BED-domain containing immune receptors confer diverse resistance spectra to yellow rust

Clemence Marchal ${ }^{1^{*}}$, Jianping Zhang ${ }^{2,3^{*}}$, Peng Zhang ${ }^{4}$, Paul Fenwick ${ }^{5}$, Burkhard Steuernagel ${ }^{1}$, Nikolai M. Adamski ${ }^{1}$, Lesley Boyd ${ }^{6}$, Robert McIntosh ${ }^{4}$, Brande B.H. Wulff ${ }^{1}$, Simon Berry ${ }^{5}$, Evans Lagudah ${ }^{2}$, Cristobal Uauy ${ }^{1, \dagger}$
${ }^{1}$ John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
${ }^{2}$ Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture \& Food, Canberra, ACT 2601, Australia
${ }^{3}$ Henan Tianmin Seed Company Limited, Lankao County, 475300, Henan Province, China
${ }^{4}$ University of Sydney, Plant Breeding Institute, Cobbitty, NSW 2570, Australia
${ }^{5}$ Limagrain UK Ltd, Rothwell, Market Rasen, Lincolnshire, LN7 6DT, United Kingdom
${ }^{6}$ NIAB, Huntingdon Road, Cambridge, CB3 0LE, United Kingdom
*Clemence Marchal and Jianping Zhang contributed equally to this work
${ }^{\dagger}$ Correspondence to cristobal.uauy@jic.ac.uk

Introductory paragraph

Crop diseases reduce wheat yields by $\sim 25 \%$ globally and thus pose a major threat to global food security ${ }^{1}$. Genetic resistance can reduce crop losses in the field and can be selected for through the use of molecular markers. However, genetic resistance often breaks down following changes in pathogen virulence, as experienced with the wheat yellow (stripe) rust fungus Puccinia striiformis f. sp. tritici (PST) ${ }^{2}$. This highlights the need to (i) identify genes that alone or in combination provide broad-spectrum resistance and (ii) increase our understanding of the underlying molecular mode of action. Here we report the isolation and characterisation of three major yellow rust resistance genes ($\mathrm{Yr} 7, \mathrm{Yr} 5$, and YrSP) from hexaploid wheat (Triticum aestivum), each having a distinct and unique recognition specificity. We show that $Y r 5$, which remains effective to a broad range of PST isolates worldwide, is allelic to YrSP and paralogous to $Y r 7$, both of which have been overcome by multiple PST isolates. All three Yr genes belong to a complex resistance gene cluster on chromosome 2B encoding nucleotide-binding and leucine-rich repeat proteins (NLRs) with a non-canonical N -terminal zinc-finger BED domain ${ }^{3}$ that is distinct from those found in nonNLR wheat proteins. We developed and tested diagnostic markers to accelerate haplotype analysis and for marker-assisted selection to enable the stacking of the non-allelic $Y r$ genes. Our results provide evidence that the BED-NLR gene architecture can provide effective fieldbased resistance to important fungal diseases such as wheat yellow rust.

Main

In plant immunity, NLRs act as intracellular immune receptors that upon pathogen recognition trigger a series of signalling steps that ultimately lead to cell death, thus preventing the spread of infection ${ }^{4,5}$. The NB-ARC domain is the hallmark of NLRs which in most cases include leucine-rich repeats (LRR) at the C-terminus. Recent in silico analyses
have identified NLRs with additional 'integrated' domains ${ }^{6-8}$, including zinc-finger BED domains (BED-NLRs). The function of the BED domains from BED-NLRs is unknown, although the BED domain from the non-NLR DAYSLEEPER protein was shown to bind DNA in Arabidopsis ${ }^{9}$. BED-NLRs are widespread across Angiosperm genomes and this gene architecture has been shown to confer resistance to bacterial blast in rice $\left(X a 1^{10,11}\right)$.

The genetic relationship between $Y r 5$ and $Y r 7$ has been debated for almost 45 years ${ }^{12,13}$. Both genes map to chromosome arm 2BL in hexaploid wheat and were hypothesized to be allelic ${ }^{14}$, and closely linked with $Y r S P^{15}$. Whilst $Y r 5$ confers resistance to almost all tested PST isolates worldwide, both $Y r 7$ and $Y r S P$ have been overcome in the field, and each gene displays a distinct recognition specificity. Wide deployment of Y 7 is correlated to the increase in the virulence for $Y r 7$ among PST isolates in the UK (Supplementary Table 1, Supplementary Figure 1).

To clone the genes encoding $Y r 5, Y r 7$, and $Y r S P$, we identified susceptible ethyl methanesulfonate-derived (EMS) mutants from different genetic backgrounds carrying these genes (Figure 1, Supplementary Tables 2-3). We performed MutRenSeq ${ }^{16}$ and isolated a single candidate contig for each of the three genes based on nine, ten, and four independent susceptible mutants, respectively (Figure 1a; Supplementary Figure 2). The three candidate contigs were genetically linked to a common mapping interval, previously identified for the three $Y r$ loci ${ }^{15,17,18}$. Their closest homologs in the Chinese Spring wheat genome sequence (RefSeq v1.0, https://wheat-urgi.versailles.inra.fr/Seq-Repository/Assemblies) all lie within this common genetic interval (Figure 1b; Supplementary Figure 3).

Within each contig we predicted a single open reading frame based on RNA-Seq data. All three predicted $Y r$ genes displayed similar exon-intron structures (Figure 1a), although $Y r S P$ was truncated in exon 3 due to a single base deletion that resulted in a premature termination codon. The DNA sequences of $Y r 7$ and $Y r 5$ were 77.9% identical across the complete gene; whereas $Y r S P$ was a truncated version of $Y r 5$, sharing 99.8% identity in the common sequence (Supplementary Files 1 and 2). This suggests that $Y r 5$ and $Y r S P$ are encoded by alleles of the same gene, but are paralogous to $\operatorname{Yr} 7$. The 23 mutations identified by MutRenSeq were confirmed by Sanger sequencing and all lead to either an amino acid substitution or a truncation allele (splice junction or termination codon) (Figure 1a; Supplementary Table 3). Taken together, the mutant and genetic analyses demonstrate that $Y r 5$ and $Y r S P$ are allelic, while $Y r 7$ is encoded by a related, yet distinct gene.

The Yr7, Yr5, and YrSP proteins contain a zinc-finger BED domain at the N -terminus, followed by the canonical NB-ARC domain. Only Yr7 and Yr5 proteins encode multiple LRR motifs at the C-terminus (Figure 2a; green bars), YrSP having lost most of the LRR region due to the presence of the premature termination codon in exon 3. YrSP still confers functional resistance to PST, although with a different recognition specificity to Yr5. Yr7 and Yr5/YrSP are highly conserved in the N-terminus, with a single amino-acid change in the BED domain. This high degree of conservation is eroded downstream of the BED domain (Figure 2a). The BED domain is required for Yr 7 -mediated resistance, as a single amino acid change in mutant line Cad0903 led to a susceptible reaction (Figure 1a). However, recognition specificity is not solely governed by the BED domain, as the $Y r 5$ and $Y r S P$ alleles have identical BED domain sequences, yet confer resistance to different PST isolates.

We examined the allelic variation in $Y r 7$ and $Y r 5 / Y r S P$ across eight sequenced tetraploid and hexaploid wheat genomes (Supplementary Table 4). We identified Yr7 only in Cadenza and Paragon, which are identical-by-descent in this interval (Supplementary File 3, Supplementary Table 5, and Supplementary Figure 4). Both cultivars are derived from the original source of $Y r 7$, tetraploid durum wheat (T. turgidum ssp. durum) cultivar Iumillo and its hexaploid derivative Thatcher (Supplementary Figure 4). None of the three sequenced tetraploid accessions (Svevo, Kronos, Zavitan) carry Yr7 (Supplementary Table 5).

