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ABSTRACT10

Co-expression networks are essential tools to infer biological associations between gene products and predict gene annotation.
Global networks can be analyzed at the transcriptome wide scale or after querying them with a set of guide genes to capture
the transcriptional landscape of a given pathway in a process named Pathway Level Correlation (PLC). A critical step in
network construction remains the definition of gene co-expression. In the present work, we compared how Pearson Correlation
Coefficient (PCC), Spearman Correlation Coefficient (SCC), their respective ranked values (Highest Reciprocal Rank (HRR)),
Mutual Information (MI) and Partial Correlations (PC) performed on global networks and PLCs. This evaluation was conducted
on the model plant Arabidopsis thaliana using microarray and differently pre-processed RNA-seq datasets. We particularly
evaluated how dataset x distance measurement combinations performed in 5 PLCs corresponding to 4 well described plant
metabolic pathways (phenylpropanoid, carbohydrate, fatty acid and terpene metabolisms) and the cytokinin signaling pathway.
Our present work highlights how PCC ranked with HRR is better suited for global network construction and PLC with microarray
and RNA-seq data than other distance methods, especially to cluster genes in partitions similar to biological subpathways.

11

Introduction12

Constructing global gene co-expression networks is a popular approach to highlight transcriptional relationships (edges)13

between genes (vertices). The ‘Guilt-by-Association’ (GBA) principle supposes that genes sharing similar functions are14

preferentially connected and aims at predicting new functions for proteins by determining how their respective encoding15

genes are co-expressed with others using a reference dataset containing known gene functions such as the Gene Ontology16

(GO)1. Defining edges connecting genes remains a critical step in global co-expression network construction. Expression17

data (microarray or RNA-seq) are used to construct expression matrices (genes x samples) and to calculate a distance or18

a similarity for each possible gene pair. The resulting pairwise distance matrix is then thresholded to obtain an adjacency19

matrix that discriminates relevant edges. Only edges with a distance below (or a similarity above) the set threshold are20

considered significant and retained for network construction. The procedure is expected to remove non biologically relevant21

gene associations while retaining the relevant ones and can be assessed with any reference dataset. Alternatively, guide gene sets22

may be used to extract more human-readable information from large networks in a process named Pathway-Level Correlation23

(PLC)2–6. This approach aims at capturing the best transcriptional associations of a gene set and at highlighting functional gene24

groups such as known subpathways in this set. There are two types of approaches to determine transcriptional associations25

of genes: those that are supervised and those that are unsupervised. Supervised approaches such as regression and machine26

learning based methods require a prior knowledge which is used as a training dataset to recover biologically relevant gene27

associations. The superiority of supervised methods in extracting potential physical regulatory interactions between genes has28

been demonstrated using simulated and real E. coli and S. cerevisiae subnetworks7. This study has revealed that prediction29

accuracy is higher with smaller networks and concluded that inferring genome-scale networks remains elusive unless performing30

a feature selection step to reduce inference problem size (because of the under determined nature of current expression datasets).31

Among the unsupervised methods, four are commonly used and have been thoroughly tested. The first approach is Mutual32

Information (MI) which measures a statistical dependence between two variables7. It is based on density function estimates33

and has been shown to perform well with non linear relationships8. The second approach which relies on integrating multiple34

transcriptional associations is Partial Correlation (PC). PCs are generally calculated from multiple linear regression and include35
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a variable selection step9. PCs aim at explaining a gene’s expression profile by a small number of strongly correlated genes36

after eliminating those less correlated that do not significantly explain this gene’s expression profile. The two last methods37

are Correlation Coefficients (CCs), either Pearson CC (PCC) or Spearman CC (SCC), which are the classical estimators of38

linear transcriptional relationship among genes9, 10. CCs are 2-dimensional distance measurements because a CC between39

two genes does not take into account the expression of the remaining transcripts in the whole transcriptome. To compensate40

for this lack, these approaches have been improved by using ranked CCs instead of raw values. Ranking CC implies that41

for every gene, all CCs calculated with the N-1 remaining genes (where N is the number of genes) are ranked from 1 to N.42

Within a pair of genes A and B, rank(A to B) differs from rank(B to A) because the two genes display different expression43

profiles and different relationships with the remaining transcripts in the transcriptome. Two related ranking methods have44

been developed. One is mutual ranking (MR, geometric mean of the two ranks) which has been shown to improve GO term45

recovery with PCC using large microarray data from Arabidopsis, Human, mouse and rat11. MR has been successfully used in46

multispecies analysis of co-expression modules12. Another is Highest Reciprocal Ranking (HRR, maximum value of the two47

ranks)13. MR and HRR are thought to be more integrative than unranked CCs because they depend on other CC values around48

that of a gene pair. Although not as robust as supervised methods, unsupervised methods can efficiently capture relevant gene49

associations as previously shown8. These authors have shown that non parametric CC and MI calculations were more efficient50

than PCC on a small dataset. Among other unsupervised methods, SCC calculations have been similarly shown to outperform51

other distance measurements in Human expression data14. In this case, SCC were calculated from RNA-seq or microarray52

data in order to construct several smaller networks subsequently aggregated to yield the final network. We firmly believe53

that genome-scale networks inferred with CCs, especially when combined with a ranking procedure, are helpful to find new54

associations between genes. Although CCs are not efficient in detecting non linear associations8, gene-to-gene relationships55

have been predicted to be essentially linear15 suggesting that CCs are valuable distance measurements. To date, there is no56

clear evaluation of how ranked CCs affect genome-scale network reconstruction with RNA-seq data in comparison with other57

unsupervised methods. We evaluated ranked CC, raw CC, MI, and PC performance in global and targeted network construction58

using Arabidopsis microarray and differentially processed RNA-seq expression data (Figure 1). Performance was measured as59

network ability to capture biologically relevant gene associations found in a Gene Ontology (GO) annotation reference set but60

also to correctly cluster guide genes in PLC. Global network quality was first evaluated according to the different dataset x61

distance measurement combinations. The resulting global networks were next interrogated in PLC analyses with five different62

guide gene sets corresponding to four different metabolic pathways and one signaling pathway. Whereas metabolic pathways63

have relatively clearly defined and partially linear partitions, signaling pathways usually involve post transcriptional regulations64

and a more intricate organization, which might render gene transcriptional associations less evident. We looked at the dataset65

x distance measurement combinations optimizing pathway reconstruction and maximizing co-occurrence quality between66

microarray and RNA-seq networks. Our results show that, of the six methods evaluated, PCC ranked with HRR generated the67

best biologically relevant networks according to initial guide gene representation and clustering in distinct modules. In addition,68

it offers the possibility to merge subgraphs obtained by microarrays and RNA-seq to generate high confidence networks.69

