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ABSTRACT 1 

Metabolic exchange can mediate beneficial interactions among microbes, helping 2 
explain diversity in microbial communities. These interactions are often assumed to 3 
involve a fitness cost, prompting questions on how cooperative phenotypes can be 4 
stable and withstand the emergence of cheaters. Here we use genome-scale models of 5 
metabolism to investigate whether a radically different scenario, the pervasive release 6 
of “costless” metabolites (i.e. those that cause no fitness cost to the producing 7 
organism), can serve as a prominent mechanism for inter-microbial interactions. By 8 
carrying out over 1 million pairwise growth simulations for 14 microbial species in a 9 
combinatorial assortment of environmental conditions, we find that there is indeed a 10 
large space of metabolites that can be secreted at no cost, which can generate ample 11 
cross-feeding opportunities. In addition to providing an atlas of putative costless 12 
interdependencies, our modeling also demonstrates that oxygen availability significantly 13 
enhances mutualistic interactions by providing more opportunities for metabolic 14 
exchange through costless metabolites, resulting in an over-representation of specific 15 
ecological network motifs. In addition to helping explain natural diversity, we show how 16 
the exchange of costless metabolites can facilitate the engineering of stable synthetic 17 
microbial consortia. 18 
 19 

Keywords: Microbial communities, cross-feeding, cooperation, synthetic ecology, 20 

genome-scale modeling, microbiome 21 

 22 

INTRODUCTION 23 

The astonishing number of microbial species observed in nature 1–3 seems to contradict 24 

classical ecological theory, which predicts far less biodiversity in many nutrient-poor 25 

environments 4,5. A variety of different explanations have been proposed as possible 26 

solutions to this inconsistency, including resource partitioning 6, differential nutrient use 7, 27 

spatial segregation 8, and metabolic cross-feeding 9–11. In environments poor in 28 

resources, cross-feeding has been shown to enhance the capacity of microbes to survive, 29 

either through the secretion of valuable compounds 12–14, or by maintaining 30 

thermodynamic gradients necessary for continued metabolism 15. Despite their 31 

prevalence, it is not clear how these cooperative phenotypes emerge, as they often 32 

involve the exchange of metabolites that are costly for the producer. This apparent 33 

altruism introduces the potential for the rise of cheating organisms that do not contribute 34 

common goods but still benefit metabolically from others, challenging community stability 35 
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16. Previous studies have addressed this dilemma in different ways, either by suggesting 36 

fundamental boundaries to the feasibility of costly cross-feeding based on theoretical 37 

considerations 17, or by establishing balances between production costs and reciprocation 38 

benefits in specific communities and environments 18–20. However, it is not fully 39 

understood whether costly exchanges can account for the degree of biodiversity observed 40 

in nature, as the conditions necessary for the rise and maintenance of these costly 41 

interdependencies may not frequently manifest themselves. 42 

 43 

We therefore ask whether a radically different interaction mechanism, one that hinges on 44 

organisms secreting metabolic products at no cost to their own fitness, may be prevalent 45 

enough in the microbial world to help explain the abundance of cross-feeding 46 

opportunities. Key to this mechanism, which we will term “costless,” is the emergence of 47 

community benefits as a product of otherwise selfish acts by individual microbial species. 48 

This phenomenon has been explored in a macroecological context 21–23 and can be 49 

illustrated by the example of a vulture consuming the remains of a lion kill. Here, the lion 50 

gains nutritional benefit from its hunt and leaves behind scraps of food that are in turn 51 

eaten by the vulture. In this way, though the lion did not expend energy to facilitate access 52 

to food explicitly for the vulture, it did unintentionally contribute to the vulture’s success 53 

through its own selfish action 24. It is known that, in the microbial world, metabolic waste 54 

products secreted at no cost to the producing organism (e.g. E. coli secreting acetate 55 

under limited oxygen) can serve to support other species 13. However, it is not obvious 56 

whether such behavior extends beyond a few fermentation byproducts. Moreover, little 57 

information exists on how costless secretions vary across microbial species and growth 58 