For $\mathrm{Yr} 5 / \mathrm{YrSP}$, we identified three additional alleles in the sequenced hexaploid wheat cultivars (Figure 2b; Supplementary Table 6). Claire encodes a complete NLR with six amino-acid changes situated outside the three conserved domains (BED, NB-ARC, and LRRs) and six polymorphisms in the C-terminus compared to Yr5. Robigus, Paragon, and Cadenza also encode a full length NLR that shares common polymorphisms with Claire, in addition to 19 amino acid substitutions across the BED and NB-ARC domains. The Cterminus polymorphisms between $\operatorname{Yr} 5$ and the other alleles were due to a 774 bp insertion in Yr5, close to the 3' end, which carries an alternate termination codon (Supplementary File 2). Tetraploid accessions Kronos and Svevo encode a fifth Yr5/YrSP allele with a truncation in the LRR region distinct from YrSP, in addition to multiple amino acid substitutions across the C-terminus (Supplementary Table 6). This truncated tetraploid allele is reminiscent of YrSP and is expressed in Kronos (see Methods). However, none of these varieties (Claire, Robigus, Paragon, Cadenza, Svevo, and Kronos) exhibit a Yr5/YrSP resistance response, suggesting that these amino acid changes and truncations may alter recognition specificity or protein function.

We designed diagnostic markers for $Y r 5, Y r S P$, and $Y r 7$ to facilitate their detection and use in breeding. We confirmed their presence in the donor cultivars Thatcher and Lee (Yr7), Spaldings Prolific (YrSP), and spelt wheat cv. album (Yr5) (Supplementary Tables 7-8; Supplementary Figures 4-5). To further define their specificity, we tested the markers in a collection of global landraces ${ }^{19}$ and European varieties ${ }^{20}$ released over the past one hundred years. Yr5 was only present in spelt cv. album, AvocetS-Yr5, and Lemhi-Yr5 and was not detected in any other line (Supplementary Table 9) consistent with the fact that $Y r 5$ has not yet been deployed within European breeding programmes. YrSP was absent from the tested germplasm, except for AvocetS-YrSP (Supplementary Table 8). Yr 7 on the otherhand was more prevalent in the germplasm tested and we could track its presence across pedigrees, including Cadenza derived cultivars (Supplementary Tables 7-8; Supplementary Figure 4).

We defined the $Y r 7 / Y r 5 / Y r S P$ syntenic interval across the wheat genomes and related grass species Aegilops tauschii (D genome progenitor), Hordeum vulgare (barley), Brachypodium distachyon, and Oryza sativa (rice) (Supplementary file 4, Supplementary Figure 6). We identified both canonical NLRs, as well as BED-NLRs across all genomes and species, except for barley, which only contained canonical NLRs across the syntenic region. The phylogenetic relationship based on the NB-ARC domain suggests a common evolutionary origin of these integrated domain NLR proteins before the wheat-rice divergence ($\sim 50 \mathrm{Mya}$) and an expansion in the number of NLRs in the A and B genomes of polyploid wheat species (Figure 3a; Supplementary Figure 7). Within the interval we also identified several genes in the A, B, and D genomes that encode two consecutive in-frame BED domains (named BED_I and BED_II; Figure 3b-c, Supplementary Figure 6) followed by the canonical NLR. The BED domains in these genes were fully encoded within a single exon (exons 2 and 3) and in most cases had a four-exon structure (Figure 3c). This is consistent with the three-exon
structure of single BED domain genes, such as $\operatorname{Yr} 7$ and $\operatorname{Yr} 5 / Y r S P$ (BED_I encoded on exon 2). To our knowledge this is the first report of the double BED domain NLR protein structure. The biological function of this molecular innovation remains to be determined, although our data show that the single BED_I structure can confer PST resistance and is required for Yr 7 -mediated resistance.

Among other mechanisms, integrated domains of NLRs are hypothesised to act as decoys for pathogen effector targets ${ }^{5}$. This would suggest that the integrated domain might be sequencerelated to the host protein targeted by the effector. To identify these potential effector targets in the host, we retrieved all BED-domain proteins (108) from the hexaploid wheat genome, including 25 BED-NLRs, and additional BED-NLRs located in the syntenic intervals (Supplementary Table 10; Supplementary file 4). We also retrieved the rice Xa1 ${ }^{10,11}$ and ZBED proteins, the latter being hypothesized to mediate rice resistance to Magnaporthe oryzae ${ }^{7}$. We used the split network method implemented in SplitsTree4 ${ }^{21}$ to represent the relationships between these BED domains (Figure 3d; Supplementary Figure 8). We found a major split in the network with almost all wheat non-NLR BED proteins (76 of 83; Figure 3d, black) clustering together, while the BED-NLRs proteins of wheat and other analysed species clustered opposite (Figure 3d). This separation is consistent with the hypothesis that integrated domains might have evolved to strengthen the interaction with the effector after integration ${ }^{22}$. Among BED-NLRs, BED_I and BED_II constitute two major clades, consistent with their relatively low amino acid conservation (Figure 3b), that are comprised solely of genes from within the $\operatorname{Yr} 7 / Y r 5 / Y r S P$ syntenic region. Seven non-NLR BED domain wheat proteins clustered with BED-NLRs. These are most closely related to the Brachypodium and rice BED-NLR proteins and were not expressed in RNA-Seq data from a Yr5 time-course (re-analysis of published data ${ }^{23}$; Supplementary Figure 9, Supplementary

Table 11). Similarly, no BED-containing protein was differentially expressed during this infection time-course, consistent with the prediction that effectors alter their targets' activity at the protein level in the integrated-decoy model 5. We cannot however disprove that these closely related BED-containing proteins are involved in BED-NLR-mediated resistance.

BED-NLRs are frequent in Triticeae, and occur in other monocot ${ }^{8}$ and dicot tribes ${ }^{7,24}$. Only a single BED-NLR gene, Xal, was previously shown to confer resistance to plant pathogens ${ }^{10,11}$. In the present study, we show that the distinct $Y r 5, Y r S P$, and $Y r 7$ resistance specificities belong to a complex NLR cluster on chromosome 2B and are encoded by two paralogous BED-NLRs genes. We report an allelic series for the $\operatorname{Yr} 5 / Y r S P$ gene with five independent alleles, including three full-length BED-NLRs (including Yr5) and two truncated versions (including $Y r S P$). This wider allelic series could be of functional significance as previously shown for the Mla and Pm3 loci that confer resistance to Blumeria graminis ${ }^{25,26}$ in barley and wheat, respectively, and the flax L locus conferring resistance to Melampsora lini ${ }^{27}$. Overall, our results add strong evidence for the importance of the BED-NLR architecture in plant-pathogen interactions. The paralogous and allelic relationship of these three distinct $Y r$ loci will inform future hypothesis-driven engineering of novel recognition specificities.

Methods

MutRenSeq

Mutant identification

Supplementary Table 2 summarises plant materials and PST isolates used to identify mutants for each $Y r$ gene. We used an EMS-mutagenised population in cultivar Cadenza ${ }^{28}$ to identify mutants in $Y r 7$; whereas EMS-populations in the corresponding AvocetS- Yr near isogenic line (NIL) were used to identify $Y r 5$ and $Y r S P$ mutants. For $Y r 7$, we inoculated M_{3} plants from the Cadenza EMS population with PST isolate $08 / 21$ which is virulent to $Y r 1, Y r 2, Y r 3$, Yr4, Yr6, Yr9, Yr17, Yr27, Yr32, YrRob, and YrSol ${ }^{29}$. We hypothesised that susceptible mutants would carry mutations in Yr7. Plants were grown in 192-well trays in a confined glasshouse with no supplementary lights or heat. Inoculations were performed at the one leaf stage (Zadoks 11) with a talc - urediniospore mixture. Trays were kept in darkness at $10{ }^{\circ} \mathrm{C}$ and 100% humidity for 24 hours. Infection types (IT) were recorded 21 days post-inoculation (dpi) following the Grassner and Straib scale ${ }^{30}$. Identified susceptible lines were progeny tested to confirm the reliability of the phenotype and DNA from M_{4} plants was used for RenSeq (see section below). Similar methods were used for AvocetS-Yr7, AvocetS-Yr5, and AvocetS-YrSP EMS-mutagenised populations with the following exceptions: PST pathotypes 108 E141 A+ (University of Sydney Plant Breeding Institute Culture no. 420), 150 E16 A+ (Culture no. 598) and 134 E16 A+ (Culture no. 572) were used to evaluate Yr7, Yr5, and YrSP mutants, respectively. EMS-derived susceptible mutants in Lemhi-Yr5 were previously identified ${ }^{31}$ and DNA from M_{5} plants was used for RenSeq.