Results70

Inferring global co-expression networks and comparing correlation measurements71

Large co-expression networks were obtained by varying the confidence threshold (correlation value above or rank below)72

within lists containing the 10 million best gene pairs from eight different datasets and six data measurement combinations73

(Figure 1). Each of the 10 million best pair lists was filtered at different confidence thresholds (1, 5, 10, 20 ,40, 60 or 80% best74

pairs from these lists) to evaluate the effect of network size on performance. Expression datasets included a microarray-based75

expression matrix and seven RNA-seq based expression matrices normalized with different methods to evaluate their effect76

on network inference: transcript per Million (TPM), log2 TPM, sample scaled (ss) TPM, ss log2 TPM, raw counts, variance77

stabilized transformed (VST) raw counts and VST-TPM. The six distance measurements were: raw PCC, raw SCC, PCC-HRR,78

SCC-HRR, PC and MI. Each network performance was considered as a network ability to capture edges corresponding to79

functional associations found in the GO reference dataset and was evaluated in 4 different ways (Figure 2): GO term enrichment80

(GO terms that are significantly enriched with gene pairs from the co-expression network), a ROC curve constructed with81

TPR and FPR calculated for each confidence threshold and two ROC analyses based on the GBA concept, an average 3-fold82

cross validated neighbor voting (NV) AUROC and a global AUROC. AUROCs correspond to Area Under Receiver Operating83

Characteristic curves calculated for every network either from each GO (with three test sets obtained after hiding part of the84

gene labels, NV AUROC corresponding to the average of AUROCs for all GO terms) or the whole annotation dataset (global85

AUROC). AUROCs are used as global indicators of a dataset performance, a value of 0.5 indicating a random attribution of86

labels in the network and a value of 1 indicating a perfect match with the reference dataset. AUROC>0.6 may be considered as87

moderate14. In global TPR vs FPR curves, the line extending from (0,0) to (1,1) has an AUROC=0.5 and points above this line88

indicate more predictive networks than a random selection (Figure 2). The GO annotation table was filtered to perform these89
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analyses by removing weakly represented or non-specific GO terms (>5 or <100 genes).90

Figure 3 displays TPM network evaluation at different confidence thresholds and Figure 4 shows networks having 1 million91

of edges across all dataset x distance combinations. Metrics for all other dataset x distance measurement combinations are92

presented in Supplementary Figure 1 online. All networks combined, pairwise correlations between enriched GO counts, global93

and NV AUROC performance metrics were moderate (Spearman’s rho>0.4) but significant (p<0.001) indicating these three94

performance metrics evaluated networks in different ways. The highest correlation was observed between NV AUROC and95

enriched GO counts (rho=0.70, p<0.001) showing their consistency. The NV AUROC was the most positively correlated with96

edge number (rho=0.55, p<0.001) suggesting that decreasing the confidence threshold and adding more edges in networks did97

not result in a significant increase in false positives. This was confirmed by the partial ROC curves (obtained for a maximum98

FPR at 10 million edges) drawn from the TPR and FPR (Figure 3, Supplementary Figure 1 online), where up to 10 million best99

pairs, TPR increased faster than FPR. Although counts of significantly enriched GO terms were positively correlated to NV100

AUROC, we observed a slight decline in the largest networks which might reveal a saturation in these enriched GO terms. It is101

possible that with the hypergeometric testing, some GO classes are fully enriched in smaller networks leading to a decrease102

in their significance as network size increases. The global AUROC displayed a very low variation (min=0.55, average=0.61,103

max=0.68) and was significantly correlated to vertex number (rho=0.43, p<0.001) only. This observation suggests that the104

global AUROC is not an appropriated measure in our case.105

At equivalent edge numbers, different distance measurements generated networks varying considerably in vertex number106

(Figure 4A, Supplementary Figure 1 online). Considering all datasets and distance measurements, raw PCC, raw SCC and107

MI resulted on average in fewer vertices and higher node degree (vertex number/node degree: 13,164/511, 9,986/465 and108

14,074/468 respectively) than PCC-HRR, SCC-HRR or PC (26,645/116, 24,731/124 and 23,966/166 respectively). This109

trend was clearly observed when setting an edge number to 1 million (Figure 4A). Expression networks constructed from110

microarrays, TPM, TPM log2, and counts displayed very similar ROC curves: PC based networks followed random predictions111

(NV AUROC=0.5) and the other distance measurements were above the random prediction with similar AUC (Supplementary112

Figure 1 online). This was confirmed for PC by NV AUROC and enriched GO term counts. Performance of the other distance113

measurements in the global TPR/FPR curves did not exactly match that measured with AUROCs. Taking the TPM dataset as114

an illustration (Figure 3), the MI ROC curve was above the others while NV AUROC for similar edge numbers was slightly115

below that measured for SCC. This was probably due to differences in network topologies (see above) and the procedures116

underpinning the two evaluations. The global TPR/FPR curve does not measure a network predictability per se as NV AUROC117

does and considering any gene pair sharing a same GO term as valid could have overestimated TP (Figure 2). As a general trend,118

raw PCC and raw SCC generated smaller networks than PCC-HRR and SCC-HRR but displayed similar TPR/FPR curves, i.e.119

for a similar performance, HRR-ranked CC networks had more vertices and fewer edges than raw CC based networks (Figure 3).120

CC ranked with HRR always generated relevant networks for TPM ss, TPM log2 ss, TPM VST and counts VST, which was not121

the case for raw CC (Supplementary Figure 1 online). These normalizations induced strong biases in CC distribution as revealed122

by thresholds used to obtain the 10 million best pairs (Supplementary Table 1 online) but these biases were compensated by123

HRR. Taken together, these results revealed that HRR CCs are able to generate complete genome-wide networks with good124

performances similar to other classical measures such a MI and PC. Node degree AUROC measures whether genes are more125

likely associated according to their number of connections rather than to their function. A positive correlation was found126

between NV AUROC and degree AUROC (rho=0.47, p<2e-16) indicating that highly predictive networks (NV AUROC>0.7)127

also had a higher node degree AUROC. Node degree AUROC was generally under 0.55. We therefore considered that in our128

conditions, this bias was only limited. Concerning edge co-occurrence between the different dataset x distance combinations,129

the lowest conservation was observed with raw (MI, PCC and SCC) RNA-seq datasets and PC networks and microarrays130

networks (Figure 4B, area 1). More co-occurring edges were found when microarray networks were compared to RNA-seq131

networks obtained with CC-HRR (mean of 97,646 vs 25,277; Figure 4B, area2). This indicated that microarrays and RNA-seq132

networks were more comparable when obtained with HRR, reinforcing their validity. The previous section focused on global133

network properties. Community detection procedures can be applied to such global networks to cluster tightly connected genes134

into modules. In our case, we rather used a knowledge-driven approach known as Pathway-Level Correlation (PLC) to extract135

gene pairs associated within a given pathway (Supplementary Figure 2 online). PLC are particularly interesting in plants for136

example to decipher incomplete specialized metabolic pathways. It aims at capturing a transcriptional landscape for genes137

known to be involved in a given pathway, in order to highlight their organization as well as finding new genes (transporters,138

transcription factors,...) associated with the process. In the next part, we evaluated the ability of all previous networks to capture139

relevant information associated with four metabolic and one signaling pathways. We selected two primary metabolic pathways140

