitro. Liquemin is related with the VLPs obstruction of internalisation through
339	the HSPG (Heparan sulphate proteoglycans) pathway. Sodium azide is an ATPase
340	inhibitor, which blocks particle movement towards the cell body and leads to a diffuse
341	random movement.
342	The use of these different biochemical inhibitors was not sufficient to block the HPV16
343	L1/L2 VLPs entry in the PBMC (Figs. 11-12). Chlorpromazine – although known for
344	blocking the clathrin pathway through CD71 receptor of Tf – was not able to inhibit VLPs
345	entrance inside PBMC in a satisfactory manner. The same occurred when rCTB, Filipin and
346	Nystatin, Liquemin and Sodium azide were used to block actin-dependent cell processes,
347	the caveolae pathway, the HSPG pathway, and endocytic pathways, respectively, either
348	assayed separately or associated in an all-inhibitors cocktail. These results suggest that
349	PBMC makes use of multiple internalisation pathways to uptake HPV16 particles.
350	
351	DISCUSSION

352 Differently of many Beta and Gamma papillomavirus, Alpha papillomaviruses developed

immune system evasion strategies from the host, causing persistent and visible papillomas,

which sometimes evolving to cancers (20). Some HPV types including 16, 18, 31, 33, 35,

355 39, 45, 51, 52, 56, 58 and 59 have been classified as human carcinogens by the IARC,

being responsible for at least 4% of all human malignancies (4, 21, Papillomavirus

357 Episteme (PaVE); http://pave.niaid.nih.gov/#home). Infection by high-risk HPV types is

the major factor for the development of cervical cancer, and HPV DNA is also found in

359 tumours affecting other anogenital regions. Besides, they are being correlated with an 360 increasing proportion of oropharyngeal squamous cells carcinomas, and occurrences affecting mainly tonsil and base of tongue regions are currently being documented in 361 particular geographic areas (22). A study describes women who have never experienced 362 sexual intercourse as having genital lesions caused by HPV, showing that, in addition to 363 364 sexual transmission, could have other forms of infection such as fomites and skin contact, 365 and maternal-foetal vertical transmission is also being considered as a probable infection 366 pathway (23-27).

Cell-virus interaction is the initial step in viral infection. Often, virus adsorption occurs on 367 368 the plasma membrane of susceptible cells. In general, the most common solution is that the 369 pathogen's intracellular trafficking occurs through and existing entry mechanism, mediated 370 via clathrin, caveolin, macropinocytosis, among others, moving inside cells to reach the 371 location where viral replication occurs (28). Transcytosis is used to move antigens and protective antibodies across epithelial barriers. Similar to what seems to occur with HIV 372 (29), the transcytosis of HPV through epithelial cells, crossing cellular barriers, should also 373 be dependent on trafficking to the endocytic recycling pathway. The productive life cycle 374 of HPV is directly linked to epithelial differentiation. It is believed that the papillomavirus 375 376 is capable of maintaining the expression of structural genes, under tight control of the 377 regulatory mechanisms of transcription and translation (30). The L1 capsid protein of HPV, 378 regardless of the presence or absence of L2, has the property of forming structures that 379 mimic morphologically authentic virions, VLPs, which are being used as replacements for HPV infected cell culture *in vitro* (8, 14, 31, 32). However, the presence of L2 seems to 380 381 confer greater stability to the virus and VLP, therefore, the viral capsid indeed seems to 382 contribute to the virus' infectivity (33). Most experimental models explore the process of

383	host cell interaction by molecular or biochemical methods, using cell lines from different
384	tissues and species in interactions with HPV L1 VLPs in their studies.
385	In the present work, we produced HPV L1/L2 VLPs (14, 15) to investigate the possibility
386	that these particles interact with human leukocytes, in order to understand possible
387	mechanisms involved in these interactions. We have developed a method for the isolation
388	of these cells (17), used in suspension at 37°C, thereby creating an <i>ex vivo</i> system as closely
389	as possible to the natural conditions of HPV16 infection, thus conceiving a novel
390	experimental model.
391	HPV16 recombinant proteins L1, L2 and VLPs were visualized in the perinuclear region of
392	HEK293T cells, in compliance with data described in the literature (34). The presence of
393	BPV (bovine papillomavirus) in lymphocytes has been discussed (35, 36). Using PCR
394	technique (Polymerase Chain Reaction) in samples taken from humans with anogenital
395	lesions, the presence of HPV16 in peripheral blood samples (37) and in plasma cells (38)
396	was detected. Besides, DNA of other HPV types has been found in PBMC (39, 40). The
397	presence of HPV in lymphocytes of patients treated for anogenital cancers suggests that the
398	virus can remain in these cells even after treatment. However, there are no convincing
399	evidences that support that lymphocytes carry/produce infectious HPV viral particles.
400	Nonetheless, the presence of HPV macromolecules in lymphocytes may play a role in viral
401	immune response.
402	The scientific literature discloses that papillomavirus exhibits specific tropism for species
403	and tissues. However, BPV1 particles, isolated from bovine warts, and HPV16 VLPs
404	interacted successfully with 14 cell lines derived from different species and tissues, as
405	demonstrated in two different studies (32, 41). Using our model to investigate this, HPV16
406	L1/L2 VLPs interacted in vitro and ex vivo with two very distinct human cells, epithelial

407	kidney cells and PBMC, respectively. After 4 hours of interaction, these particles'
408	internalisation occurred, showing a very similar distribution pattern on both cell types. In
409	both, L1 VLPs were located in the cytoplasm near the nucleus, suggesting that tissue
410	differences do not affect the ability of HPV16 VLPs to entry in different cell types, and that
411	pentameric and monomeric forms of L1 may also be internalised. The interaction between
412	VLPs and monocytes observed in this study showed colocalisation with CD14. As
413	macrophage precursors, apparently these cells are able to internalise particles at a much
414	larger amount if compared with lymphocytes. The unexpected colocalisation of CD14
415	membrane receptor and VLPs, as well as the morphological changes observed, suggest that
416	monocytes respond to this interaction as immune cells, in order to eliminate invading
417	microorganisms. CD14 is a 53-kDa molecule, expressed mainly in monocytes,
418	macrophages and granulocytes. It is also found as soluble protein in the serum (42). One
419	known function of this receptor is to bind the complex of LPS (bacterial
420	lipopolysaccharide). Macrophages expressing CD14 can respond to very small amounts of
421	LPS, and this interaction is required for activation of these cells (43). Some studies suggest
422	that the receptor CD16 (FcyRIII), present on the plasma membrane surface of neutrophils,
423	can bind to VLPs at mice splenocytes' surface, indicating that this receptor has a role to
424	play in immune response against viral capsid proteins (43, 44). It is necessary to clarify the
425	actual mechanisms involved in the interactions between CD14, CD16 and VLPs, in order to
426	better understand how the immune system can properly eliminate the HPV from the host.
427	Tf is a beta globulin responsible for the transport of iron (Fe), through plasma, to the
428	interior of cells. Besides hepatocytes, other cells in the body are able to synthesize it. The
429	TfR is a membrane protein expressed primarily in T and B lymphocytes, macrophages, and
430	proliferating cells such as homodimers with N-terminal cytoplasmic tails (42). TfR is