DNA preparation, resistance gene enrichment and sequencing (RenSeq)

We extracted total genomic DNA from young leaf tissue using the large-scale DNA extraction protocol from the McCouch Lab (https://ricelab.plbr.cornell.edu/dna_extraction)
and a previously described method ${ }^{32}$. We checked DNA quality and quantity on a 0.8% agarose gel and with a NanoDrop spectrophotometer (Thermo Scientific). Arbor Biosciences (Ann Arbor, MI, USA) performed the targeted enrichment of NLRs according to the MYbaits protocol using an improved version of the previously published Triticeae bait library available at github.com/steuernb/MutantHunter. Library construction was performed using the TruSeq RNA protocol v2 (Illumina 15026495). Libraries were pooled with one pool of samples for Cadenza mutants and one pool of eight samples for the Lemhi-Yr5 parent and Lemhi-Yr5 mutants. AvocetS-Yr5 and AvocetS-YrSP wild-type, together with their respective mutants, were also processed according to the MYbaits protocol and the same bait library was used. All enriched libraries were sequenced on a HiSeq 2500 (Illumina) in High Output mode using 250 bp paired end reads and SBS chemistry. For the Cadenza wild-type, we generated data on an Illumina MiSeq instrument. In addition to the mutants, we also generated RenSeq data for Kronos and Paragon to assess the presence of Yr5 in Kronos and Yr7 in Paragon. Details of all the lines sequenced, alongside NCBI accession numbers, are presented in Supplementary Tables 3 and 12.

MutantHunter pipeline

We adapted the pipeline from https://github.com/steuernb/MutantHunter/ to identify candidate contigs for the targeted $Y r$ genes. First, we trimmed the RenSeq-derived reads with trimmomatic ${ }^{33}$ using the following parameters: ILLUMINACLIP:TruSeq2-PE.fa:2:30:10 LEADING:30 TRAILING:30 SLIDINGWINDOW:10:20 MINLEN:50 (v0.33). We made de novo assemblies of wild-type plant trimmed reads with the CLC assembly cell and default parameters apart from the word size (-w) parameter that we set to 64 (v5.0, http://www.clcbio.com/products/clc-assembly-cell/) (Supplementary Table 13). We then followed the MutantHunter pipeline detailed at https://github.com/steuernb/MutantHunter/.

For Cadenza mutants, we used the following MutantHunter program parameters to identify candidate contigs: -c $20-\mathrm{n} 6$-z 1000. These options require a minimum coverage of 20x for SNPs to be called; at least six susceptible mutants must have a mutation in the same contig to report it as candidate; small deletions were filtered out by setting the number of coherent positions with zero coverage to call a deletion mutant at 1000 . The -n parameter was modified accordingly in subsequent runs with the Lemhi- $Y r 5$ datasets (-n 6).

To identify Yr5 and YrSP contigs from Avocet mutants, we followed the MutantHunter pipeline with all default parameters, except in the use of CLC Genomics Workbench (v10) for reads QC, trimming, de novo assembly of Avocet wild-type and mapping all the reads against de novo wild-type assembly. The default MutantHunter parameters were used except that -z was set as 100 . The parameter -n was set to 2 in the first run and then to 3 in the second run. Two Yr5 mutants were most likely sibling lines as they carried identical mutations at the same position (Supplementary Figure 2, Supplementary Table 3).

For $Y r 7$ we identified a single contig with six mutations, however we did not identify mutations in line Cad0903. Upon examination of the $Y r 7$ candidate contig we predicted that the 5 ' region was likely to be missing (Supplementary Figure 2). We thus annotated potential NLRs in the Cadenza genome assembly available from the Earlham Institute (Supplementary Table 4, http://opendata.earlham.ac.uk/Triticum_aestivum/EI/v1.1) with the NLR-Annotator program using default parameters (https://github.com/steuernb/NLR-Annotator). We identified an annotated NLR in the Cadenza genome with 100% sequence identity to the Yr 7 candidate contig, which extended beyond our de novo assembled sequence. We therefore replaced the previous candidate contig with the extended Cadenza sequence (100% sequence identity) and mapped the RenSeq reads from Cadenza wild-type and mutants as described
above. This confirmed the candidate contig for $Y r 7$ as we retrieved the missing 5' region including the BED domain. The improved contig now also contained a mutation in the outstanding mutant line Cad0903 (Supplementary Figure 2). The Triticeae bait library does not include integrated domains in its design so they are prone to be missed, especially when located at the ends of an NLR. Sequencing technology could also have accounted for this: MiSeq was used for Cadenza wild-type whereas HiSeq was chosen for Lemhi-Yr5 and we recovered the 5 ' region in the latter, although coverage was lower than for the regions encoding canonical domains. In summary, we sequenced nine, ten, and four mutants for Yr 7 , $Y r 5$, and $Y r S P$, respectively and identified for each target gene a single contig that accounted for all mutants.

Candidate contig confirmation and gene annotation

We sequenced the $Y r 5, Y r 7$, and $Y r S P$ candidate contigs from the mutant lines (annotated in Supplementary Files 1 and 2) to confirm the EMS-derived mutations using primers documented in Supplementary Table 14. We first PCR-amplified the complete locus from the same DNA preparations as the ones submitted for RenSeq with the Phusion® High-Fidelity DNA Polymerase (New England Biolabs) following the suppliers protocol (https://www.neb.com/protocols/0001/01/01/pcr-protocol-m0530). We then carried out nested PCR on the obtained product to generate overlapping 600-1,000 bp amplicons that were purified using the MiniElute kit (Qiagen). The purified PCR products were sequenced by GATC following the LightRun protocol (https://www.gatc-biotech.com/shop/en/lightrun-tube-barcode.html). Resulting sequences were aligned to the wild-type contig using ClustalOmega (https://www.ebi.ac.uk/Tools/msa/clustalo/). This allowed us to curate the Yr 7 locus in the Cadenza assembly that contained two sets of unknown (' N ') bases in its
sequence, corresponding to a 39 bp insertion and a 129 bp deletion (Supplementary File 3), and to confirm the presence of the mutations in each mutant line.

We used HISATt2 ${ }^{34}$ (v2.1) to map RNA-Seq reads available from Cadenza and AvocetS$Y r 5^{23}$ to the RenSeq de novo assemblies with curated loci to define the structure of the genes. We used the following parameters: --no-mixed --no-discordant to map reads in pairs only. We used the --novel-splicesite-outfile to predict splicing sites that we manually scrutinised with the genome visualisation tool IGV^{35} (v2.3.79). Predicted coding sequences (CDS) were translated using the ExPASy online tool (https://web.expasy.org/translate/). This allowed us to predict the effect of the mutations on each candidate transcript (Figure 1a; Supplementary Table 3). The long-range primers for both $Y r 7$ and $Y r 5$ loci were then used on the corresponding susceptible Avocet NIL mutants to determine whether the genes were present and carried mutations in that background (Figure 1a; Supplementary Files 1 and 2).

Genetic linkage

We generated a set of F_{2} populations to genetically map the candidate contigs (Supplementary Table 2). For Yr 7 we developed an F_{2} population based on a cross between the susceptible mutant line Cad0127 to the Cadenza wild-type (population size 139 individuals). For $Y r 5$ and $Y r S P$ we developed F_{2} populations between AvocetS and the NILs carrying the corresponding Yr gene (94 individuals for YrSP and 376 for Yr 5). We extracted DNA from leaf tissue at the seedling stage (Zadoks 11) following a previously published protocol ${ }^{36}$ and KASP assays were carried out as described in ${ }^{37}$. R/qtl package ${ }^{38}$ was used to produce the genetic map based on a general likelihood ratio test and genetic distances were calculated from recombination frequencies (v1.41-6).

We used previously published markers linked to $Y r 7, Y r 5$, and $Y r S P$ (WMS526, WMS501 and WMC175, WMC332, respectively ${ }^{15,17,18}$) in addition to closely linked markers WMS120, WMS191, and WMC360 (based on the GrainGenes database https://wheat.pw.usda.gov/GG3/) to define the physical region on the Chinese Spring assembly RefSeq v1.0 (https://wheat-urgi.versailles.inra.fr/Seq-Repository/Assemblies). Two different approaches were used for genetic mapping depending on the material. For $Y r 7$, we used the public data ${ }^{28}$ for Cad0127 (www.wheat-tilling.com) to identify nine mutations located within the $Y r 7$ physical interval based on BLAST analysis against RefSeq v1.0. We used KASP primers when available and manually designed additional ones including an assay targeting the Cad0127 mutation in the $Y r 7$ candidate contig (Supplementary Table 14). We genotyped the Cad0127 F_{2} populations using these nine KASP assays and confirmed genetic linkage between the Cad0127 Yr7 candidate mutation and the nine mutations across the physical interval (Supplementary Figure 3).