(carbohydrate and fatty acid metabolisms), two specialized (secondary) pathways (phenylpropanoid and terpenoid metabolisms)141

and the cytokinin signaling pathway.142
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Assessing PLC quality: trade-off between GO term representation and guide genes143

The PLC procedure is expected to cluster together guide genes with many co-expressed genes (‘associated genes’) and to reflect144

the subpathway organization (Figure 5A). For PLC, we systematically removed all genes showing a degree value of 1 (i.e.,145

those connected to only one guide gene). However we included edges between associated genes if they were found among146

edges retained at the selected threshold. Using five pathways (Table 1, Figure 5B, Supplementary Table 2 and Supplementary147

Figure 3 online), we extracted five PLC from the global networks generated above to determine the best suitable dataset x148

distance measurement combinations. All pathways have modular structures with gene sets forming specific sub-pathways (also149

called partitions or modules). We expected that PLC would be able to reconstruct such a partitioning, by connecting guide150

genes with associated genes. The phenylpropanoid pathway contains a core module composed of 3 genes leading to a precursor151

used by 3 other distinct subpathways16–19(Figure 5B, Table 1, Supplementary Table 2 online). The three other metabolic152

pathways, carbohydrates, fatty acids and terpenoids, were structured in modules as described on the KEGG database20 (Table 1,153

Supplementary Table 2 online). The fatty acid pathway contains 97 genes divided into 6 modules. The central carbohydrate154

metabolism contains 202 genes partitioned in 8 modules. Finally, the terpene pathway has 64 genes partitioned into 6 modules.155

Pathway organizations were used as indicated in the KEGG database (apart from phenylpropanoid pathway which was manually156

curated from our previous work) and compared to PLC subnetworks. The plant cytokinin (CK) pathway is known to regulate157

many processes in plant physiology and is hierarchically organized in three levels: a histidine kinase receptor, a transducer158

(histidine phosphotransfer proteins) and a response regulator (type A/B/C) which may act as a transcription factor21(Table 1,159

Supplementary Table 2 online). Although CK pathway members are relatively well known, each level is represented by several160

members which may have specific roles and it is still unclear how they biologically interact with each other to drive a specific161

physiological response. We expected that PLC would group some of these actors according to specific physiological responses.162

CK pathway includes both transcription activating and repressing activities (via response regulators) and post-transcriptional163

(phosphorylations) and would therefore be an excellent test of PLC applicability on associations expected to be more complex164

than in metabolic pathways. In addition, we included other histidine kinases integrating other signals and known to crosstalk165

with the CK pathway22. We therefore included 2 ethylene receptors, ETR1 and ERS1 to determine whether they could be166

clustered with CK histidine kinase. The initial pathway was not partitioned into sub-pathways but rather into 5 levels (receptor,167

transducer, type A/B/C response regulator) because interactions between specific actors of each level are not completely168

understood.169

Pathway Genes Number of
subpathways

Subpathway names (KEGG module accession)

Phenylpropanoids 43 4 core phenylpropanoid (PP), flavonoids, monolignols, phenolamides
Fatty acid 97 6 fatty acid biosynthesis (initiation (M00082), elongation (M00083), its

ER-localized part (M00415)), jasmonic acid phytohormone biosyn-
thesis (M00113) and β-oxidation (M00086 and M00087)

Carbohydrate 202 8 glycolysis (Embden-Meyerhof pathway (M00001) and the core mod-
ule involving three-carbon compounds (M00002)), neoglucogenesis
(M00003), pyruvate oxidation (M00307), citrate cycle (M00010),
pentose phosphate pathway (M00004, M00006 and M00007)

Terpenes 64 6 mevalonate (M00095), methylerythritol (M00096), C10-C20 iso-
prenoid (M00366), beta-carotene (M00097), abscisic acid hormone
(M00372) and phytosterol (M00371) biosynthetic blocks

Cytokinin signal-
ing

37 ? ?

Table 1. Pathway description. ? Indicates that partition in sub-pathway is not known.

Subgraphs of global networks were constructed for each pathway by retrieving edges involving at least one guide gene and170

were partitioned into communities with a fast greedy algorithm designed to maximize network modularity and which has been171

shown to extract relevant communities from large networks23. We compared guide gene distribution in these communities to172

target subpathways using a normalized Chi2 test which values range from 0 to 1, 1 being the expected partition and 0 a random173

partition of guide genes or very few guide genes (Figure 5A). All networks having a Chi2 p-value>0.05 were considered to174

have a Chi2 statistic equal to 0. PLC performance in recovering GO terms was evaluated by counting significantly enriched175

GO terms and by calculating a NV AUROC for each network. A good PLC was expected to contain a large number of guide176

genes and to have both a good score in grouping them into expected partitions (high normalized Chi2 value) and a good177

score in overall biologically relevant edge recovery (NV AUROC>0.6). We first analyzed correlations between all these178

metrics (NV AUROC, number of guide genes and Chi2 statistic) together with two topological metrics (mean node degree and179
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modularity), for each pathway separately (Figure 5B). Strongest correlations were observed between NV AUROC and mean180

node degree (rho>0.5, pe<0.001) and between modularity and normalized Chi2 (rho>0.59, p<0.001). We found that PLC181

performance (NV AUROC) was almost negatively correlated with normalized Chi2 (rho<-0.2) indicating that guide genes were182

clustered correctly at the expense of capturing GO associated gene pairs. Given the CK pathway structure, partitioning based183

on protein functions (receptor, transducer or response regulator) did not resulted in high Chi2 values, suggesting that partitions184

in the co-expression networks contained guide genes from different levels, reinforcing the existence of specific sub-pathways.185

These results indicated a trade-off in PLC between edge quality and guide gene partitioning. A visual examination of PLC186

with either lower modularity and higher NV AUROC (Figure 5D) or higher modularity and lower NV AUROC (Figure 5E)187

revealed that PLC with higher modularity as well as higher Chi2 values displayed a biologically relevant organization. Such188

subgraphs had generally a lower average node degree and a higher representation of guide genes rendering their analysis189

more convenient. Taking the phenylpropanoid pathway as an example, the PCC-HRR based TPM network (Figure 5E, with a190

higher modularity) correctly clustered genes from the core phenylpropanoid (PP) and the flavonoid modules while the raw191