431	constantly being endocytosed by plasma membrane through clathrin-mediated endocytosis,
432	with the purpose of carrying ferric iron bound to Tf to the inside of cells. This Tf-TfR
433	complex is delivered to the early endosome into a lower pH medium, where iron is released
434	and TfR is recycled to the cell's surface (45). When evaluating the interactions between
435	HPV16 L1/L2 VLPs, HPV6, 11, 16, 18 L1 VLPs (Gardasil® vaccine) and unstructured
436	HPV16 L1 in PBMCs and in the presence of exogenous Tf, we determined the
437	colocalisation of L1-VLP-Tf and free Tf in these cells, as well as colocalisation with TfR,
438	after 45 minutes of interaction. This colocalisation between VLP, Tf and TfR was found in
439	approximately 50% of analysed cells. These results suggest that HPV16 L1/L2 VLPs,
440	HPV6, 11, 16, 18 L1 VLPs (Gardasil [®] vaccine) and unstructured HPV16 L1 can enter cells
441	by endocytosis through clathrin-dependent, via TfR. It is probable that, along viral infection
442	processes, interactions between HPV16 (about 55 nm size) and Tf molecules (80-kDa)
443	might indeed happen, through fusion with Fe-Tf-TfR complexes, mimicking its entry into
444	the cell via low pH endosomes, thus enabling transcytosis (29, 46-49).
445	There have been no reports in the literature showing the internalisation of HPV VLPs in
446	human PBMC. So far, this study has showed that PBMCs of healthy female volunteers
447	were able to internalise HPV16 VLPs. Also, T and B Lymphocytes were the main cell
448	types that further interacted with VLPs. It is important to emphasize that the lymphocytes
449	are cells capable of dividing themselves and it is estimated that the half-life of these
450	inactive cells in humans is of some years. Furthermore, inactive lymphocytes circulate
451	continuously through the bloodstream and lymphatic vessels. Using different cell lineages
452	with VLPs or PsV (pseudovirion), scientists have come to different conclusions. Our
453	findings agree with the data obtained by other researchers who – through the use of PsV-
454	infected HeLa and HaCaT cells – successfully demonstrated that the HPV entry is clathrin-

455 caveolin-cholesterol-and-dynamin-independent (7). The entry of HPV VLPs in leukocytes 456 by independent endocytosis pathways may be due to their ability to recognise, capture and remove foreign substances from the body. The use of different biochemical inhibitors, 457 458 isolated or associated, does not seem to be enough to block the internalisation of HPV16 459 L1/L2 VLPs in the PBMC, suggesting that a specific receptor is not required to the uptake 460 and HPV16 entry into the host cells. A recent study demonstrates that intrinsic risk factors 461 are responsible of around 10%-30% of cancer development risk, and that the rates of 462 endogenous mutation accumulation by intrinsic processes are not sufficient to account for 463 the high cancer risks observed. Cancer risk in general is heavily influenced by extrinsic factors like HPV infection (50). Unravelling the molecular steps leading to virus entry into 464 465 the cells may be important for the development of new strategies for the prevention of infection by HPV and foster immune response against important human pathogen. 466 467

468 CONCLUSIONS

HPV16 L1/L2 VLPs produced in this study interacted with in vitro HEK293T cells and ex 469 vivo PBMC from healthy women volunteers, and were internalised. This study evinced that 470 471 HPV16 L1/L2 VLPs can interact with the plasma membrane surface, and been uptake by 472 lymphocytes. We also demonstrated that HPV16 L1/L2 VLPs might utilize the endocytic 473 pathway of iron-mediated clathrin as a receptor, which involves multiple membrane 474 receptors simultaneously and also the classical endocytic pathway of iron – the most 475 widespread among vertebrates and the animal kingdom as a whole – we have demonstrated 476 that HPV16 L1/L2 VLPs does not require a specific receptor in order to be internalised by leukocytes. Complementary studies are required to accurately demonstrate the probable 477 mechanisms involved. 478

479

480 ACKNOWLEDGEMENTS

481	The authors would like to express their deepest gratitude to the CAPES Master's Degree
482	Fellowship to V. Szulczewski and E.A. Kavati, from the Biotechnology Interunits
483	Postgraduate Programme USP-IBU-IPT; PAP-SES-FUNDAP Fellowships to T.M. Hosoda;
484	Financial Support: FAPESP – Process Number 2004/15122-5; Butantan Foundation and
485	Butantan Institute; to the Prof Dr Richard B.S. Roden, from the Department of Pathology,
486	Johns Hopkins University, Baltimore, MD, USA, which kindly provided us anti-L2
487	antibody, and for useful comments on the manuscript.
488	
489	Ethical Committee
490	This work was duly evaluated and approved by the Sao Joaquim Hospital, Real and
491	Meritorious Portuguese Beneficence Association Ethical Committee on Human Research.
492	Protocol number: 369-08.
493	This work is in full compliance with the National Biosafety Law (CTNBio) guidelines and
494	the present study was approved by the Butantan Institute Institutional Biosafety Committee
495	(CIBio) and CTNBio – Process Nr. 01200.004893/1997-93 – published in the Brazilian
496	Official Gazette (DOU) on August 16, 2011.
497	
498	REFERENCES
499	1. zur Hausen H, Meinhof W, Scheiber W, Bornkamm GW. 1974. Attempts to
500	detect virus-specific DNA sequences in human tumors: I. Nucleic acid
501	hybridizations with complementary RNA of human wart virus. Int J Cancer 13:650-

502	656. (First negative attempt to find papillomavirus DNA in cancer of the cervix with
503	labelled HPV DNA from plantar warts).