For $Y r 5$ and $Y r S P$, we first aligned the candidate contigs to the best BLAST hit in an AvocetS RenSeq de novo assembly. We then designed KASP primers targeting polymorphisms between these sequences and used them to genotype the corresponding F_{2} population (Supplementary Table 14). For both candidate contigs we confirmed genetic linkage with the previously published genetic intervals for these Yr genes (Supplementary Figure 3).

Yr7 gene-specific markers

We aligned the $Y r 7$ sequence with the best BLAST hits in the genomes listed on Supplementary Table 4 and designed KASP primers targeting polymorphisms that were Yr 7 specific. Three markers were retained after testing on a selected panel of Cadenza-derivatives and varieties that were positive for $Y r 7$ markers in the literature, including the $Y r 7$ reference
cultivar Lee (Supplementary Table 7, 8 and 15). The panel of Cadenza-derivatives was phenotyped with three PST isolates: PST 08/21 (Yr7-avirulent), PST 15/151 (Yr7-avirulent virulent to Yrl, 2, 3, 4, 6, 9, 17, 25, 32, Rendezvous, Sp, Robigus, Solstice) and PST 14/106 (Yr7-virulent, virulent to Yrl, 2, 3, 4, 6, 7, 9, 17, 25, 32, Sp, Robigus, Solstice ,Warrior, Ambition, Cadenza, KWS Sterling, Apache) to determine whether Yr7-positive varieties, as identified by the three KASP markers, displayed a consistent specificity (Supplementary Table 7). Pathology assays were performed as for the screening of the Cadenza mutant population. We retrieved pedigree information for the analysed varieties from the Genetic Resources Information System for Wheat and Triticale database (GRIS, www.wheatpedigree.net) and used the Helium software ${ }^{39}$ (v1.17) to illustrate the breeding history of $Y r 7$ in the UK (Supplementary Figure 4).

We used the three $Y r 7$ KASP markers to genotype (i) varieties from the AHDB Wheat Recommended List from 2005-2018 (https://cereals.ahdb.org.uk/varieties/ahdb-recommended-lists.aspx); (ii) the Gediflux collection of European bread wheat varieties released between 1920 and 2010^{20} and (iii) the core Watkins collection, which represents a global set of wheat landraces collected in the $1930 \mathrm{~s}^{19}$. KASP assays were carried out as in ${ }^{37}$ and results are reported in Supplementary Table 8.

Yr5 and YrSP gene-specific markers

We identified a 774 bp insertion in the $Y r 5$ allele 29 bp upstream of the STOP codon with respect to the Cadenza and Claire alleles. Genomic DNA from YrSP confirmed that the insertion was specific to $\operatorname{Yr} 5$. We used this polymorphism to design primers flanking the insertion and tested them on a subset of the collections mentioned above. We added 32 DNA sample from diverse accessions of Triticum dicoccoides, the wild progenitor of domesticated
wheat (passport data shown in Supplementary Table 16). We included DNA from Triticum aestivum ssp. spelta var. album ${ }^{31}$ (Yr5 donor) and Spaldings Prolific (YrSP donor) to assess their amplification profiles. PCR amplification was conducted using a touchdown programme: 10 cycles, $-0.5^{\circ} \mathrm{C}$ per cycle starting from $67^{\circ} \mathrm{C}$ and the remaining 25 cycles at $62^{\circ} \mathrm{C}$. This allowed us to increase the specificity of the reaction. We observed three different profiles on the tested varieties; (i) a $1,281 \mathrm{bp}$ amplicon in Yr 5 positive cultivars, (ii) a 507 bp amplicon in the alternate $Y r 5$ allele carriers, including AvocetS-YrSP, Cadenza, and Claire, and (iii) no amplification in other varieties. We sequenced the different amplicons and confirmed the insertion in Yr5 compared to the alternate alleles (Supplementary File 2). The lack of amplicons in some varieties most likely respresents the absence of the loci in the tested varieties. For $Y r S P$, we aligned the $Y r S P$ and $Y r 5$ sequences to design KASP primers targeting the G to C SNP between the two alleles (Supplementary File 2, Supplementary Table 15). We tested the marker by genotyping selected varieties as controls and varieties from the AHDB Wheat Recommended List from 2005-2018 (Supplementary Table 8).

In silico allele mining for $\mathbf{Y r} 7$ and $\mathbf{Y r} 5$

We used the $Y r 7$ and $Y r 5$ sequences to retrieve the best BLAST hits in the T. aestivum and T. turgdium wheat genomes listed in Supplementary Table 4. The best Yr5 hits shared between 93.6 and 99.3% sequence identity, which was comparable to what was observed for alleles derived from the wheat Pm3 (>97\% identity) ${ }^{26}$ and flax $L(>90 \% \text { identity })^{27}$ genes. $Y r 7$ was identified only in Paragon and Cadenza (Supplementary Table 5; See Supplementary File 3 for curation of the Paragon sequence).

Analysis of the Yr 7 and $\mathrm{Yr} 5 / \mathrm{YrSP}$ cluster on RefSeq v1.0

Definition of syntenic regions across grass genomes

We used NLR-Annotator to identify putative NLR loci on RefSeq v1.0 chromosome 2B and identified the best BLAST hits to $Y r 7$ and $Y r 5$ on RefSeq v1.0. Additional BED-NLRs and canonical NLRs were annotated in close physical proximity to these best BLAST hits. Therefore, to better define the NLR cluster we selected ten non-NLR genes located both distal and proximal to the region, and identified orthologs in barley, Brachypodium, and rice in EnsemblPlants (https://plants.ensembl.org/). We used different \% ID cutoffs for each species ($>92 \%$ for barley, $>84 \%$ for Brachypodium, and $>76 \%$ for rice) and determined the syntenic region when at least three consecutive orthologues were found. A similar approach was conducted for Triticum ssp and Ae. tauschii (Supplementary file 4).

Definition of the NLR content of the syntenic region

We extracted the previously defined syntenic region from the grass genomes listed in Supplementary Table 4 and annotated NLR loci with NLR-Annotator. We maintained previously defined gene models where possible, but also defined new gene models that were further analysed through a BLASTx analysis to confirm the NLR domains (Supplementary Files 4 and 5). The presence of BED domains in these NLRs was also confirmed by CDSearch (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi).

Phylogenetic and neighbour network analyses

We aligned the translated NB-ARC domains from the NLR-Annotator output with MUSCLE ${ }^{40}$ using default parameters (v.3.8.31). We verified and manually curated the alignment with Jalview ${ }^{41}$ (v2.10.1). We used Gblocks ${ }^{42}$ (v0.91b) with the following parameters: Minimum Number Of Sequences For A Conserved Position: 9; Minimum Number Of Sequences For A Flanking Position: 14; Maximum Number Of Contiguous Nonconserved Positions: 8; Minimum Length Of A Block: 10; Allowed Gap Positions: None;

Use Similarity Matrices: Yes; to eliminate poorly aligned positions. This resulted in 36\% of the original 156 positions being taken forward for the phylogeny. We built a Maximum Likelihood tree with the RAxML ${ }^{43}$ program and the following parameters: raxmIHPC -f a -x 12345 -p 12345 -N 1000 -m PROTCATJTT -s <input_alignment.fasta> (MPI version v8.2.10). The best scoring tree with associated bootstrap values was visualised and midrooted with Dendroscope ${ }^{44}$ (v3.5.9). There was clear separation between NLRs belonging to the two different clusters but the sub-clades had less support. One explanation would be that conflicting phylogenetic signals that are due to events such as hybridization, horizontal gene transfer, recombination, or gene duplication and loss might have occurred in the region. Split networks allow nodes that do not represent ancestral species and can thus represent such incompatible and ambiguous signals. We therefore used this method in the following part of the analysis to analyse the relationship between the BED domains.