PCC network did not (Figure 5D, with a higher NV AUROC). Similar results were observed with the four other pathways with192

either microarray or RNA-seq datasets (Supplementary Figure 3 online). Modularity and normalized Chi2 could therefore193

be considered as consistent quality metrics for PLC. NV AUROC should also be considered to ensure that subgraphs had a194

minimum predictability (>0.55).195

HRR-CCs optimize recovery and clustering of guide genes in PLC196

The best performing dataset x distance measurement combinations were searched by analyzing NV AUROC, modularity and197

normalized Chi2 among networks with a Chi2 p<0.05. Statistical effects of dataset, distance, ranking and their interactions198

on subgraph characteristics were analyzed by ANOVA for each pathway. Ranking and distance measurements had generally199

the strongest effects on modularity and normalized Chi2 (p<2e-5) (Figure 6A & B). Ranking had a significant effect on NV200

AUROC (p<0.01) but was weaker than distance measurement (p<1e-4). Datasets only had a significant effect on modularity201

(p<0.002). Significant interactions were rarely observed between these three factors (i.e. in few pathways and with a weak202

effect). This revealed that the different RNA-seq normalizations had only minor effects on these PLCs. Taken as a whole,203

networks obtained with raw datasets had a significant higher NV AUROC (t-test, mean in raw=0.58, mean in HRR=0.57,204

p<0.01) but significant lower modularity (mean in raw=0.35, mean in HRR=0.68, p<2.2e-16) and lower normalized Chi2 value205

(mean in raw=0.20, mean in HRR=0.35, p<2.2e-16) (Figure 6A). It therefore appeared that clustering guide genes correctly206

was improved with CC ranked with HRR at the expense of performance. NV AUROCs in HRR-based networks were generally207

higher than 0.55, indicating an average low performance in GO capture (Figure 6A). In non-ranked distances, PC resulted in the208

weakest NV AUROC, while MI and raw SCC based networks displayed the highest NV AUROC (Figure 6B). This weakness in209

PC based networks was compensated neither by a higher modularity nor by a higher normalized Chi2 statistic.210

A more detailed examination of best PLC subgraphs maximizing either modularity or NV AUROC, revealed that each of211

the five pathways involved specific dataset x distance measurement combinations. PCC-HRR based networks were always212

found to maximize modularity (Figure 6C) and normalized Chi2 (Figure 6D) with almost all datasets. Raw distance based PLCs213

had a higher NV AUROC and some of them also had a good modularity but they also had a lower normalized Chi2 statistic214

indicating they contained fewer guide genes (e.g. raw RNA-seq counts with raw SCC in the terpene PLC). The results suggest215

that PCC-HRR could be used as a reliable distance measurement whatever the dataset. Careful analysis of PLC obtained from216

PCC-HRR revealed the presence of relevant associations in each PLC (Supplementary Figure 3 and Supplementary Table 3217

online). For example, community 12 from the phenylpropanoid PLC obtained with microarray data processes with PCC-HRR218

(Figure 5D) contained AT1G06000 encoding a Flavonol 7-O-rhamnosyltransferase and was clearly associated with other genes219

from the flavonoid sub-pathway. This gene was not detected in the raw PCC PLC (Figure 5C). Other examples are highlighted220

in yellow in Supplementary Table 3 online.221

Vertex and edge co-occurence in microarray and RNA-seq based PLC subgraphs222

Edge co-occurrence in networks constructed from expression datasets obtained by different technologies may be considered as223

a further validation. Quantifying gene expression with microarrays relies on probe hybridization by sequence complementary224

while with RNA-seq, short reads are mapped back in silico to the reference transcriptome. The two main differences between225

these technologies are (i) the number of quantified transcripts (due to the completion of genome annotation) and (ii) the dynamic226

range (fluorescent probe intensities for microarrays, in silico read counts for RNA-seq). Because microarrays and RNA-seq227

technologies differ, edges co-occurring in networks obtained from these two technologies are probably more relevant. In228

Figure 4C, we analyzed co-occurrence in global networks and found that HRR ranked CCs apparently increased the number229

of co-occurring edges between microarrays and RNA-seq. To get more insights into co-occurrence in PLCs, common edges230

and vertices were counted in pairwise intersections of networks (RNA-seq vs microarrays) obtained with the six distance231

measurements and set at a 1,000 vertices. The resulting intersection networks were further characterized by the number of232

represented guide genes, their normalized Chi2 statistic, modularity and NV AUROC. This evaluation was performed with the233
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RNA-seq dataset expressed as TPM only because we showed in the previous section that normalization methods had a minor234

impact on PLC. In addition, TPM networks with raw distance methods had enough vertices to correctly extract PLC (it was not235

the case with raw distances, e.g. for TPM normalized with VST as revealed by their very low normalized Chi2 statistics; Figure236

6A).237

Many more co-occurring edges were generally recovered when raw CC and MI networks were compared (e.g. 18,334238

averaged over the five pathways with MI networks vs 550 with PCC-HRR networks; Supplementary Figure 4 online). At a239

1,000 vertices, all raw networks but PC contained more edges (221,297 and 85,059 in average for microarrays and TPM) than240

HRR-CCs networks (12,431 and 12,877). This might have resulted in more co-occurrences between MI networks. PC networks241

had the lowest number of co-occurring vertices (94 in average) but intersections from MI and/or raw CC had comparable vertex242

number (268) to intersection networks from CC-HRR (267 in average) (Supplementary Figure 4 online). These results suggest243

that HRR-based networks have strong overlaps. Intersections of PCC-HRR subgraphs were able to maximize the % of guide244

genes (mean of 75% over the 5 PLC), modularity (0.78) and normalized Chi2 statistic (0.70) (Figure 7). Detailed characteristics245

for each PLC are presented in Supplementary Figure 4 online. Modularity was generally high in the intersection between246

CC-HRR networks (>0.70) but intersections with SCC-HRR displayed lower normalized Chi2 values (<0.6). Intersection247

network performance in recovering GO terms was globally low (Figure 7D). The highest NV AUROCs were observed in248

intersections between MI networks (0.52), MI (microarrays) – raw SCC (TPM)(0.54) and raw PCC (microarrays) – raw SCC249

(TPM)(0.52) (Figure 7D). Intersection networks and their contents are available in Supplementary Figure 5 and Supplementary250