- zur Hausen H. 1976. Condylomata acuminata and human genital cancer. Cancer
 Res 36:794. (Hypothesis that papillomaviruses are involved in the etiology of cancer
 of cervix).
- 507 3. Dürst M, Dzarlieva-Petruseyska RT, Boukamp P, Fusenig NE, Gissmann L.
- 508 1987. Molecular and cytogenetic analysis of immortalized human primary
- keratinocytes obtained after transfection with human papillomavirus type 16 DNA.
- 510 Oncogene **1**:251-256.
- 4. Viarisio D, Gissmann L, Tommasino M. 2017. Human papillomaviruses and
 carcinogenesis: well-established and novel models. Curr Opin Virol 26:56-62.
- 5. Sanjosé S, Serrano B, Castellsagué X, Brotons M, Muñoz J, Bruni L, Bosch FX.
- 514 2012. Human papillomavirus (HPV) and related cancers in the Global Alliance for
- 515 Vaccines and Immunization (GAVI) countries. AWHO/ICO HPV Information
- 516 Centre Report. Vaccine **30S:**D1-D83.
- 517 6. Day PM, Lowy DR, Schiller JT. 2003. Papillomaviruses infect cells via a clathrin518 dependent pathway. Virology 307:1-11.
- 7. Raff AB, Woodham AW, Raff LM, Skeate JG, Yan L, Da Silva DM, Schelhaas
 M, Kast WM. 2013. The evolving field of human papillomavirus receptor research:
- 521 a review of binding and entry. J Virol **87:**6062-6072.
- 522 8. Bousarghin L, Touzé A, Combita-Rojas AL, Coursaget P. 2003. Positively
- 523 charged sequences of human papillomavirus type 16 capsid proteins are sufficient to
- 524 mediate gene transfer into target cells via the heparan sulfate receptor. J Gen Virol

84:157-164.

526	9. Hindmarsh PL, Laimins LA. 2007. Mechanisms regulating expression of the HPV
527	31 L1 and L2 capsid proteins and pseudovirion entry. Virol J 4:1-12.
528	10. Bosch FX, Broker TR, Forman D, Moscicki AB, Gillison ML, Doorbar J, Stern
529	PL, Stanley M, Arbyn M, Poljak M, Cuzick J, Castle PE, Schiller JT,
530	Markowitz LE, Fisher WA, Canfell K, Denny LA, Franco EL, Steben M, Kane
531	MA, Schiffman M, Meijer CJ, Sankaranarayanan R, Castellsagué X, Kim JJ,
532	Brotons M, Alemany L, Albero G, Diaz M, Sanjosé S. 2013. Authors of ICO
533	Monograph Comprehensive Control of HPV Infections and Related Diseases.
534	Vaccine 31: H1-31. Collaborators (98)
535	11. Alemany L, Saunier M, Alvarado I, Quirós B, Salmeron J, Shin HR, Pirog E,
536	Guimerà N, Hernández GA, Felix A, Clavero O, Lloveras B, Kasamatsu E,
537	Goodman MT, Hernandez BY, Laco J, Tinoco L, Geraets DT, Lynch CF,
538	Mandys V, Poljak M, Jach R, Verge J, Clavel C, Ndiaye C, Klaustermeier J,
539	Cubilla A, Castellsagué X, Bravo IG, Pawlita M, Quint W, Muñoz N, Bosch FX,
540	Sanjosé S on behalf of the HPV VVAP study group. 2015. HPV DNA prevalence
541	and type distribution in anal carcinomas worldwide. Int J Cancer 136: 98-107.
542	12. Kavati EA, Palumbo ACM, Andrade FB, Marigliani B, Sakauchi D, Leão E,
543	Armbruster-Moraes E, Müller M, Cianciarullo AM. 2012. Interaction of
544	HPV16L1L2 VLP with stem cells CD34+/CD117+ of the human amniotic fluid. In:
545	Current microscopy contributions to advances in science and technology. Editor:
546	Antonio Méndez-Vilas. Publisher: Formatex Research Center, Badajoz, Spain.
547	Volume 5: 617-624. ISBN-13: 978-84-939843-5-9.
548	http://www.formatex.info/microscopy5/book/617-624.pdf

549	13. Dunne EF, Markowitz LE, Saraiya M, Stokley S, Middleman A, Unger ER,
550	Williams A, Iskander J. 2014. Centers for Disease Control and Prevention. CDC
551	Grand Rounds: Reducing the Burden of HPV-Associated Cancer and Disease.
552	MMWR 63: 69-72.
553	14. Cianciarullo AM, Szulczewski V, Chaves AAM, Bazan SB, Aires KA, Müller M,
554	Armbruster-Moraes E. 2010. Production of HPV16 L1L2 VLPs in cultures of
555	human epithelial cells. In: Microscopy: Science, Technology, Applications and
556	Education. Editors: Antonio Méndez-Vilas and Jesús Díaz Álvarez. Publisher:
557	Formatex Research Center, Badajoz, Spain. Volume 4:1073-1082. ISBN- 13: 978-
558	84-614-6190. http://www.formatex.info/microscopy4/ 1073-1082.pdf
559	15. Marigliani B, Kavati EA, Sakauchi D, Oliveira HB, Canali RA, Sasaki AA,
560	Ferreira Jr JMC, Armbruster-Moraes E, Müller M, Cianciarullo AM. 2012.
561	Intracellular distribution of recombinant Human Papillomavirus capsid proteins. In:
562	Current microscopy contributions to advances in science and technology. Editor:
563	Antonio Méndez-Vilas. Publisher: Formatex Research Center, Badajoz, Spain.
564	Volume 5: 678-684. ISBN-13: 978-84-939843-5-9.
565	http://www.formatex.info/microscopy5/book/678-684.pdf
566	16. Nonnenmacher B, Breitenbach V, Villa LL, Prolla JC, Bozzetti MC. 2002.
567	Genital human papillomavirus infection identification by molecular biology among
568	asymptomatic women. Rev Saude Publica 36:95-100.
569	17. Kavati EA, Hosoda TM, Szulczewski V, Leão E, Borelli P, Cianciarullo AM.
570	2017. A simple, fast, inexpensive and efficient method for leukocytes separation
571	with preservation of morphology and cell viability for use in education and research.
572	In: Microscopy and imaging science: practical approaches to applied research and