We used the Neighbour-net method ${ }^{45}$ implemented in SplitsTree4 ${ }^{21}$ (v4.16) to analyse the relationships between BED domains from NLR and non-NLR proteins. First we retrieved all BED-containing proteins from RefSeq v1.0 using the following steps: we used hmmer (v3.1b2, http://hmmer.org/) to identify conserved domains in protein sequences from RefSeq v1.0. We applied a cut-off of 0.01 on i-evalue to filter out any irrelevant identified domains. We separated the set between NLR and non-NLRs based on the presence of the NB-ARC and sequence homology for single BED proteins. BED domains were extracted from the corresponding protein sequences based on the hmmer output and were verified on the CDsearch database. Alignments of the BED domains were performed in the same way as for NB-ARC domains and were used to generate a neighbour network in SplitsTree4 based on the uncorrected P distance matrix.

Transcriptome analysis

Kronos analysis

We reanalysed RNA-Seq data from cultivar Kronos ${ }^{46}$ to determine whether the Kronos Yr 5 allele was expressed. We followed the same strategy as that described to define the $Y r 7$ and Yr5 gene structures (candidate contig confirmation and gene annotation section). We generated a de novo assembly of the Kronos NLR repertoire from Kronos RenSeq data and used it as a reference when mapping read data from one replicate of the wild-type Kronos at heading stage. Read depths up to 30 x were present for the $Y r 5$ allele which allowed confirmation of its expression. Likewise, the RNA-Seq reads confirmed the gene structure, which is similar to $Y r S P$, and the premature termination codon in Kronos $Y r 5$. Whether this allele confers resistance against PST remains to be elucidated.

Re-analysis of RNA-Seq data in Dobon et al., 2016
We used RNA-Seq data previously published by Dobon and colleagues ${ }^{18}$. Briefly, two RNASeq time-courses were used based on samples taken from leaves at $0,1,2,3,5,7,9$, and 11 dpi for the susceptible cultivar Vuka and $0,1,2,3$, and 5 dpi for the resistant AvocetS-Yr 5^{23}. We used normalised read counts (Transcript Per Million, TPM) from Ramirez-Gonzalez et al. 2018 to produce the heatmap shown in Supplementary Figure 9 with the pheatmap R package ${ }^{47}$ (v1.0.8). Transcripts were clustered according to their expression profile as defined by a Euclidean distance matrix and hierarchical clustering. Transcripts were considered expressed if their average TPM was ≥ 0.5 TPM in at least one time point. We used the DESeq2 R package ${ }^{48}$ (v1.18.1) to conduct a differential expression analysis. We performed two comparisons: (1) we used a likelihood ratio test to compare the full model \sim Variety + Time + Variety:Time to the reduced model \sim Variety + Time to identify genes that were differentially expressed between the two varieties at a given time point after 0 dpi (workflow:
https://www.bioconductor.org/help/workflows/rnaseqGene/); (2) Investigation of both time courses in Vuka and AvocetS-Yr5 independently to generate all of the comparisons between 0 dpi and any given time point, following the standard DESeq 2 pipeline. Genes were considered as differentially expressed genes if they showed an adjusted p -value <0.05 and a $\log 2$ fold change of 2 or higher. Most BED-containing proteins and BED-NLRs were not expressed in the analysed data. No pattern was observed for those that were expressed: differences were observed between varieties, but these were independent of the presence of the yellow rust pathogen.

References

1. Oerke, E. C. Crop losses to pests. J. Agric. Sci. 144, 31-43 (2006).
2. Hubbard, A. et al. Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biol. 16, 23 (2015).
3. Aravind, L. The BED finger, a novel DNA-binding domain in chromatin-boundary-element-binding proteins and transposases. Trends Biochem. Sci. 25, 421-423 (2000).
4. Jones, J. D. G. \& Dangl, J. L. The plant immune system. Nature 444, 323-329 (2006).
5. Kourelis, J. \& van der Hoorn, R. A. L. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell (2018). doi:10.1105/tpc.17.00579
6. Sarris, P. F., Cevik, V., Dagdas, G., Jones, J. D. G. \& Krasileva, K. V. Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens. BMC Biol. 14, 8 (2016).
7. Kroj, T., Chanclud, E., Michel-Romiti, C., Grand, X. \& Morel, J.-B. Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread. New Phytol. 210, 618-626 (2016).
8. Bailey, P. C. et al. Dominant integration locus drives continuous diversification of plant immune receptors with exogenous domain fusions. Genome Biol. 19, 23 (2018).
9. Bundock, P. \& Hooykaas, P. An Arabidopsis hAT-like transposase is essential for plant development. Nature 436, 282-284 (2005).
10. Yoshimura, S. et al. Expression of Xal, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc. Natl. Acad. Sci. U. S. A. 95, 1663-1668 (1998).
11. Das, B., Sengupta, S., Prasad, M. \& Ghose, T. Genetic diversity of the conserved motifs of six bacterial leaf blight resistance genes in a set of rice landraces. BMC Genet. 15, 82 (2014).
12. Law, C. N. Genetic control of yellow rust resistance in T. spelta album. Plant Breed. Institute, Cambridge, Annu. Rep. 1975, 108-109 (1976).
13. Johnson, R. \& Dyck, P. L. Resistance to yellow rust in Triticum spelta var. album and bread wheat cultivars Thatcher and Lee. Colloq. l'INRA (1984).
14. Zhang, P., McIntosh, R. A., Hoxha, S. \& Dong, C. M. Wheat stripe rust resistance genes Yr5 and Yr7 are allelic. Theor. Appl. Genet. 120, 25-29 (2009).
15. Feng, J. Y. et al. Molecular mapping of YrSP and its relationship with other genes for stripe rust resistance in wheat chromosome 2BL. Phytopathology 105, 1206-1213 (2015).
16. Steuernagel, B. et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat. Biotechnol. 34, 652-655 (2016).
17. Sun, Q., Wei, Y., Ni, Z., Xie, C. \& Yang, T. Microsatellite marker for yellow rust resistance gene $Y r 5$ in wheat introgressed from spelt wheat. Plant Breed. 121, 539-541 (2002).
18. Yao, Z. J. et al. The molecular tagging of the yellow rust resistance gene Yr 7 in wheat transferred from differential host Lee using microsatellite markers. Sci. Agric. Sin. 39, 1146-1152 (2006).
19. Wingen, L. U. et al. Establishing the A. E. Watkins landrace cultivar collection as a resource for systematic gene discovery in bread wheat. Theor. Appl. Genet. 127, 18311842 (2014).
20. Reeves, J. C. et al. Changes over time in the genetic diversity of four major European crops - a report from the Gediflux Framework 5 project. Genet. Var. plant breeding. Proc. 17th EUCARPIA Gen. Congr. Tulln, Austria, 8-11 Sept. 2004 3-7 (2004).
21. Huson, D. H. \& Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254-267 (2006).
22. Ellis, J. G. Integrated decoys and effector traps: how to catch a plant pathogen. BMC Biol. 14, 13 (2016).
23. Dobon, A., Bunting, D. C. E., Cabrera-Quio, L. E., Uauy, C. \& Saunders, D. G. O. The host-pathogen interaction between wheat and yellow rust induces temporally coordinated waves of gene expression. BMC Genomics 17, 380 (2016).
24. Germain, H. \& Séguin, A. Innate immunity: has poplar made its BED? New Phytol. 189, 678-687 (2011).
25. Seeholzer, S. et al. Diversity at the Mla powdery mildew resistance locus from cultivated barley reveals sites of positive selection. Mol. Plant-Microbe Interact. 23, 497-509 (2010).
26. Brunner, S. et al. Intragenic allele pyramiding combines different specificities of wheat Pm3 resistance alleles. Plant J. 64, 433-445 (2010).
27. Ellis, J. G., Lawrence, G. J., Luck, J. E. \& Dodds, P. N. Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11, 495-506 (1999).
28. Krasileva, K. V et al. Uncovering hidden variation in polyploid wheat. Proc. Natl. Acad. Sci. U. S. A. 6, E913-E921 (2017).
29. Hubbard, A. J., Fanstone, V. \& Bayles, R. A. UKCPVS 2009 Annual report. https://cereals.ahdb.org.uk/media/1131303/Annual-Report-UKCPVS-2009.pdf
30. Gassner, G. \& Straib, W. Die Bestimmung der biologischen Rassen des