media composition. Most importantly, even if the metabolites secreted by an organism 59 

under a given condition were to be known, it still would be difficult to ascertain whether 60 

such byproducts would be likely to enable or enhance growth of other species. 61 

 62 

In this study, we use computational metabolic modeling to quantify the magnitude of 63 

environmental modification brought about by costless metabolite secretion, as well as the 64 

interspecies interactions that can arise from this type of exchange. In a microbial analog 65 
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to the lion-vulture interaction, we seek to understand how metabolites released as a 66 

product of selfish action by individual species yield unintended benefits to partner 67 

organisms, resulting in emergent interspecies cooperation. Based on this framework, we 68 

present a computational pipeline based on flux balance analysis (FBA) 25 that predicts 69 

the growth phenotypes and cooperative interactions mediated by costless metabolites for 70 

14 microbial species under a large combinatorial set of environmental conditions. In this 71 

way, we obtain a global view of cross-feeding opportunities that can mediate the 72 

emergence of cooperation and the maintenance of biodiversity in natural communities. In 73 

addition, we complement our metabolic modeling with a dynamical modeling framework 74 

to understand whether costless secretions on their own can promote long-term stability 75 

in model synthetic microbial communities. While the present work focuses entirely on 76 

putative secretions and interactions predicted computationally, we wish to highlight that 77 

we restricted our analysis to microbes associated with high quality, manually curated (and 78 

therefore in most cases individually tested) in silico models and that in many cases, 79 

specific predictions can be shown to be consistent with previously established empirical 80 

knowledge. For the most part, however, the current analysis should be viewed as the 81 

exploration of a large space of stoichiometrically possible costless interactions 82 

(inscrutable to such an extent at the experimental level), whose global patterns could 83 

motivate and inform future experimental and theoretical endeavors. 84 

 85 

RESULTS 86 

Metabolite secretions can be costly or costless, depending on environmental 87 

context. Understanding whether or not the secretion of a specific metabolite by a given 88 

organism is associated with a decrease in fitness (interpreted here as growth rate) is 89 

difficult to assess experimentally, but can be readily addressed using genome-scale 90 

models of metabolism (see Methods). For example, it is possible to impose the secretion 91 

of a given compound at a given rate, and then ask whether this constraint is expected to 92 

cause a reduction in growth. A small set of simulations of this kind for a single organism 93 

(Fig. S1) exemplifies the broad spectrum of possible outcomes: based on the specific 94 

carbon sources, different metabolites can be produced, sometimes at the expense of 95 
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growth capacity, other times with no apparent effect (neutral), or even to its benefit. Due 96 

to the basic assumptions of the genome-scale models we employed (especially the 97 

maximization of growth as the objective function) we know that these last two kinds of 98 

secretions are compatible (or even necessary) for metabolism to operate at maximal 99 

efficiency. We will refer to these beneficial or neutral secretions as ‘costless.’  100 

 101 

Secretion of costless metabolites leads to substantive environmental enrichment. 102 

Having illustrated in an individual case how metabolite secretion costs can strongly 103 

depend on carbon sources, we sought to map the prevalence of costless secretions 104 

across a broad set of organisms and environments, as well as the chance that such 105 

secreted metabolites could mediate cross-feeding. We carried out a total of 1,051,596 106 

unique in silico simulations, each with two organisms 𝑖 and 𝑗 from a set of 14 genome-107 

scale metabolic models and two carbon sources 𝛼 and 𝛽 from a set of 108 compounds 108 

(Figure 1, Supplementary Information 1, 2). Each simulation is conducted as an iterative 109 

process that simulates a coculture experiment, and is uniquely defined by the organisms 110 

involved, the carbon sources provided, and the availability of oxygen. At each iteration, 111 

we used FBA to determine the ability of each organism to grow on the current medium 112 

(see Methods, and Fig. 1a). As an outcome of this calculation, we also obtained 113 

information about the set of metabolites predicted to be spontaneously (i.e. costlessly) 114 

secreted by each microbe. If at the first iteration (𝑐 = 1) at least one in silico organism 115 

was able to grow on the carbon sources provided, all costless metabolites were added to 116 

the medium for the next iteration. This process was repeated until no new metabolites 117 

were produced. The final iteration	𝑐 before attaining this steady state is defined as 𝑐). 118 