573	education. Editor: Antonio Méndez-Vilas. Publisher: Formatex Research Center,
574	Badajoz, Spain. Volume 7: 665-670. ISBN-13: 978-84-942134-9-6.
575	http://www.microscopy7.org/book/665-670.pdf
576	18. Fothergill T, Mcmillan NAJ. 2006. Papillomavirus virus-like particles activate the
577	PI3-kinase pathway via alpha-6 beta-4 integrin upon binding. J Virol 352: 319-328.
578	19. Van Hamme E, Dewerchin HL, Cornelissen E, Verhasselt B, Nauwynck HJ.
579	2008. Clathrin- and caveolae-independent entry of feline infectious peritonitis virus
580	in monocytes depends on dynamin. J Gen Virol 89:2147-2156.
581	20. Doorbar J, Egawa N, Griffin H, Kranjec C, Murakami I. 2015. Human
582	papillomavirus molecular biology and disease association. Rev Med Virol 25:2-23.
583	21. Schellenbacher C, Roden RBS, Kimbauer R. 2017. Developments in L2-based
584	human papillomavirus (HPV) vaccines. Virus Res 231:166-175.
585	22. Näsman A, Nordfors C, Holzhauser S, Vlastos A, Tertipis N, Hammar U,
586	Hammarstedt-Nordenvall L, Marklund L, Munck-Wikland E, Ramqvist T,
587	Bottai M, Dalianis T. 2015. Incidence of human papillomavirus positive tonsillar
588	and base of tongue carcinoma: a stabilisation of an epidemic of viral induced
589	carcinoma? Eur J Cancer 51: 55-61.
590	23. Frega A, Cenci M, Stentella P, Cipriano L, De Ioris A, Alderisio M, Vecchione
591	A. 2003. Human papillomavirus in virgins and behaviour at risk. Cancer Lett 194:
592	21-24.
593	24. Armbruster-Moraes E, Ioshimoto LM, Leão E, Zugaib M. 1994. Presence of
594	human papillomavirus DNA in amniotic fluids of pregnant women with cervical
595	lesions. Gynecol Oncol 54:152–158.

596	25.	Rombaldi RL, Serafini EP, Mandelli J, Zimmermann E, Losquiavo KP. 2008.
597		Transplacental transmission of human papillomavirus. Virol J 5:106.
598	26.	Sarkola ME, Grénman SE, Rintala MA, Syrjänen KJ, Syrjänen SM. 2008.
599		Human papillomavirus in the placenta and umbilical cord blood. Acta Obstet
600		Gynecol Scand 87: 1181-1188.
601	27.	Koskimaa HM, Waterboer T, Pawlita M, Grénman S, Syrjänen K, Syrjänen S.
602		2012. Human papillomavirus genotypes present in the oral mucosa of newborns and
603		their concordance with maternal cervical human papillomavirus genotypes. J Pediatr
604		160: 837-843.
605	28.	Gruenberg J, van der Goot FG. 2006. Mechanisms of pathogen entry through the
606		endosomal compartments. Nat Rev Mol Cell Biol 7:495-504.
607	29.	Kinlock BL, Wang Y, Turner TM, Wang C, Liu B. 2014. Transcytosis of HIV-1
608		through vaginal epithelial cells is dependent on trafficking to the endocytic recycling
609		pathway. PLoS ONE 9:e96760.
610	30.	Müller M. 2005. Human Papilloma Viruses: Methods and Protocols. Humana Press
611		Inc. In: Davy, C.; Doorbar, J. Methods in Molecular Medicine. Totowa, NJ.
612		119: 435-446.
613	31.	Müller M, Gissmann L, Cristiano RJ, Sun XY, Frazer IH, Jenson AB, Alonso
614		A, Zentgraf H, Zhou J. 1995. Papillomavirus capsid binding and uptake by cells
615		from different tissues and species. J Virol 69:948-954.
616	32.	Roden RB, Kirnbauer R, Jenson AB, Lowy DR, Schiller JT. 1994a. Interaction
617		of papillomaviruses with the cell surface. J Virol 68:7260-7266.
618	33.	Kieback E, Müller M. 2006. Factors influencing subcellular localization of the
619		human papillomavirus L2 minor structural protein. Virology 345:199-208.

620	34. Leder C, Kleinschmidt JA, Wiethe C, Müller M. 2001. Enhancement of Capsid
621	Gene Expression: Preparing the Human Papillomavirus Type 16 Major Structural
622	Gene L1. J Virol 75: 9201-9209.
623	35. Campo MS, Jarrett WF, Barron R, O'Neil BW, Smith KT. 1992. Association of
624	bovine papillomavirus type 2 and bracken fern with bladder cancer in cattle. Cancer
625	Res 52: 6898-6904.
626	36. Stocco dos Santos RC, Lindsey CJ, Ferraz OP, Pinto JR, Mirandola RS, Benese
627	FJ, Birgel EH, Bragança-Pereira CA, Beçak W. 1998. Bovine papillomavirus
628	transmission and chromosomal aberrations: an experimental model. J Gen Virol
629	79: 2127-2135.
630	37. Tseng CJ, Lin CY, Wang RL, Chen LJ, Chang YL, Hsieh TT, Pao CC. 1992.
631	Possible transplacental transmission of human papillomaviruses. Am. J. Obstet
632	Gynecol 166: 35-40.
633	38. Payne D, Tyring SK, Doherty MG, Daya D, Chan TS. 1993. Detection of human
634	papillomavirus type 16 in plasma cells. Gynecol Oncol 48: 406-412.
635	39. Pao CC, Lin SS, Lin CY, Maa JS, Lai CH, Hsieh TT. 1991. Identification of
636	human papillomavirus DNA sequences in peripheral blood mononuclear cells. Am J
637	Clin Pathol 95: 540-546.
638	40. Karas Z, Porebas E. 1998. HPV sequences in blood of patients with condyloma
639	acuminata. J Invest Dermatol 110:843-844.
640	41. Roden RB, Weissinger EM, Henderson DW, Booy F, Kirnbauer R, Mushinski
641	JF, Lowy DR, Schiller JT. 1994b. Neutralization of bovine papillomavirus by
642	antibodies to L1 and L2 capsid proteins. J Virol 68:7570-7574.

643	42. Abbas AK, Lichtman AH. 2005. Cellular and Molecular Immunology. 5 ed.
644	Philadelphia: Elsevier, 580 p.