Weizengelbrostes Puccinia glumarum f.sp. tritici Schmidt Erikss. u. Henn. (1932).
31. McGrann, G. R. D. et al. Genomic and genetic analysis of the wheat race-specific yellow rust resistance gene Yr5. J. Plant Sci. Mol. Breed. 3, (2014).
32. Lagudah, E. S., Appels, R., Brown, A. H. D. \& McNeil, D. The molecular-genetic analysis of Triticum tauschii , the D-genome donor to hexaploid wheat. Genome 34, 375-386 (1991).
33. Bolger, A. M., Lohse, M. \& Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120 (2014).
34. Kim, D., Langmead, B. \& Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357-360 (2015).
35. Thorvaldsdottir, H., Robinson, J. T. \& Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178-192 (2013).
36. Pallotta, M. A. et al. Marker assisted wheat breeding in the southern region of Australia. in Proceedings of 10th International Wheat Genet Symposium Instituto Sperimentale per la Cerealcoltura Rome 789-791 (2003).
37. Ramirez-Gonzalez, R. H. et al. RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol J 13, 613-624 (2015).
38. Broman, K. W., Wu, H., Sen, S. \& Churchill, G. A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19, 889-890 (2003).
39. Shaw, P. D., Graham, M., Kennedy, J., Milne, I. \& Marshall, D. F. Helium: visualization of large scale plant pedigrees. BMC Bioinformatics 15, 259 (2014).
40. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797 (2004).
41. Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. \& Barton, G. J. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189-1191 (2009).
42. Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540-552 (2000).
43. Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688-2690 (2006).
44. Huson, D. H. \& Scornavacca, C. Dendroscope 3: An interactive yool for rooted phylogenetic trees and networks. Syst. Biol. 61, 1061-1067 (2012).
45. Bryant, D. \& Moulton, V. Neighbor-Net: An agglomerative method for the construction of phylogenetic networks. Mol. Biol. Evol. 21, 255-265 (2003).
46. Pearce, S. et al. Regulation of Zn and Fe transporters by the GPC 1gene during early wheat monocarpic senescence. BMC Plant Biol. 14, 368 (2014).
47. Kolde, R. Pheatmap: pretty heatmaps. R package version (2015).
48. Love, M. I., Huber, W. \& Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
49. Jupe, F. et al. Identification and localisation of the NB-LRR gene family within the
potato genome. BMC Genomics 13, 75 (2012).
50. Avni, R. et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science. 357, 93-97 (2017).
51. Luo, M.-C. et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551, 498 (2017).

Author contributions

CM performed the experiments to clone $Y r 7$ and $Y r 5$ and the subsequent analyses of their loci and BED domains, designed the gene-specific markers, analysed the genotype data in the studied panels, and designed and made the figures. JZ performed the experiments to clone $Y r S P$, confirm the $Y r 7$ and $Y r 5$ genes in AvocetS- $Y r 7$ and AvocetS- $Y r 5$ mutants, and identified the full length of $Y r 5$ and $Y r S P$ with their respective regulatory elements. CM and JZ developed the gene specific markers. PZ and RM performed the EMS treatment, isolation, and confirmation of $Y r 5, Y r 7$, and $Y r S P$ mutants in AvocetS NILs. PF performed the pathology work on the Cadenza $Y r 7$ mutants and the mapping populations. BS helped with the NLR annotator analysis and provided the bait library for target enrichment and sequencing of NLRs, NMA provided DNA samples for allelic variation studies and LB provided Lemhi-Yr5 mutants. RM, EL, PZ, BW, SB, and CU conceived, designed, and supervised the research. CM and CU wrote the manuscript. JZ, PZ, RM, BW, NMA, LB and EL provided edits.

Data availability

All sequencing data has been deposited in the NCBI Short Reads Archive under accession numbers listed in Supplementary Table 12 (SRP139043). Cadenza (Yr7) and Lemhi (Yr5) mutants are available through the JIC Germplasm Resource Unit (www.seedstor.ac.uk).

Competing interests

A patent application based on this work has been filed (United Kingdom Patent Application No. 1805865.1).

Acknowledgements

This work was supported by the UK Biotechnology and Biological Sciences Research Council Designing Future Wheat programme BB/P016855/1 and the Grains Research and Development Corporation, Australia. CM was funded by a PhD studentship from Group Limagrain and JZ is funded by PhD scholarships from the National Science Foundation (NSF) and the Monsanto Beachell-Borlaug International Scholars Programs (MBBISP). We thank the International Wheat Genome Sequencing Consortium for having providing us with pre-publication access to the RefSeq v1.0 assembly and gene annotation. We thank the John Innes Centre Horticultural Services and Limagrain Rothwell staff for management of the wheat populations. Also Sebastian Specel (Limagrain; Clermont-Ferrand) and Richard Goram (JIC) for their help in designing and running KASP assays. This research was supported by the NBI Computing Infrastructure for Science (CiS) group in Norwich, UK.

Figure legends

Figure 1: Yr5 and YrSP are allelic, but paralogous to Yr7.

a, Left: Wild-type and selected EMS-derived susceptible mutant lines for $Y r 7, Y r 5$, and $Y r S P$ (Supplementary Table 2 and 3) inoculated with PST isolate 08/21 (Yr7), PST 150 E16 A+ (Yr5), or PST 134 E16 A+ (YrSP). Right: Candidate gene structures, with mutations in red, and their predicted effects on the translated protein. \mathbf{b}, Schematic representation of the physical interval of the $Y r$ loci. The $Y r 7 / Y r 5 / Y r S P$ locus is shown in orange on chromomsome 2B with previously published SSR markers in black. Markers developed in this study to confirm the genetic linkage between the phenotype and the candidate contigs are shown as black lines underneath the chromosme. Yr loci mapping intervals are defined by the red horizontal lines. A more detailed genetic map is shown in Supplementary Figure 3.

Figure 2: Yr 7 and $\mathrm{Yr} 5 / \mathbf{Y r S P}$ encode integrated BED-domain immune receptor genes.
a, Schematic representation of the Yr7, Yr5, and YrSP protein domain organisation. BED domains are highlighted in red, NB-ARC domains are in blue, LRR motifs from NLRAnnotator are in dark green, and manually annotated LRR motifs (xxLxLxx) are in light green. Black triangles represent the EMS-induced mutations within the protein sequence. The plot shows the degree of amino acid conservation (50 amino acid rolling average) between Yr7 and Yr5 proteins, based on the conservation diagram produced by Jalview (2.10.1) from the protein alignment. Regions that correspond to the conserved domains have matching colours. The amino acid changes between Yr5 and YrSP are annotated in black on the YrSP protein. b, Five Yr5/YrSP haplotypes were identified in this study. Polymorphisms are highlighted across the protein sequence with orange vertical bars for polymorphisms shared by at least two haplotypes and blue vertical bars for polymorphisms that are unique to the
corresponding haplotype. Matching colours across protein structures illustrate 100% sequence conservation.

Figure 3: BED domains from BED-NLRs and non-NLR proteins are distinct.

a, Numbers of NLRs in the syntenic regions across grass genomes (see Supplementary Figure 6), including BED-NLRs. b, WebLogo (http://weblogo.berkeley.edu/logo.cgi) diagram showing that the BED-I and BED-II domains are distinct, with only the highly conserved residues that define the BED domain (red bars) being conserved between the two types. c, Gene structure most commonly observed for BED-NLRs and BED-BED-NLRs within the Yr7/Yr5/YrSP syntenic interval. d, Neighbour-net analysis based on uncorrected P distances obtained from alignment of 153 BED domains including the 108 BED-containing proteins (including 25 NLRs) from RefSeq v1.0, BED domains from NLRs located in the syntenic region as defined in Supplementary Figure 6, and BED domains from Xa1 and ZBED from rice. BED_I and II clades are highlighted in purple and blue, respectively. BED domains from the syntenic regions not related to either of these types are in red. BED domains derived from non-NLR proteins are in black and BED domains from BED-NLRs outside the syntenic region are in grey. Seven BED domains from non-NLR proteins were close to BED domains from BED-NLRs. Supplementary Figure 8 includes individual labels.

Supplementary Figure 1: Deployment of Yr 7 varieties in the field is correlated with an increase in the prevalence of PST isolates virulent on Yr^{7} in the UK.
Percentage of total harvested weight of wheat cultivar carrying $Y r 7$ (green) and the proportion of PST isolates that are virulent to Yr7 (orange) from 1990 to 2016 in the United Kingdom. See Supplementary Table 1 for a summary of the data.