Table 4 online. Again, we found candidate genes not included in the guide gene sets that were correctly associated with other251

guide genes (highlighted in yellow in Supplementary Table 4 online). Taking the phenylpropanoid pathway as an example,252

Figure 7E shows edge and vertex co-occurrence between MI networks and Figure 7F between PCC-HRR networks. The253

co-occurrence network obtained from MI contained fewer guide genes (26 vs 41) and displayed lower modularity (0.49 vs254

0.67) and normalized Chi2 statistic (0.39 vs 0.66). Although it had a higher NV AUROC (0.6 vs 0.46), its structure did not255

reflect that of the expected pathway (Figure 5C). For example, phenolamide related genes were not represented. Average guide256

gene degree (33) was below the average degree of the remaining nodes (100) indicating that guide genes were only slightly257

connected to other genes in this co-occurrence network from MI PLC. By contrast, guide gene degree (11.4) was very similar258

to the other node degree (11.1) revealing an uniform integration of guide genes with other genes in the co-occurrence network259

of PCC-HRR PLCs. As observed in co-occurrence in large networks (Figure 4B), RNA-seq TPM normalized with VST had260

slightly more edges in common with microarray networks. We therefore compared PCC-HRR PLC between microarrays261

and RNA-seq TPM normalized with VST. Intersection networks had very similar characteristics to that observed between262

microarrays and RNA-seq TPM. Although it contained slightly more co-occurring vertices and edges in average (360 and 1,252263

respectively with TPM VST vs 240 and 550 with TPM), it displayed fewer guide genes (54 vs 57). TPM normalized with264

VST could therefore be an interesting alternative to TPM. PLC intersection networks and their description are available in265

Supplementary Figure 6 and Supplementary Table 5 online.266

Discussion267

Pathway Level-Correlation (PLC) is an interesting approach to capture biologically relevant transcriptional relationships using268

guide genes (e.g. genes involved in a same metabolic pathway) from transcriptome-wide co-expression networks. Our present269

work highlights that distances between genes calculated with highest reciprocally ranked PCC (PCC-HRR) improve PLC. The270

main improvement was guide gene representation. PCC-HRR based PLCs contained more guide genes than observed with271

other distances and they were generally more correctly partitioned into expected sub-pathways in the co-expression network.272

This was associated with a lower mean node degree and a higher modularity but also with a slightly weaker performance in273

GO term recovery. Our results propose that modularity and normalized Chi2 values could be used as reliable indicators of274

PLC quality. We also observed that edge and vertex co-occurrences in PLCs obtained with PCC-HRR and microarray and275

RNA-seq TPM data can be used to construct relevant networks. A surprising observation was that in our conditions, for most276

combinations tested, true positive rates remained higher than false positive rates in spite of increasing network sizes. A similar277

trend using small E. coli and S. cerevisiae networks (<110 nodes) has been previously observed with CCs7. This suggests that278

co-expression studies should test different confidence thresholds to efficiently capture gene associations. Evaluating network279

quality was done in respect of the Arabidopsis reference GO annotation set. We found that the NV AUROC14 evaluates280

networks efficiently and was generally in accordance with significantly enriched GO term counts and TPR vs FPR curves. NV281

AUROC has the advantage of being a more global measure of predictability (values above 0.6 can be considered as moderate).282

Different distance measurements displayed different efficiencies according to the dataset but as a general trend, performance of283

the different combinations were similar (e.g. between microarrays and RNA-seq TPM in Figure 3B). The same performance284

was obtained for different topologies: high node degree (more edges and fewer vertices) for MI and raw CC networks vs285

lower node degree (fewer edges and more vertices) for CC-HRR networks. PC networks displayed a high performance with286

microarray data only, suggesting that PCs calculated with ‘corpcor’ R package may not be recommended for RNA-seq data. A287
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recent study has focused on metabolic pathways in plants using mutual ranks, another CC ranking method12. Complementary288

to this previous work, we found that ranking CCs increases vertex number without penalizing absolute network performance.289

Contrastingly, an opposite trend was observed in another study24, where larger networks displayed a lower Matthew Coefficient290

when compared to protein-protein interactions or regulatory networks. This indicates that different absolute performance291

measurements lead to different results and interpretations but this might also be due to our datasets which were larger than292

theirs. Another advantage of CC-HRR was that it clearly homogenized network characteristics from differently normalized293

RNA-seq datasets in addition to increase the number of co-occurring edges between microarrays and RNA-seq.294

As revealed recently25, highlighting correlations between genes may require specific data processing or distance algorithms295

best suited to their query pathway. We also found that each of the five PLCs performed best with specific RNA-seq normalizations296

(Figure 6C & D) but RNA-seq TPM processed with PCC-HRR always provided informative networks which can be used as297

reliable starting point because they matched well expected pathway structure. In our case, the different data normalizations298

had a relatively weak effect on PLC characteristics especially when CCs were used with HRR. In a comparative analysis24,299

the authors have shown that PCC networks from VST normalized counts were more comparable to those from microarrays.300

In our case, VST normalization slightly improved the overlap between RNA-seq TPM and microarrays both at the global301

and targeted levels. This normalization can thus be further considered for co-expression studies. A fast greedy approach302

maximizing modularity was used to detect communities within PLC subgraphs. Guide gene partitioning in these communities303

was compared to expected partitions in subpathways with a normalized Chi2 test (Figure 5A). We found that correct guide304

gene partitioning was negatively correlated with NV AUROCs but positively with modularity. Subnetworks with highest305

NV AUROCs but lower modularity such as those obtained with MI represented fewer guide genes and displayed large edge306

numbers. In these networks, guide genes formed inappropriate structures (Supplementary Figure 5 online). We applied PLC to307

five pathways varying in size and nature. For the four metabolic pathways, PLC extracted from PCC-HRR based networks308

were able to cluster guide genes in the proper subpathways (Supplementary Figure 5 online). Guide genes were associated309

in communities resembling subpathways and containing genes not included in the query gene set but known to be involved310

with the given pathway or being good candidates to be functionally validated (Supplementary Table 4 online). A similar PLC311

approach has been recently performed12using the Arabidopsis aliphatic glucosinolate pathway. The authors have successfully312

reconstructed this pathway and identified a new candidate glucosyltransferase that could be part of it. This demonstrated313

again that PLC is a powerful approach to complete biological pathways. When tested with a signaling pathway, we found that314