645	43. Da Silva DM, Velders MP, Nieland JD, Schiller JT, Nickoloff BJ, Kast WM.
646	2001. Physical interaction of human papillomavirus virus-like particles with immune
647	cells. Int Immunol 13: 633-641.
648	44. Da Silva DM, Fausch SC, Verbeek JS, Kast WM. 2007. Uptake of human
649	papillomavirus virus-like particles by dendritic cells is mediated by Fc gamma
650	receptors and contributes to acquisition of T cell immunity. J Immunol 178:7587-97.
651	45. Trowbridge IS, Omary MB. 1981. Human cell surface glycoprotein related to cell
652	proliferation is the receptor for transferrin. Proc Natl Acad Sci USA 78:3039–3043.
653	46. Tuma PL, Hubbard AL. 2003. Transcytosis: crossing cellular barriers. Physiol Rev
654	83: 871-932.
655	47. Kinlock BL, Wang Y, Turner TM, Wang C, Liu B. 2014. Transcytosis of HIV-1
656	through vaginal epithelial cells is dependent on trafficking to the endocytic recycling
657	pathway. PLoS One 9:e96760.
658	48. Anderson DJ. 2014. Modeling mucosal cell-associated HIV type 1 transmission in
659	vitro. J Infect Dis 210: S648-S653.
660	49. Sakajiri T, Yamamura T, Kikuchi T, Yajima H. 2009. Computational structure
661	models of apo and diferric transferrin-transferrin receptor complexes. Protein J
662	28: 407-414.
663	50. Wu S, Powers S, Zhu W, Hannun YA. 2016. Substantial contribution of extrinsic
664	risk factors to cancer development. Nature 529: 43-47.
665	

- 665
- 666

667 Figure Legends

668	Figure 1: Interactions of human leukocytes with VLPs of HPV16, detected by indirect
669	immunofluorescence. The leukocyte cells were incubated with the VLPs for 4 h. Following
670	fixation, they were immunostained with anti-HPV16 L1 antibody and then stained with a
671	secondary antibody conjugated to FITC (green). In all assays, AlexaFluor [®] 594-conjugated
672	Phalloidin (red) detected the actin cytoskeleton. The internalisation of VLPs (green arrows)
673	is shown in image C, through the sweep cuts on the Z-axis (C) 9.50 μ m thick sections and
674	each section to 1.60 µm. CLSM Zeiss LSM 510 Meta. Magnification: Objective C-
675	Apochromatic $63xs / 1.4$ oil. Bar = 5 μ m.
676	
677	Figure 2: Interactions of human leukocytes with VLPs of HPV16, detected by indirect
678	immunofluorescence. The leukocyte cells were incubated with the VLPs for 4 h. Following
679	fixation, they were immunostained with the conformational anti-HPV16 VLPs and stained
680	with a secondary antibody conjugated to FITC (green). AlexaFluor [®] 594-conjugated
681	Phalloidin (red) detected the actin cytoskeleton. The internalisation of VLPs (green arrows)
682	is shown in image C, through Z-axis sweep cuts (C) 7.80 μ m thick sections and each
683	section to 1.30 μ m. In (A) we see a structure similar to an endocytic vesicle (white arrow).
684	CLSM Zeiss LSM 510 Meta. Magnification: Objective C-Apochromatic 63xs /1.4 oil. Bar
685	$= 5 \ \mu m.$
686	
687	Figure 3: Interactions of human leukocytes with VLPs of HPV16, detected by indirect
688	immunofluorescence. After fixation, cells were immunostained with anti-HPV16 L1
689	antibody and then stained with a secondary antibody conjugated to FITC (green). Then
690	immunostained with anti-HPV16 L2 antibody and revealed by AlexaFluor [®] 555 secondary

691	antibody (red). The internalisation of VLPs (yellow arrows) is shown in confocal images
692	(merge). In (B) structures similar to vacuoles (blue arrow) might be observed. CLSM Zeiss
693	LSM 510 Meta. Magnification: Objective C-Apochromatic $63xs / 1.4$ oil. Bar = 5 μ m.
694	
695	Figure 4: Identification of human leukocyte interactions with the HPV16 VLPs analysed
696	by indirect immunofluorescence. After fixation, cells were immunostained with the
697	conformational anti-HPV16 VLPs and revealed by a secondary antibody conjugated to
698	FITC (green). Then, the cells were treated with anti-CD04 (A) and anti-CD08 (B) and
699	stained with a secondary antibody AlexaFluor [®] 546 (red). VLP internalisation (green
700	arrows) is visible on image overlay (merged images). In (B), a structure similar to an
701	endocytic vesicle is detectable (white arrow). CLSM Zeiss LSM 510 Meta. Magnification:
702	Objective C-Apochromatic $63xs / 1.4$ oil. Bar = 5 μ m.
703	
704	Figure 5: Identification of human leukocyte interactions with the HPV16 VLPs, analysed

by indirect immunofluorescence. After fixation, cells were immunostained with the

conformational anti-HPV16 VLPs and revealed by a secondary antibody conjugated to

FITC (green). Then, the cells were treated with anti-CD20 and anti-CD14 and stained with

a secondary antibody AlexaFluor[®]546 (red). VLP internalisation (green arrows) is visible

on image overlay (merged images). In (B) we can observe the colocalisation of CD14 and

710 VLPs (orange arrow) and vacuole-like structures (blue arrow). CLSM Zeiss LSM 510

711 Meta. Magnification: Objective C-Apochromatic 63xs / 1.4 oil. Bar = 5 μ m.

712

713 Figure 6: Identification of human leukocyte interactions with the HPV16 VLPs analysed

by indirect immunofluorescence. After fixation, cells were immunostained with the

715	conformational anti-HPV16 VLPs and revealed by a secondary antibody conjugated to
716	FITC (green). Then, the cells were treated with anti-CD20 (C), anti-CD04 (A), anti-CD08
717	(B), anti-CD14 (D) and AlexaFluor [®] 546 revealed by secondary antibody (red). VLP
718	internalisation (green arrows) is shown in the images through Z-axis sweep cuts. (A) 9.25
719	μm of thick sections and each section of 0.84 $\mu m;$ (B) 8.56 μm thick sections and each
720	section with 0.95 μ m; (C) 9.27 μ m thick sections and each section with 1.03 μ m; (D) 10,94
721	μ m thick sections and each section having 1.40 μ m. CLSM Zeiss LSM 510 Meta.
722	Magnification: Objective C-Apochromatic 63xs /1.4 oil.
723	
724	Figure 7: Colocalisation of VLPs of HPV16 and Tf in human leukocytes, detected by
725	indirect immunofluorescence. The leukocyte cells were incubated with the VLPs and the
726	conjugated Tf TexasRed [®] (red). Leukocytes were treated with anti-HPV16 L1 antibody,
727	revealed by a secondary antibody conjugated to FITC (green). In confocality (merge), the
728	images reveal colocalisation of L1 and Tf (yellow arrows). CLSM Zeiss LSM 510 Meta.
729	Magnification: Objective C-Apochromatic $63xs / 1.4$ oil. Bar = 5 μ m.
730	
731	Figure 8: Colocalisation of HPV16 VLPs and Tf in human white blood cells, detected by
732	indirect immunofluorescence. The leukocyte cells were incubated with the VLPs and the
733	conjugated Tf TexasRed [®] (red). Leukocytes were immunostained with anti-HPV16 VLP
734	antibody and revealed by a secondary antibody conjugated to FITC (green). In confocality
735	(merge), the images reveal colocalisation of VLPs and Tf (yellow arrows). CLSM Zeiss
736	LSM 510 Meta. Magnification: Objective C-Apochromatic $63xs$ /1.4 oil. Bar = 5 μ m.
737	