Supplementary Figure 2: Identification of candidate contigs for the Yr loci using MutRenSeq.

View of RenSeq reads from the wild-type and EMS-derived mutants mapped to the best candidate contigs identified with MutantHunter for the three genes targeted in this study. From top to bottom: vertical black lines represent the $Y r$ loci, colored rectangles depict the motifs identified by NLR-Annotator (each motif is specific to a conserved NLR domain ${ }^{49}$), while read coverage (grey histograms) is indicated on the left, e.g. [0-149], and the line from which the reads are derived on the right, e.g. CadWT for Cadenza wild-type. Vertical bars represent the position of the SNPs identified between the reads and reference assembly - red shows C to T transitions and green G to A transitions. Black boxes highlight SNP for which the coverage was relatively low, but still higher than the 20x detection threshold. The top view shows the Yr 7 allele annotated from the Cadenza genome assembly before manual curation (Supplementary File 3). Vertical black lines illustrate the assembled candidate contigs and the one that was formerly de novo assembled from Cadenza RenSeq data, lacking the 5 ' region containing the BED domain and thus the Cad903 mutation. The middle view illustrates the Yr5 locus annotated from the Lemhi-Yr5 de novo assembly. The results are similar to those described above for $Y r 7$. The full locus was de novo assembled. The bottom view illustrates the $Y r S P$ locus annotated from the AvocetS-YrSP de novo assembly with the four identified susceptible mutants all carrying a mutation in the candidate contig. The full locus was de novo assembled.

Supplementary Figure 3: Candidate contigs identified by MutRenSeq are genetically linked to the $\mathbf{Y r}$ loci mapping interval.

Schematic representation of chromosome 2B from Chinese Spring (RefSeq v1.0) with the positions of published markers linked to the $Y r$ loci and surrounding closely linked markers that were used to define their physical position (orange rectangle). The chromosome is depicted as a close-up of the physical locus indicating the positions of KASP markers that were used for genetic mapping (horizontal bars, Supplementary Table 14). Blue colour refers
to $Y r 7$, red to $Y r 5$, and purple to $Y r S P$. The black arrow points to the NLR cluster containing the best BLAST hits for Yr 7 and $\mathrm{Yr} 5 / \mathrm{YrSP}$ on RefSeq v1.0. Coloured lines link the physical map to the corresponding genetic map for each targeted gene (see Methods). Genetic distances are expressed in centiMorgans (cM).

Supplementary Figure 4: Pedigrees of selected Thatcher-derived varieties and their Yr7 allelic status.

Pedigree tree of Thatcher-derived varieties where each circle represents a variety and the size of the circle is proportional to its prevalence in the tree. Colours illustrate the genotype with red showing the absence of $Y r 7$ and yellow its presence. Varieties in grey were not tested or are intermediate crosses. Yr7 originated from Triticum durum cv. Iumillo and was introgressed into hexaploid wheat through Thatcher (indicated by arrow). Each $Y r 7$ positive variety is related to a parent that was also positive for $Y r 7$. Figure was generated using the Helium software ${ }^{39}$ (v1.17).

Supplementary Figure 5: Diagnostic genetic marker for Yr5.

The $Y r 5$-specific insertion was used to generate a PCR amplification product of $1,281 \mathrm{bp}$ for Yr5 or a shorter amplicon for the absence of the insertion in YrSP, Claire, and Paragon (507 bp). $Y r 5$ positive lines include the $Y r 5$ spelt donor and $Y r 5$ near-isogenic lines AvocetS- $Y r 5$ and Lemhi-Yr5. YrSP donor Spaldings Prolific and YrSP near-isogenic lines AvocetS-YrSP carry the shorter alternate allele, similar to the Claire, Cadenza and Paragon alleles identified in Figure 2. Negative controls include AvocetS and $\mathrm{H}_{2} \mathrm{O}$. Size marker is shown on the left.

Supplementary Figure 6: Expansion of BED-NLRs in the Triticeae and presence of conserved BED-BED-NLRs across the syntenic region.

Schematic representation of the physical loci containing Yr7 and Yr5/YrSP homologs on RefSeq v1.0 and its syntenic regions. The syntenic region is flanked by conserved non-NLR genes (orange arrows). Black arrows represent canonical NLRs and purple/blue/red arrows represent different types of BED-NLRs based on their BED domain and their relationship identified in Figure 3 and Supplementary Figure 7. Black lines represent phylogenetically related single NLRs located between the two NLR clusters illustrated in Supplementary Figure 8. Details of genes are reported in Supplementary File 4.

Supplementary Figure 7: The Yr loci are phylogenetically related to nearby NLRs on RefSeq v1.0 and their orthologs.

Phylogenetic tree based on translated NB-ARC domains from NLR-Annotator. Node labels represent bootstrap values for 1,000 replicates. The tree was rooted at mid-point and visualized with Dendroscope v3.5.9. The colour pattern matches that of Figure 3 to highlight BED-NLRs with different BED domains.

Supplementary Figure 8: Neighbour-net analysis network as shown in Figure 3 with identifiers.

Neighbour-net analysis based on uncorrected P distances obtained from alignment of 153 BED domains including the 108 BED-containing proteins (including 25 NLRs) from RefSeq v1.0, BED domains from NLRs located in the syntenic region as defined in Supplementary Figure 6, and BED domains from Xa1 and ZBED from rice. BED_I and II clades are highlighted in purple and blue, respectively. BED domains from the syntenic regions not related to either of these types are in red. BED domains derived from non-NLR proteins are in black and BED domains from BED-NLRs outside the syntenic region are in grey. Seven BED domains from non-NLR proteins were close to BED domains from BED-NLRs.

Supplementary Figure 9: BED-NLRs and BED-containing proteins are not

 differentially expressed in yellow rust-infected susceptible and resistant varieties.Heatmap representing the normalised read counts (Transcript Per Million, TPM) from the reanalysis of published RNAseq data ${ }^{23}$ for all the BED-containing proteins, BED-NLRs and canonical NLRs located in the syntenic region annotated on RefSeq v1.0. Lack of expression is shown in white and expression levels increase from blue to red. Asterisks show cases where several gene models were overlapping with NLR loci identified with NLR Annotator. The colour pattern matches that of Figure 3 to highlight BED-NLRs with different BED domains. Orange labels show the expression of the canonical NLRs located within the syntenic interval. The seven non-NLR BED genes whose BED domain clustered with the ones from BED-NLR proteins in Figure 3 and Supplementary Figure 8 are indicated by black triangles.

Supplementary Table 1: Harvested weight of known Yr7 varieties from 1990 to 2016 and $\operatorname{virYr} 7$ prevalence among UK PST isolates.

Proportion of harvested $Y r 7$ wheat varieties in the UK from 1990 to 2016. The prevalence of yellow rust isolates virulent to $Y r 7$ across this time period is shown in the top row. Original data from NIAB-TAG Seedstats journal (NIAB-TAG Network) and the UK Cereal Pathogen Virulence Survey (http://www.niab.com/pages/id/316/UKCPVS).

Supplementary Table 2: Plant materials analysed for the present study with the different PST isolates used for the pathology assays.

Supplementary Table 3: Plant material submitted for Resistance gene enrichment Sequencing (RenSeq).

From left to right: Mutant line identifier, targeted gene, score when infected with PST according to the Grassner and Straib scale, mutation position, coverage of the mutation (at least 99% of the reads supported the mutant base in the mutant reads), predicted effect of the mutation on the protein sequence, comments. Lines with the same mutations are highlighted with matching colours.

Supplementary Table 4: Genome assemblies used in the present study. Summary of the available genome assemblies ${ }^{50,51}$ that were used for the in silico allele mining and synteny analysis across rice, Brachypodium, barley and different Triticeae accessions.

Supplementary Table 5: In silico allele mining for Yr 7 and $\mathrm{Yr} 5 / \mathrm{YrSP}$ in available genome assemblies for wheat.

Table presents the percentage identity (\% ID) of the identified alleles and matching colours illustrate identical haplotypes. Investigated genome assemblies are shown in Supplementary Table 4.

Supplementary Table 6: Polymorphisms between Yr5 protein and its identified alleles.

Positions of the polymorphic amino acids across the five Yr5/YrSP proteins. Polymorphisms falling into the BED and NB-ARC domains are shown in red and blue, respectively.