Upon running these iteration simulations for all possible combinations of species and 119 

environments and selecting only the cases in which both species grew, we obtained 120 

distributions for the value of 𝑐) (Figure 2a). A large number of cases reached a steady 121 

state after only one iteration (92% of cases with oxygen, and in 82% without oxygen).  122 

This could in principle be due to a complete lack of costless secretions at the first iteration. 123 

However,  as  demonstrated  by Fig.  2b, the  skewness  in  the  distribution  of  𝑐)  is  better 124 
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Figure 1. Simplified schematic of example computational pairwise cross-feeding simulation. 
Simplified schematic of an in silico experiment: A growth medium (𝑀+) containing two carbon sources (𝛼, 𝛽) 
with or without oxygen (Ω) is provided to genome-scale metabolic models of two microbial organisms (𝑖, 𝑗). 
If at least one organism grows, any costlessly-secreted metabolites (𝜎+) are added to the medium, which is 
fed back to the organisms. This process is repeated for a series of iterations 𝑐, and terminates at iteration 
𝑐), defined as the last iteration in which any new metabolites were secreted into the medium. 
 
explained by the alternative hypothesis that organisms do secrete multiple byproducts in 125 

the first iteration, but these byproducts contribute weakly to additional secretions in 126 

subsequent iterations. 127 

 128 

In aggregate, our simulations showed a rightward shift in the diversity of metabolites 129 

secreted under anoxic conditions when compared to the number secreted when oxygen 130 

was present. To understand this effect, we looked at the distribution of the number of 131 

metabolites secreted after the first iteration, which is equivalent to growing each organism 132 

on its own in the provided medium. This distribution for 𝑐 = 1 was unimodal for both 133 

conditions, centered between two and three metabolites with oxygen and around five 134 

metabolites without oxygen (Figure 2b). After this first iteration, the maximum number of 135 

secreted metabolites was 11 with oxygen and 16 without oxygen. In the anoxic 136 

simulations, the central carbon metabolites most commonly secreted after the first 137 

iteration were fermentation byproducts such as acetate, formate, succinate, and ethanol. 138 

These metabolites were secreted in 87.5%, 74.5%, 25.7%, and 20.2% of growth-yielding 139 

simulations respectively. With oxygen, the most commonly secreted central carbon 140 

metabolites after the first iteration were formate and acetate, secreted in 46.8% and 141 

18.3% of growth-yielding simulations respectively. We may therefore chiefly attribute the 142 

shift between the oxic and anoxic secretion curves to the anoxic export of incompletely-143 

reduced core metabolism intermediates. 144 
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Figure 2. Analysis of costlessly-secreted metabolites in pairwise in silico experiments that led to 
growth of at least one organism. (a) Distribution of number of expansions until final medium expansion 
iteration. (b) Distribution of the number of metabolites secreted into the medium by one or both organisms 
in a pair after one iteration of FBA. (c) Distribution of the number of metabolites secreted by one or both 
organisms after the last iteration of FBA (𝑐/). The last iteration is defined as the iteration in which no 
additional metabolites were secreted into the medium. Despite the large variability in number of expansions 
and number of secreted metabolites, we observe a poor correlation between these distributions, indicating 
that a simulation resulting in a high number of expansions does not necessarily result in a high number of 
metabolites being secreted (Figure S3). 
 