PLCs also displayed meaningful communities. For example, the CK signaling pathway is physiologically well known but its315

organization at the molecular level is far from being understood21. In particular, it is unclear how multi-family members of316

each signaling level (receptor, transducer and response regulator) interact with each other to drive a specific physiological317

response. In the PLC dedicated to the CK signaling pathway, PCC-HRR with microarrays suggested preferential transcriptional318

associations that have been described in the literature [36]. For example AHP2, AHP3 and AHP5 were grouped in the same319

module (module 7 Supplementary Figure 5 and Supplementary Table 4 online). These three AHPs have been reported to320

negatively regulate tolerance to abiotic stress [40]. The same community also contained AHK3, ARR1 and ARR2. Those321

three members are known to regulate primary root meristem activity and senescence26. AHK4, AHK2 and ARR14 which322

have been shown to regulate shoot apical meristem activity were grouped in the same community27. In addition, we saw clear323

associations between ETR1 and AHK3 in individual PLC subgraphs. Such association highlights crosstalk already known324

between CK and ethylene signaling pathways22. The co-occurrence pathway was relatively sparse in contrast to the metabolic325

pathways (Supplementary Figure 5 online). It is possible that vertex number for this analysis (1,000) might have been too326

small to capture complex associations within this signaling pathway. Using VST normalized TPM increased edge and vertex327

number in the co-occurrence network (Supplementary Figure 6 and Supplementary Table 5 online). The above-described328

associations were also found in this co-occurrence network. While effective in revealing strong gene associations, merging PLC329

from microarray and RNA-seq data could miss other relevant associations. First, experimental conditions represented by each330

starting dataset are not completely overlapping. Together with inherent differences due to dynamic range, this leads to networks331

with very different edge compositions and node degrees14, explaining the relative weak overlap between networks. Second,332

RNA-seq expression data include genes that are not included in the GPL198 microarray. As an example, some important genes333

in aliphatic glucosinolate biosynthesis were not represented in a previous Arabidopsis microarray dataset but found in RNA-seq334

expression matrices from other related species12.335

To capture transcriptional environment of a query gene list, distance calculations have to be performed on the whole tran-336

scriptome. Calculating partial correlations was particularly challenging but using a covariance shrinkage estimator worked well337

in terms of computing performance. It took less than 2h for RNA-seq expression matrices but more than 12h for the microarray338

dataset. By contrast, our program which is freely available at (https://github.com/EA2106-Universite-Francois-Rabelais/339

Expression-network-analysis) was able to calculate PCC-HRR in less than 3h for both datasets. As PCC-HRR340

resulted in relevant networks, this tool can be useful for further studies requiring many computations such as analyzing sample341

size impact on PLC or testing other normalization methods.342
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The present work demonstrates that Pearson’s Correlation Coefficients (PCC) on which highest reciprocal ranking (HRR)343

was applied can be used to construct reliable global and targeted networks. When considering Pathway Level Correlation344

(PLC) with a set of guide genes, three reliable measures can be used for evaluation: NV AUROC as a global indicator of GO345

recovery (expecting values>0.5), modularity (between 0 and 1, 1 being the best network partition) and normalized Chi statistic346

(between 0 and 1, 1 indicating a perfect match with an expected partition). Clustering guide genes correctly was at the expense347

of capturing GO terms and dataset x distance measurement combination should be carefully selected to construct reliable348

PLC. Although specific RNA-seq data normalizations may be adapted to each pathway of interest, using TPM with PCC-HRR349

generated accurate and safe PLC. Using PCC with HRR also increased the quality of co-ocurrence networks between RNA-seq350

and microarrays.351

Methods352

Microarray data preparation353

Experiment accessions (GSE) for GPL198 (Arabidopsis ATH1, 22,746 genes) were retrieved from ArrayExpress (Supplementary354

Table 6 online). Signal intensities per probe were generated with R [16]using the ‘arrayexpress’ package28. The function355

‘getAE’ was used to convert the raw signal CEL files. Array normalization was performed per GSE using the ‘justRMA’356

function of the ‘affy’ package. This procedure applies a background correction together with a quantile normalization to correct357

for biases within arrays and finally returns log2-transformed corrected signal intensities. All 10,095 arrays were combined into358

a single file and subjected to a quality control based on upper quartile dispersion (75%) and Kolmogorov-Smirnov statistical359

testing for outliers using an empirical cumulative distribution function as described previously29. A total of 142 arrays were360

considered outliers in the two tests and discarded from the final matrix. Each array was finally centered and scaled individually.361

RNA-seq data preparation362

2,549 RNA-seq accessions obtained for A. thaliana were retrieved from ArrayExpress. Fastq files were obtained from the SRA363

after converting .sra files with the SRA ToolKit function ‘fastq-dump’ with the –split-files option for paired-end sequencing runs.364

Reads were systematically trimmed with Trimmomatic using adapter files according to the Illumina platform used for the runs365

(ref). Trimmed reads were pseudo-aligned to predicted transcripts from the representative gene models of Arabidopsis TAIR366

genome v10 (33,604 transcripts) with Salmon v0.7.2 using the variational Bayesian EM algorithm mode to improve abundance367

estimation30. Only samples displaying a mapping rate of reads >30% were kept, resulting in a final matrix containing 1,676368

samples (Supplementary Table 6 online). RNA-seq counts were used as non-normalized raw counts or expressed as Transcript369

per Million to correct for sequencing depth. Normalization by Variance Stabilizing Transformation (VST) was performed with370

the DESeq2 R package. This normalization method aims at limiting the variance dependence to the mean31.371

Distance calculations372

Before calculations, zero-variance genes were discarded. CCs (Pearson or Spearman) are computationally intensive particularly373

in the case of large matrices. Highest Reciprocal Ranking (HRR) of CCs for genes A and B is calculated as max(rank(CC(A,B)),374

rank(CC(B,A)). For each gene, all CC values are first transformed as ranks, with 0 corresponding to the gene rank against375

itself. Ranks are subsequently compared and the highest value is retained for each gene pair. We developed a tool written376

in C allowing the easy parallelization of these computations. Briefly, for a given initial matrix containing n genes and p377

samples, the number of cores c allocated is used to split the dataset into n/c submatrices. In case of non-integer value,378

the last line of the matrix is replicated (without incidence on PCC or rank values) so that n/c is an integer. PCC or HRR379

are then calculated for each gene pair using communication between CPUs with Message Passing Interface. The program380

delivers c files containing n/c x n values corresponding to PCC or HRR. This program is freely available on Github (https:381

//github.com/EA2106-Universite-Francois-Rabelais/Expression-network-analysis). To cal-382

culate SCCs, expression values were first ranked in R. Mutual information (MI) which is reported to better capture non linear383

relationships8were calculated with the ‘knni.all’ function of the Parmigene R package32. This function estimates MI using a384

k-nearest neighbor. Partial correlations were challenging to compute on genome scale expression matrices. Partial correlations385

are usually calculated from multiple linear regressions or by inverting the correlation matrix and used in Graphical Gaussian386

