Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Ras Suppresses TXNIP Expression by Restricting Ribosome Translocation

Donald E Ayer, Zhizhou Ye
doi: https://doi.org/10.1101/299354
Donald E Ayer
Huntsman Cancer Institute
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: don.ayer@hci.utah.edu
Zhizhou Ye
Huntsman Cancer Institute
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Oncogenic Ras upregulates aerobic glycolysis to meet the bioenergetic and biosynthetic demands of rapidly growing cells. In contrast, Thioredoxin interacting protein (TXNIP) is a potent inhibitor of glucose uptake and is frequently downregulated in human cancers. Our lab previously discovered that Ras activation suppresses TXNIP transcription and translation. In this report, we developed a system to study how Ras affects TXNIP translation in the absence of transcriptional affects. We show that whereas Ras drives a global increase in protein translation, it suppresses TXNIP protein synthesis by reducing the rate at which ribosomes transit the coding region of TXNIP mRNA. To investigate the underlying mechanism(s), we randomized or optimized the codons in the TXNIP message without altering the TXNIP primary amino acid sequence. Translation from these mRNA variants is still repressed by Ras, intimating that mRNA secondary structure, miRNAs, RNA binding proteins, or codon usage do not contribute to the blockade of TXNIP synthesis. Rather, we show that the N-terminus of the growing TXNIP polypeptide is the target for Ras-dependent translational repression. Our work demonstrates how Ras suppresses TXNIP translation elongation in the face of a global upregulation of protein synthesis and provides new insight into Ras-dependent metabolic reprogramming.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted April 11, 2018.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Ras Suppresses TXNIP Expression by Restricting Ribosome Translocation
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
Share
Ras Suppresses TXNIP Expression by Restricting Ribosome Translocation
Donald E Ayer, Zhizhou Ye
bioRxiv 299354; doi: https://doi.org/10.1101/299354
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Ras Suppresses TXNIP Expression by Restricting Ribosome Translocation
Donald E Ayer, Zhizhou Ye
bioRxiv 299354; doi: https://doi.org/10.1101/299354

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Cancer Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (1003)
  • Biochemistry (1502)
  • Bioengineering (954)
  • Bioinformatics (6860)
  • Biophysics (2451)
  • Cancer Biology (1808)
  • Cell Biology (2547)
  • Clinical Trials (108)
  • Developmental Biology (1710)
  • Ecology (2589)
  • Epidemiology (1508)
  • Evolutionary Biology (5048)
  • Genetics (3632)
  • Genomics (4651)
  • Immunology (1186)
  • Microbiology (4275)
  • Molecular Biology (1637)
  • Neuroscience (10865)
  • Paleontology (83)
  • Pathology (243)
  • Pharmacology and Toxicology (411)
  • Physiology (560)
  • Plant Biology (1469)
  • Scientific Communication and Education (414)
  • Synthetic Biology (546)
  • Systems Biology (1891)
  • Zoology (261)