In addition to a positive shift observed between anoxic and oxic conditions, our results 145 

also show a shift in the quantity of metabolites secreted between the first and last iteration 146 

of each computational experiment (Figure 2c). This effect reflects organisms taking up 147 

metabolites secreted by themselves or their partner, and secreting different metabolites 148 

as a response. After the last medium expansion iteration for all simulations, the total 149 

number of secreted metabolites followed similar distributions with a maximum at 18 and 150 

21 metabolites for oxic and anoxic conditions, respectively. This positive shift suggests a 151 

response from one or both organisms to a medium iteratively enriched by costless 152 

byproducts, which hints at their potential metabolic utility. Principal component analysis 153 

(PCA) shows that neither the environment nor the species alone can explain the variability 154 

in secretion profiles (Figure S4), suggesting that a combination of both variables accounts 155 

for the range in costlessly-secreted products. 156 

 157 

Useful costlessly-secreted byproducts are abundant. Our analysis reveals a broad 158 

distribution of metabolically useful compounds secreted without cost in a variety of 159 

environmental conditions by most organisms (Figure 3, Figure S5a). Though inorganic 160 

compounds such as water and carbon dioxide were, as expected, the most commonly 161 
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secreted compounds across all simulations, nitrogen-containing compounds such as 162 

nitrite, ammonium, urea, and trimethylglycine were secreted in 73.5% of the analyzed 163 

cases, suggesting maintenance of an appropriate carbon-to-nitrogen ratio in the cell. We 164 

note specifically that nitrite is secreted in fewer than 100 simulations with oxygen, but 165 

almost universally in anoxic simulations - a phenomenon previously observed in 166 

anaerobic enteric bacteria 26. Organic acids make up the second most abundant category 167 

of costlessly-secreted byproducts, constituting 23% and 36% of unique metabolites with 168 

and without oxygen respectively. Notably, we also observe secretion of nucleotides, 169 

peptides, and carbohydrates in a combined 9% and 13% of simulations with and without 170 

oxygen respectively. Altogether, this space of secreted metabolites points to a large 171 

variety of molecules that can be freely produced, suggesting that costless metabolic 172 

secretion may provide substantial degrees of environmental enrichment. This effect 173 

becomes magnified considering the relative scarcity of resources provided in our minimal 174 

medium, which suggests that costless secretions play a fundamental role in promoting 175 

metabolic diversity in natural environments. 176 

 177 

Given the abundance and complexity of secretions from different organisms, as well as 178 

the possible ecological connections they may promote, we asked whether specific 179 

metabolite secretions were highly correlated. As patterns in environmental modification 180 

through secretion have an impact on the species composition of a microbial community 181 
27, it becomes important to understand which metabolites co-occur within our set of 182 

simulations. To address this question, we performed a Spearman correlation analysis to 183 

determine common secretion patterns (Figure S6). In the presence of oxygen, we observe 184 

a strong co-occurrence of glycerol, lactate, succinate, malate, and acetate, which 185 

correlates with the high frequency of secretion of these carbon-containing compounds 186 

(Figure S5a). We also observe positive, but weaker correlations between these 187 

metabolites and other central carbon compounds such as fumarate, citrate, and 2-188 

oxoglutarate. Our analysis also points to the simultaneous release of multiple nitrogen-189 

containing compounds, chiefly urea, ammonium, and nitrate. Without oxygen, we observe  190 
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Figure 3. Categorization of metabolites secreted costlessly in oxic (a) and anoxic (b) conditions. 
 
stronger correlations between secretion of nitrogen-containing compounds and 191 

fermentation byproducts. Amino acids also co-occur with high frequency without oxygen, 192 

particularly cysteine, methionine, and alanine – which itself is associated with export of 193 

proline and glutamine. These patterns are consistent with specific examples of previously 194 

studied exometabolomic profiles, including those showing co-secretion of central carbon 195 

intermediates in E. coli and of amino acids in yeast 28, as well as time-dependent patterns 196 

of metabolites released simultaneously in soil communities 29.  In summary, by promoting 197 

secretion of a larger number of metabolites across a wide space of conditions, these co-198 

secretion profiles may result in enhanced metabolic enrichment of the environments in 199 

our simulation set. 200 

 201 

We note that while a potentially useful metabolite can be secreted into the environment 202 

by one species, it does not necessarily mean that it will be consumed by a second 203 

organism. We place particular importance on this distinction, as any interspecies 204 

interaction must also take into account the decision to import a novel metabolite found in 205 