738	Figure 9: Three-dimensional imaging of leukocyte interactions with the VLPs produced in			
739	this study or the VLP vaccine Gardasil, Tf and TfR; detected by indirect			
740	immunofluorescence. The leukocyte cells were incubated with the VLPs and the conjugated			
741	Tf TexasRed [®] (red). After fixation, the leukocytes were immunostained with anti-HPV16			
742	VLP antibody and revealed by a secondary antibody, conjugated to FITC (green), then			
743	treated with anti-CD71 and revealed by AlexaFluor [®] 633 (blue). (A) and (B) colocalisation			
744	Tf and TfR (purple arrow), (C) and (D) colocalisation VLP / Tf / TfR (white arrows), (E)			
745	and (F) weak colocalisation VLP / Tf (orange arrows). CLSM Zeiss LSM 510 Meta.			
746	Magnification: Objective C-Apochromatic 63xs /1.4 oil.			
747				
748	Figure 10 (1-6): Immunofluorescence assay detecting the HPV VLPs entry in PBMC, even			
749	in presence of specific biochemical inhibitors of ligand uptake: (1) Sodium azide; (2)			
750	Chlorpromazine; (3) Liquemin; (4) rCTB; (5) Filipin; (6) Nystatin. (a) shows the overlay			
751	(merge) of images detected by stain of L1 protein (green), L2 protein (red), nuclei (blue);			
752	(b) Z-axis showing L1 protein within cells; (c) Z-axis showing the entry of L2 protein in			
753	cells was not inhibited. CLSM Zeiss LSM 510 Meta. Magnification: Objective C-			
754	Apochromatic $63xs / 1.4$ oil. Bar = 5 μ m.			
755				
756	Figure 11. Assay performed with all inhibitors used in Fig.15 (1-6), in association. (a)			
757	Detection of L1 protein (green); (b) L2 protein within cells (red); (c) nuclei (blue); (d) the			
758	overlay (merge) of images (a, b and c); Z-axis showing the L1 (e) and L2 (f) proteins within			

cells. CLSM Zeiss LSM 510 Meta. Magnification: Objective C-Apochromatic 63xs /1.4 oil.

760 Bar = 5 μ m.

761

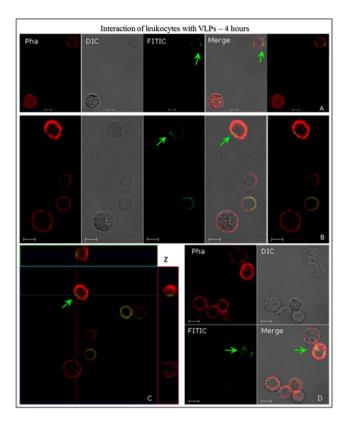
762 **Illustrations**

- **Table 1:** Biochemical inhibitors used to examine their effects on the entry of HPV VLPs in
- 764 PBMC.

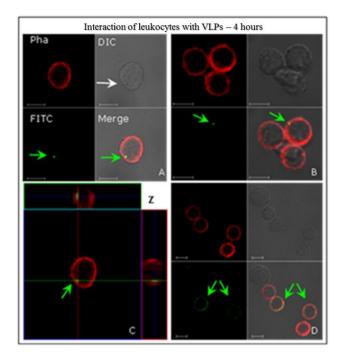
Inhibition
Clathrin pathway
Actin-dependent cells process
Caveolae pathway
HSPG pathway
Endocytic pathways

- 765
- 766
- 767 **Table 2:** Interactions of HPV16 VLPs produced in this study with PMBC (mononuclear
- 768

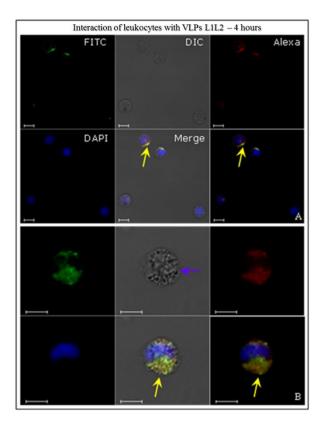
cells) from peripheral blood of healthy female volunteers.

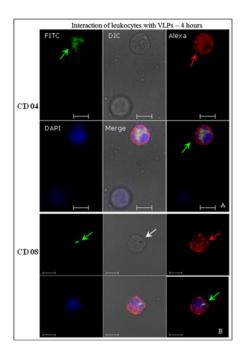

РМВС	Receptor	Percentage of cells that interacted with VLPs ¹
Lymphocyte T	CD04	52% ± 3
Lymphocyte T	CD08	47% ± 2
Lymphocyte B	CD20	48% ± 3
Monocyte	CD14	23% ± 5

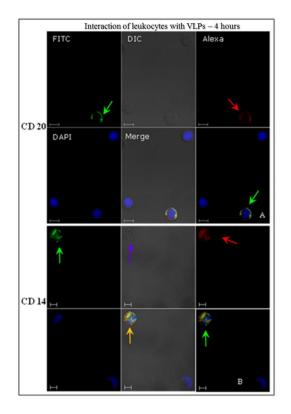
769

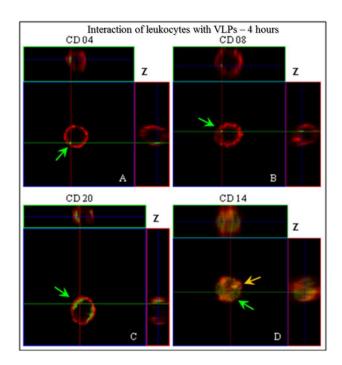

^{1.} The percentage of cells that interact with HPV16 VLPs was calculated by the number of