Models33. Our expression matrices had many more variables (genes) than samples therefore regression methods would have387

required a Lasso or Ridge penalization to estimate coefficients. However, this procedure generally leads to memory errors when388

considering more than 30,000 variables. We found that the most computationally appropriate method in our case was to estimate389

shrinkages of partial correlations with the R package ‘corpcor’ (http://strimmerlab.org/software/corpcor/).390

This package is maintained by Korbinian Strimmer’s team34, 35. We used ‘pcor.shrink’ function which relies on the inversion of391

the shrunken estimated covariance matrix to estimate partial correlations and which is suited for matrices with more genes than392

samples.393
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Reference dataset394

We used the Arabidopsis Gene Ontology (GO) standard dataset to assess network quality. The annotation file provided by the395

AGRIGO database36 and was filtered out to remove all terms with a IEA evidence code and keep only functionally attributed396

terms. We also removed GO terms represented by less than 5 genes or more than 100 to remove non-specific terms.397

Global Network analysis398

Construction: For each dataset x distance combination, we dynamically set a threshold to obtain arbitrary lists of 10 million399

best gene pairs (with CC above or HRR below that threshold), i.e. less than 2% of the total possible edges. Networks were then400

constructed with the 1, 5, 10, 20 ,40, 60 or 80% best pairs from these lists. Thresholds used to get the 10 million gene pairs are401

reported in S2 Table. Global networks were analyzed as adjacency matrices in R. Network characteristics: besides classical402

topological characteristics such as vertex and edge numbers and mean node degree (the average number of connections for403

each vertex), we evaluated network quality by comparison with the reference dataset (Figure 2). In a first approach, we built404

a confusion matrix by classifying edges as false or true positives, considering edges as valid if both genes were annotated405

with at least one same GO term. In this confusion matrix, true positives (TP) corresponded to gene pairs also found in the GO406

annotation, false positive (FP) to genes associated in the network but not in the GO annotation, false negatives (FN) to pairs in407

the GO annotation not predicted in the network and finally true negatives (TN) genes pairs not predicted in the network and the408

annotation table. This confusion matrix was used to calculate True Positive Rates (TPR) and False Positive Rates (FPR). TPR409

and FPR were obtained at various confidence thresholds (i.e. for networks differing in sizes) and used to draw a TPR vs FPR410

curve as described elsewhere11. These curves were only partial because we included only the first 10 million best pairs. This411

was useful to pinpoint the importance of low FPR37. In the second and third approaches, we relied on the guilt-by-association412

principle to estimate network predictability. In the second method, we used the ‘predictions’ function of EGAD R package38.413

For each gene, this function counts the number of connected genes annotated with an identical GO term and divides this count414

by the gene’s degree. These scores are next ordered decreasingly to construct a TPR vs FPR curve for each network. It differs415

from the first approach described above because here TPR and FPR are not obtained from different confidence thresholds (and416

from different networks) but from all possible true positive and false positive edges in the current network. A global Area417

Under Receiver Operating Characteristic (global AUROC) was calculated from each of these TPR/FPR curves. In the third418

method, predictability was evaluated using a neighbor voting (NV) algorithm. In this case, an AUROC is calculated for each419

GO term from the ability of genes to predict the GO annotation of their direct neighbors in a 3-fold cross-validation14, 39. A420

mean NV AUROC was calculated for each network. In addition to ROC analysis, we counted GO terms that were significantly421

enriched with gene pairs using a hypergeometric test with R.422

Pathway Level Correlation423

Construction: In PLC, subnetworks were constructed from global networks (see above) by keeping edges connecting at least424

one guide gene. Guide gene lists are indicated in Supplementary Table 2 online. The R package ‘igraph’40 v1.0.1 was used to425

construct and visualize these targeted networks with a force-directed layout (Fruchterman-Reingold). Community Detection:426

Modules containing densely connected vertices were estimated within each network by using a fast greedy approach which427

aims at maximizing modularity of the detected communities23. Modularity measures how good a network partition is by428

calculating for each gene the number of edges within its community against its total node degree. The fast greedy approach429

optimizes modularity over all possible divisions of the network and has been shown to perform well on large networks. Guide430

genes clustering within the communities was compared to expected partitions in sub-pathway with a Pearson’s Chi2 test and431

Monte-Carlo simulated p-values with 2,000 replicates. This test was based on a contingency table with dimensions n x m (n,432

sub-pathway number, m community number in the co-expression network) and each entry corresponding to the number of433

genes being in communities ni and mj, with i=1 to n and j=1 to m. Because Chi2 statistic depends on sample number, values434

were normalized by dividing them to the maximal expected value (the ideal partition) of each pathway. This resulted in a score435

ranging from 0 to 1, 0 being a random distribution of guide genes in the network and 1 to the exact partitioning.436

Acknowledgements437
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Supplementary Information528

Supplementary Figure 1: Network properties in dataset-distance measurement combinations. Global network charac-529

teristics (Number of significantly enriched GO terms, global and NV AUROCs) were expressed in function of vertex or edge530

number. The horizontal dashed line indicates a 0.6 AUROC value taken as an arbitrary threshold separating good and poor531
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network predictability. For each dataset, TPR=f(FPR) curves are also presented with dashed line corresponding to a random532

selection (with AUROC <0.5). These curves are partial and the max FPR values were obtained for 10 million gene pairs.533

Supplementary Table 1: Threshold values to get 10 million best gene pairs.534

Supplementary Figure 2: Workflow for Pathway-Level Correlation. Lists of best co-expressed genes are established535

for each guide (or bait) gene. Redundancies among these lists (associated genes) connect guide genes to construct the PLC536

network. Terms ’guide gene’ and ’associated genes’ have been introduced by Lisso et al2.537

Supplementary Table 2: Guide gene accessions.538

Supplementary Figure 3. PLC subgraphs for the carbohydrate (A), fatty acid (B), terpene (C) and cytokinin (D)539

pathways. For each PLC, the expected partitioning of guide genes is indicated in the left panel and is compared to PLC540

subgraphs with higher predictability and lower modularity (center; calculated with MI) or PLC subgraphs with lower pre-541

dictability and higher modularity (right; calculated with PCC-HRR). Colored vertices correspond to genes encoding enzymes542

catalyzing steps of similar color in the expected pathway. A and B were drawn from RNA-seq TPM networks while C and D543

from microarray networks. Community numbers in PCC-HRR networks are indicated in deep blue and can be used to access544

Supplementary Table 3 online. Polygons surrounding vertices delimit communities.545

Supplementary Table 3: Gene lists from PLC obtained with PCC-HRR Genes highlighted in yellow correspond to546

non-guide genes but known to be involved in the pathway.547

Supplementary Figure 4: PLC based on microarray and TPM data. Subgraphs were constructed with the 6 distance548

measurements (MI, PC, raw PCC, raw SCC, PCC-HRR and SCC-HRR) and aligned to find co-occurring edges and vertices.549