Supplementary Table 7: Presence/absence of Yr7 alleles in a selected panel of Cadenza-

 derivatives and associated responses to different PST isolates (avirulent to Yr : PST 15/151 and 08/21; virulent to Yr7: 14/106).Infection types were grouped into two categories: 1 for resistant and 2 for susceptible. We used Vuka as a positive control for inoculation and absence of $Y r 7$. The typical response of a Yr7 carrier would thus be $1-1-2$, although some varieties might carry other resistance genes that can lead to a $1-1-1$ profile (e.g. Cadenza). Varieties that were positive for Yr 7 had either one or the other profile so none of them was susceptible to a PST isolate that is avirulent to Yr 7 . Few varieties (e.g Bennington, KWS-Kerrin, Brando) were susceptible to one of the two isolates avirulent to Yr 7 in addition to their susceptibility to the $Y r 7$-virulent isolate. However, none of them carried the $Y r 7$ allele.

Supplementary Table 8: Presence/absence of Yr 7 and YrSP in different wheat collections. We used Vuka, AvocetS and Solstice as negative controls for the presence of Yr 7 and $Y r S P$ and AvocetS-Yr near-isogenic lines as controls for the corresponding $Y r$ gene. We genotypied different collections: (i) a set of potential Yr 7 carriers based on literature research, (ii) a set of varieties that belonged to the UK AHDB Recommended List (https://cereals.ahdb.org.uk/varieties/ahdb-recommended-lists.aspx) between 2005 and 2018 (labelled 2005-2018-UK_RL), (iii) the Gediflux collection that includes modern European bread wheat varieties (1920-2010) ${ }^{20}$, (iv) a core set of the Watkins collection, which represent a set of global bread wheat landraces collected in the 1920-30s ${ }^{19}$. Most of the putative Yr 7 carriers were positive for all the $Y r 7$ markers apart from Aztec, Chablis and Cranbrook. Chablis was susceptible to the PST isolates that were avirulent to Yr 7 so it probably does not carry the gene. Regarding the 2005-2018-UK_RL results were consistent across already tested varieties: Cadenza, Cordiale, Cubanita, Grafton and Skyfall were already positive in Supplementary Table 7. Energise, Freiston, Gallant, Oakley and Revelation were negative on both panels as well. Results were thus consistent across different sources of DNA. Yr7containing varieties are not prevalent in the 2005-2018 Recommended List set, however, this gene is present in Skyfall, which is currently one of the most harvested varieties in the UK (Supplementary Table 1). We tested the YrSP marker on this set and it was positive only for AvocetS- $Y r S P$. The frequency of $Y r 7$ was relatively low in the Gediflux panel (4\%). This is consistent with results in Supplementary Table 1: $Y r 7$ deployment started in the UK in 1992 with Cadenza and it was rarely used prior to that date. The same was observed in the subset of the Watkins collection (10\%) where landraces that were positive for Yr 7 all originated from India and the Mediterranean basin. Yr7 was introgressed into Thatcher (released in 1936) from Iumillo, which originated from Spain and North-Africa (Genetic Resources Information System for Wheat and Tritical - http://www.wheatpedigree.net/). Iumillo is likely
to be pre-1920s and these landraces are all bread wheats so they might have inherited it from another source. However, there is no evidence for Yr 7 coming from another source than Iumillo in the modern bread wheat varieties.
Supplementary Table 9: Presence/absence of Yr5 alleles in a subset of previously studied collections.
A subset of the aforementioned collection was investigated for the $Y r 5$ presence. "Yes" in the Yr 5 column refers to amplification of the $1,281 \mathrm{bp}$ amplicon with the $Y r 5$-Insertion primers (Supplementary Figure 5). "Yes" in the Yr5 alternate alleles column refers to the amplification of the 507 bp amplicon that was identified for AvocetS-YrSP, Claire, Cadenza and Paragon in Supplementary Figure 8. "Yes" in the no amplification column refers to identification of a profile similar to the one found for AvocetS in Supplementary Figure 5.

Supplementary Table 10: Identified BED-containing proteins in RefSeq v1.0 based on a hmmer scan analysis (see Methods).
 Several features are added: number of identified BED domains and the presence of other conserved domains present, the best BLAST hit from the non-redundant database of NCBI with its description and score, and whether the BED domain was related to BED domains from NLR proteins based on the neighbour network shown in Supplementary Figure 7.

Supplementary Table 11: Transcripts per Million-normalised read counts from the reanalysis of published RNA-Seq data ${ }^{23}$ and associated differential expression analysis performed with DESeq2.

Supplementary Table 12: Sequencing details of RenSeq data generated in this study.

Supplementary Table 13: De novo assemblies generated from the corresponding RenSeq data.

Supplementary Table 14: Primers designed to map and clone $\mathrm{Yr} 7, \mathrm{Yr} 5$, and YrSP . Note that KASP assays require the addition of the corresponding 5' -tails for the two KASP primers

Supplementary Table 15: Diagnostic markers for Yr5, Yr7, and YrSP.

Note that KASP assays require the addition of the corresponding 5' -tails for the two KASP primers.

Supplementary Table 16: Passport data of tested T. dicoccoides accessions

Supplementary File 1: Annotation of the Yr7 locus in Cadenza with exon/intron structure, positions of mutations and the position of primers for long-range PCR and nested PCRs that were carried out prior to Sanger sequencing (Supplementary Table 14). The file also includes the derived CDS and protein sequences with annotated conserved domains. Amino acids encoding the BED domain are shown in red and those encoding the NB-ARC domain are in blue. LRR repeats identified with NLR Annotator are highlighted in dark green and manually annotated LRR motifs xxLxLxx are underlined and in bold black.

Supplementary File 2: Annotation of the $Y r 5 / Y r S P$ locus in Lemhi- $Y r 5$ and AvocetS-YrSP, respectively, with exon/intron structure, the position of mutations and the position of primers for long-range PCR and nested PCRs that were carried out prior to Sanger sequencing (Supplementary Table 14). The derived CDS and protein sequences with annotated conserved domains are also shown. Amino acids encoding the BED domain are shown in red and those encoding the NB-ARC domain are in blue. LRR repeats identified with NLR Annotator are highlighted in dark green and manually annotated LRR motifs xxLxLxx are underlined and in bold black. Design of the Yr5 PCR marker is shown at the end of the file with the insertion that is specific to $Y r 5$ when compared to $Y r S P$ and Claire.

Supplementary File 3: Curation of the Yr7 locus in the Cadenza genome assembly based on Sanger sequencing results.

Comments show the position of the unknown bases ("N") in the "Yr7_with_Ns" sequence. Curation based on Sanger sequencing data is shown in bold black in the "curated_Yr7" sequence with the 39 bp insertion and 129 bp deletion. Allele mining for Yr 7 in the Paragon assembly showed that a similar assembly issue might have occurred for this cultivar (same annotation in the "Yr7_Paragon_with_Ns" sequence). This is consistent with the fact that both assemblies were produced with the same pipeline (Supplementary Table 4). We used RenSeq data available for Paragon and performed an alignment as described for the MutRenSeq pipeline against Cadenza NLRs with the curated Yr7 loci included. A screen capture of the mapping is shown. Only one SNP was identified (75\% Cadenza, 25\% Paragon). Across the six reads supporting the alternate base, four displayed several SNPs and
mapped to an additional Cadenza NLR. This provides evidence for the presence of the identical gene in Paragon which is supported by phenotypic data.

Supplementary File 4: Syntenic region across different grasses (Supplementary Table 4) and the NLR loci identified with NLR-Annotator. See Methods for a detailed explanation of the analysis and Supplementary Figure 6 for an illustration.

Supplementary File 5: Curated sequences of BED-NLRs from chromosome 2B and Ta_2D7. Exons are highlighted with different colours (yellow, green, blue, pink). Amino acids encoding the BED domain are shown in red and those encoding the NB-ARC domain are in blue. LRR repeats identified with NLR Annotator are highlighted in dark green and manually annotated LRR motifs xxLxLxx are underlined and in bold black.

Exon 1
Exon 2
Exon 3

$Y_{r} 5$
Exon 1 Exon 2 Exon 3

Exon 1 Exon 2
Exon 3
YrSP

b

Chr2B 799 Mb

| Syntenic interval | \#NLRs |
| :--- | :--- | :--- | | \#BED \#BED \#BED \#BED |
| :--- |
| NLRs |

C

d