- cells recognized by anti-CD antibodies, which have internalized the particles. The result
- corresponds to the analysis in duplicate, being representative of at least four trials.
- 773


774 Figure 1


Figure 2


Figure 3


781 Figure 4

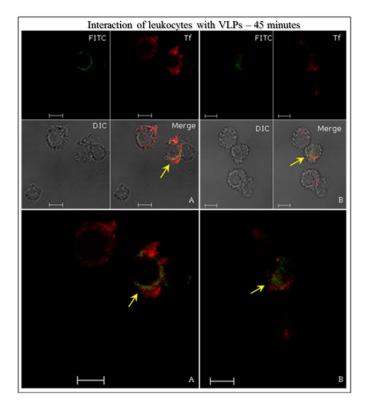
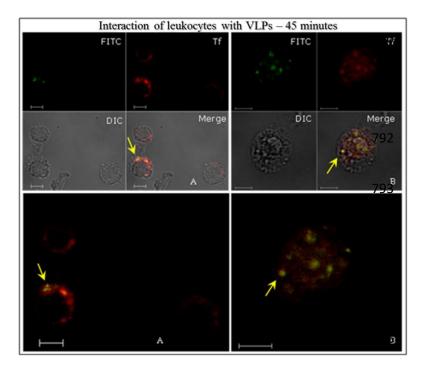
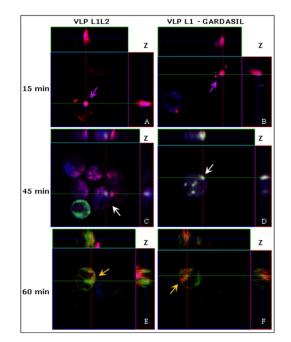

783 Figure 5

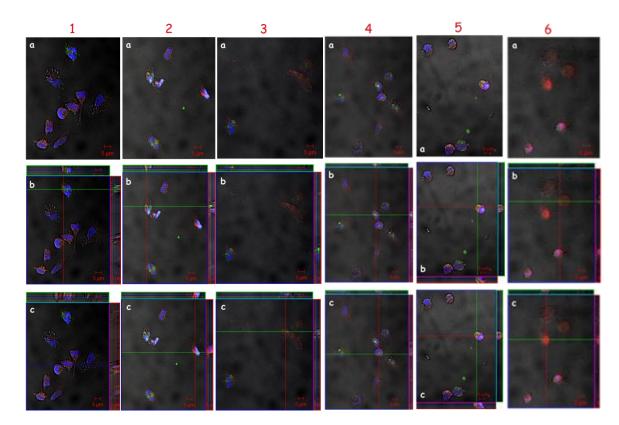
Figure 6

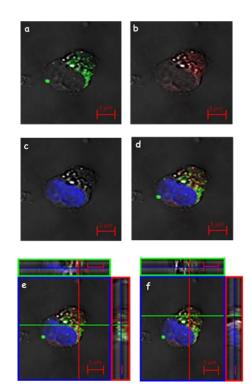


787 Figure 7

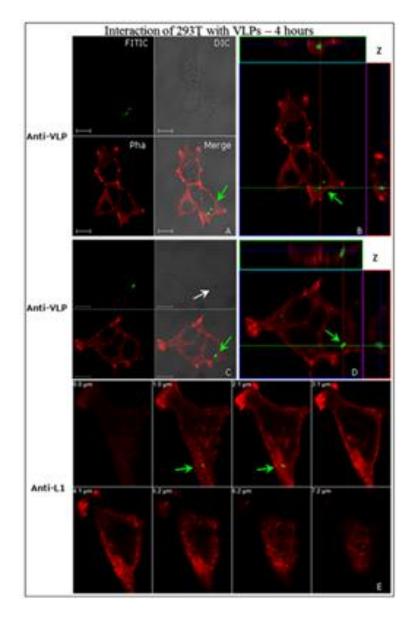


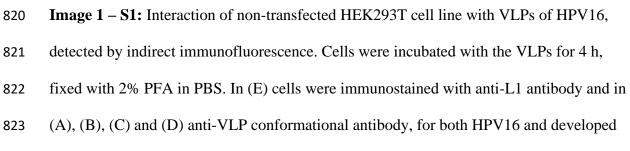
788


789 **Figure 8**


Figure 9

799 Figure 10

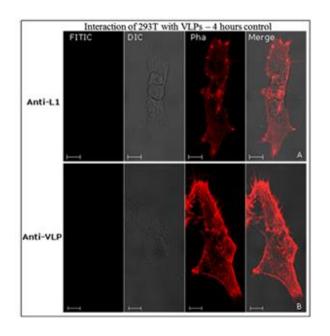

801 Figure 11



817 **Supplemental Material (Figures S1-S5 and Illustrations S6-S7)**

818 Image 1 – S1

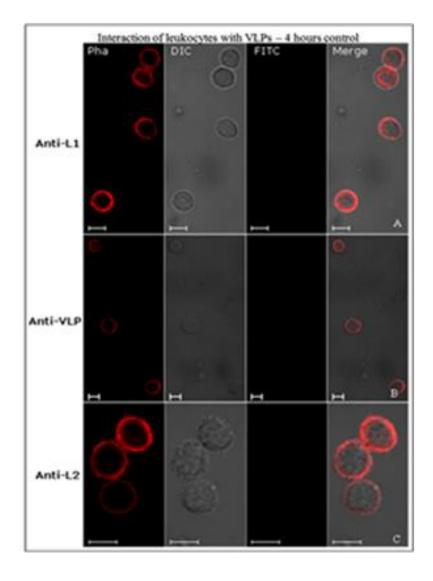
819



824 with secondary antibody conjugated to FITC (green). Phalloidin detected the actin