(A) Number of co-occurring vertices and edges. The first distance in each label correspond to microarrays and the second to550

TPM. Points are half-colored according to the ranking applied to the initial distance. For each intersection graph, % of guide551

genes (B), normalized Chi2 statistic (agreement with expected guide gene partitioning, C), modularity (D) and NV AUROC552

(GO recovery performance, E) were calculated.553

Supplementary Figure 5: Co-occurrence networks from PCC-HRR PLC constructed with microarrays and RNA-554

seq TPM. Community numbers are indicated in deep blue and can be used to access Supplementary Table 4 online.555

Supplementary Table 4: Gene lists from co-occurrence networks between PCC-HRR PLC obtained with microar-556

rays and RNA-seq TPM. Genes highlighted in yellow correspond to non-guide genes but known to be involved in the557

pathway.558

Supplementary Figure 6: Co-occurrence networks from PCC-HRR PLC constructed with microarrays and RNA-559

seq TPM normalized with VST. Community numbers are indicated in deep blue and can be used to access Supplementary560

Table 5 online.561

Supplementary Table 5: Gene lists from co-occurrence networks between PCC-HRR PLC obtained with microar-562

rays and RNA-seq TPM normalized with VST.563

Supplementary Table 6: Microarray and RNA-seq accessions used in this study.564
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Figure 1. Workflow for global and targeted network analyses. One microarray dataset and a RNA-seq dataset prepared
according to 7 normalization procedures were used to generate eight expression matrices analyzed with six different distance
measurements (Pearson’s or Spearman’s Correlation Coefficient, unranked or ranked with HRR, Mutual Information (MI) or
Partial Correlations (PC)) to obtain 48 distance matrices. Each of these matrices was thresholded to obtain global networks at
different confidence thresholds. Global networks were evaluated and also queried with specific guide gene sets reflecting 5
different pathways in a process named Pathway Level Correlation (PLC). The resulting subnetworks were evaluated and used
to construct co-ocurrence networks between microarray and RNA-seq datasets. In white are indicated the figures corresponding
to the different steps analyzed. Dataset x distance combinations are indicated in blue and characteristics that are improved by
these combinations.
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Figure 2. Network performance. This small example describe strategies to evaluate networks according to a reference
functional annotation. Co-expression networks were obtained for each dataset x distance measurement combination (Figure 1)
at different confidence thresholds, resulting in networks increasing in size with lower stringency. A total evaluation was made
with True Positive Rate (TPR) vs False Positive Rate (FPR) analysis (left panel) by classifying edges as True positives (TP),
False Positives (FP), False Negatives (FN) or True Negatives (TN). Single network evaluation was performed by calculating
AUROCs with the EGAD R package, either as a global prediction or using a neighbor voting (NV) algorithm with a 3-fold
cross validation (right panel). All indicated values are in accordance with the small networks in this example. In addition to
these 3 evaluations (FPR vs TPR, global AUROC and NV AUROC), GO term significant enrichment was statistically tested
with a hypergeometric distribution (not shown in this example).

14/19

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 12, 2018. ; https://doi.org/10.1101/299909doi: bioRxiv preprint 

https://doi.org/10.1101/299909


Figure 3. Global network characteristics. Only results for the RNA-seq TPM dataset without further normalization are shown.
The horizontal dashed line indicates a 0.6 AUROC value taken as a threshold separating good and poor network predictability.
In the TPR=f(FPR) panel, the dashed line corresponds to a random selection (with AUROC<0.5). This panel is partial and the
highest FPRs correspond to 10 million gene pairs.
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Figure 4. Comparison of dataset x distance measurement combinations for networks with a million gene pairs. Network
topology and performance in GO recovery were analyzed (A). Vertical lines at 0.6 indicate AUROCs above which network
predictability can be considered as moderate. Co-occurring edges were also counted in every possible comparison between 2
networks (B). Area 1 corresponds to RNA-seq networks having few genes in common with PC networks and microarrays
networks and area 2 to combinations maximizing edge co-occurrence between microarray and RNA-seq.
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Figure 5. Trade-off in PLC subnetworks between performance in GO term recovery and partitioning guide genes into
expected communities. (A) Example showing normalized Chi2 statistic and p-value calculations comparing guide gene
distribution into PLC communities (numbers in deep blue within polygons) to the expect partitioning (left; 3 subpathways).
Two PLCs (one with a good partitioning (center); one with a weak partitioning (right)) are shown here but the contingency
matrix used in Chi2 calculations is described for only one of them (center). (B) Pair plot showing correlations (Spearman’s rho,
asterisks show significance p<0.001, upper panel) and scatterplots (lower panel) between average network node degree, NV
AUROC, normalized Chi2, modularity and the number of guide genes in the network. Each point in the lower panels
(scatterplots) represent one network for which 2 characteristics (eg NV AUROC and modularity) are compared. Data are
presented for each pathway separately with a specific color. (C) The expected partitioning of phenylpropanoid related guide
genes was compared to two PLC: (D) higher predictability and lower modularity (microarrays raw PCC) and (E) lower
predictability and higher modularity (microarrays PCC-HRR). In D and E, colored vertices correspond to genes encoding
enzymes catalyzing steps of similar color in C. Community (surrounded by grey polygons) numbers in E are indicated in deep
blue and can be used to access Supplementary Table 3 online. 17/19

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 12, 2018. ; https://doi.org/10.1101/299909doi: bioRxiv preprint 

https://doi.org/10.1101/299909


A B

C D

Figure 6. PLC subnetwork performance. Performance in capturing GO terms (NV AUROC), modularity and normalized Chi2

value distribution in interactions between datasets and ranking methods (A) and between distance measurement and ranking
methods (B) showing the dominant effect of the ranking procedure (raw vs HRR) on these metrics. (C) Modularity and NV
AUROC of the five top NV AUROC networks and 5 top modularity networks. (D) Normalized Chi2 statistic and NV AUROC
for the same networks.
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Figure 7. Characteristics of co-occurrence networks between microarrays and RNA-seq TPM. Percentage of guide genes
(GG; A), modularity (B), normalized Chi2 statistic (agreement with guide gene partitioning, C) and NV AUROC (GO term
performance, D) were averaged over the 5 PLCs. Labels are ordered according to a hierarchical clustering. Co-occurrence
networks obtained from phenylpropanoid PLC obtained with MI (E) or PCC-HRR (F). GG corresponds to guide gene number
in the networks. Community numbers in F are indicated in deep blue and can be used to access Supplementary Table 4 online.
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