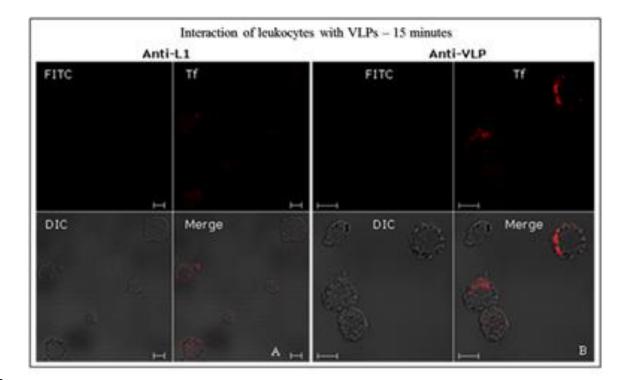
- cytoskeleton with AlexaFluor 594 conjugate (red). The internalisation of VLPs (green arrows) are shown in B and D images, and L1 in E, sweep cuts through the Z axis (B) of 11.38 μ m thick sections, and each section with 1.03 μ m; (D) 9.67 μ m thick sections and each section having 1.61 μ m. In (C), there was a similar structure to an endocytic vesicle (white arrow). CLSM Zeiss LSM 510 Meta. Magnification: Objective C-Apochromatic 63xs /1.4 oil. Bar = 10 μ m.
- 831

833


Image 2 S2: Assays-control of the interactions among HEK293T cells non-transfected,

835 with the HPV16 VLPs detected by immunofluorescence. In (A) cells were treated with anti-

- 837 secondary antibody conjugated to FITC (green). AlexaFluor® 594-conjugated Phalloidin
- 838 (red) detected the actin cytoskeleton. CLSM Zeiss LSM 510 Meta. Magnification:
- 839 Objective C-Apochromatic 63xs / 1.4 oil. Bar =10 μ m.


L1 antibody and (B) with anti-VLP conformational, for both HPV16 and developed with

840 Image 3 – S3

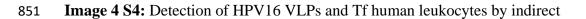
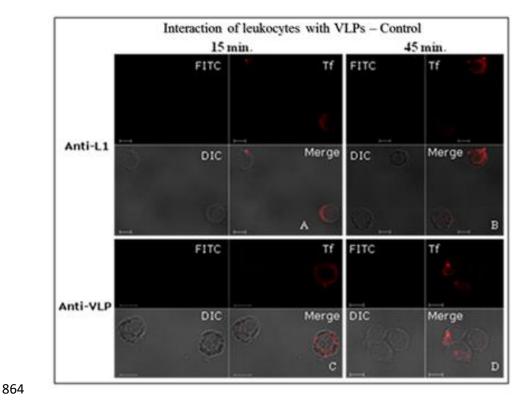


Image 3 – **S3:** Testing control the interactions of human leukocytes with VLPs of HPV16, detected by indirect immunofluorescence. In (A) the cells were treated with anti-L1 and (B) with anti-VLPs, HPV16 both to, and after, revealed by a secondary antibody conjugated to FITC (green). In (C) the cells were treated with anti-HPV16 L2, and after, AlexaFluor®488 revealed by secondary antibody (green). AlexaFluor® 594-conjugated Phalloidin (red) detected the actin cytoskeleton. CLSM Zeiss LSM 510 Meta. Magnification: Objective C-Apochromatic 63xs /1.4 oil. Bar = 5 μ m.

849 Image 4 – S4

850


immunofluorescence. The leukocyte cells were incubated with the VLPs and Tf protein

853 conjugated TexasRed® (red). In (A) the cells were immunostained with anti-L1 antibody

- and (B) with anti-VLP conformational both to HPV16, revealed by a secondary antibody
- 855 conjugated to FITC (green). By confocality (merge) of the images is not possible to observe
- colocalization and VLPs entry in leukocytes. CLSM Zeiss LSM 510 Meta. Magnification:
- 857 Objective C-Apochromatic 63xs / 1.4 oil. Bar = 5 μ m.
- 858
- 859
- 860
- 861
- 862

863 Image 5 – S5

876

865 **Image 5 - S5:** Images of the negative control testing of VLPs of HPV16 and Tf interactions in human leukocytes analysed by indirect immunofluorescence. The leukocyte cells were 866 867 incubated with Tf conjugated TexasRed® (red) VLPs in the absence (A and C) and / or denatured VLPs (B and D). In (A) and (C) the leukocytes were treated with anti-L1 868 antibody and (B) and (D) anti-VLPs, HPV16 both revealed by a secondary antibody 869 870 conjugated to FITC (green). Overlay (merge) of images that show no immunostaining signs by anti-L1 and anti-HPV16 VLPs. CLSM Zeiss LSM 510 Meta. Magnification: Objective 871 C-Apochromatic 63xs / 1.4 oil. Bar = 5 µm. 872 873 874 875

877 <u>Illustrations S6 – S7</u>

Antibody	Dilution	Description	Supplier
Anti-L1 Camvir-1	1:500	anti-mouse IgG _{2a} , specific for HPV16	BD Biosciences
Anti-L1 conformational	1:100	anti-mouse IgG _{2a} , specific for HPV16	Biodesign
Anti-L2	1:100	anti-rabbit IgG	Roden, R. MD/USA
Transferrin conjugated	1:60	TexasRed [®] (Ex. 595 nm, Em. 615 nm)	Molecular Probes [™]
Anti-Tf	1:750	anti- rabbit IgG	Dako
Anti-Ferritin	1:750	anti- rabbit IgG	Dako
Anti-CD71	1:750	anti-mouse IgG ₁ ; Tf receptor	Dako
Anti-CD04	1:20	anti-mouse IgG _{2a} ; recognizes T lymphocytes "helper"	CALTAG [™] Laboratories
Anti-CD08	1:20	anti-mouse IgG _{2a} ; recognizes cytotoxic T lymphocytes	CALTAG [™] Laboratories
Anti-CD14	1:20	anti-mouse IgG _{2a} ; recognizes monocytes	CALTAG [™] Laboratories
Anti-CD20	1:20	anti-mouse IgG ₃ ; recognizes B lymphocytes	CALTAG [™] Laboratories

S6 - Table 1: List of primary antibodies used in immunocytochemistry reactions.

S7 - Table 2: List of secondary antibodies used in immunocytochemistry reactions.

Antibody	Dilution	Description	Ex/Em. (nr	n) Supplier
FITC	1:250	anti- mouse IgG _{2a}	495/519	BD Biosciences
AlexaFluor [®] 546	1:500	anti- mouse IgG	556/573	Molecular Probes [™]
AlexaFluor [®] 555	1:500	anti- rabbit IgG	555/565	Molecular Probes [™]
AlexaFluor [®] 594	1:500	anti- mouse IgG ₃	590/617	Molecular Probes [™]
AlexaFluor [®] 633	1:500	anti- mouse IgG	632/647	Molecular Probes [™]
AlexaFluor [®] 633	1:500	anti- rabbit IgG	632/647	Molecular Probes [™]