the environment. To map this distinction, we examine the space of costless metabolites 206 

that are exchanged by each organism across all in silico experiments (Figure S5b). Here, 207 

the most commonly exchanged organic metabolites were central carbon intermediates, 208 

secreted mostly in anoxic conditions. These secretion patterns mirror those of anoxic gut 209 

bacteria, which divide the task of digesting complex polysaccharides by exchanging 210 
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intermediate organic acids 9,30. Importantly, we observed that amino acids, secreted 211 

chiefly by S. cerevisiae, but also in a substantial number of simulations by S. enterica, K. 212 

pneumoniae, and E. coli, were among the most highly-exchanged costless metabolites. 213 

This phenomenon has been previously documented in relation to overflow metabolism in 214 

S. cerevisiae 31 and E. coli 32,33, as well as in yeast-bacteria symbioses 34,35, and account 215 

for exchange in over 104 simulations with and without oxygen in our study. This high 216 

prevalence of exchange underscores the metabolic utility of these secreted byproducts, 217 

particularly when contrasted with patterns of secretion in which the most commonly 218 

released metabolites were of low or no metabolic utility to a partner organism (e.g. water). 219 

 220 

Costless metabolite exchange enhances growth capabilities. Having mapped the 221 

space of metabolites that can be secreted costlessly across a large variety of contexts, 222 

we asked if these secreted byproducts could directly enable the growth of other 223 

organisms. We find that with oxygen, 95,519 in silico experiments predicted growth of 224 

both organisms in the minimal medium, accounting for 18.2% of all 525,798 oxic 225 

simulations (Figure 4a). Under anoxic conditions, only 11.9% of simulations resulted in 226 

growth of both organisms in the minimal medium alone. After the organism pairs were 227 

allowed to exchange costlessly-secreted metabolites, our algorithm predicted that 31.4% 228 

and 22.0% of simulations would result in both species growing with and without oxygen, 229 

respectively. This stage of growth, at 𝑐 = 𝑐), is analogous to both species growing in the 230 

presence of each other’s secreted metabolites in vivo. This enhanced growth potential in 231 

coculture represents a 72.7% increase in growth-supporting environments with oxygen 232 

and an 82.5% increase in environments without oxygen, suggesting that exchange of 233 

costlessly-secreted metabolites can enable growth of additional organisms in resource-234 

poor environments. 235 

 236 

Though application of our algorithm resulted in a global increase in growth capabilities 237 

due to costless metabolite secretion, species-specific growth patterns varied widely 238 

across our dataset (Figure 4b). We look specifically at L. lactis and P. gingivalis, host-239 

associated  microbes present in the human gut and oral microbiomes respectively.  Both  240 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300046doi: bioRxiv preprint 

https://doi.org/10.1101/300046
http://creativecommons.org/licenses/by/4.0/


 11 

 
 

Figure 4. Growth outcomes of pairwise cross-feeding simulations based on organisms and carbon 
sources. (a) Growth outcomes of all in silico experiments with and without oxygen, grouped by pairwise 
growth phenotype. (b) Organism-specific growth outcomes. Size of circles represent the relative number of 
environments in which an organism was able to grow out of 5,774 in silico experiments with each partner. 
Organisms are abbreviated as follows: BS: B. subtilis; EC: E. coli; KP: K. pneumoniae; LL: L. lactis; ME: M. 
extorquens; PA: P. aeruginosa; PG: P. gingivalis; RS: R. sphaeroides; SB: S. boydii; SC: S. cerevisiae; SE: 
S. enterica; SO: S. oneidensis; SS: Synechocystis; ZM: Z. mobilis. (c, d) Frequency of obligate pairwise 
growth by species in single carbon source simulations for oxic (N = 69,420, c) and anoxic (N = 52,897, d) 
conditions. Each color ribbon is unique to an individual species pair. Width of ribbons is proportional to the 
number of experiments in which obligate syntrophy was predicted for each species pair. Radial axis colors 
represent directionality of exchange: Blue: Organism provided essential metabolites to partner organism in 
over 75% of simulations; Red: Organism received essential metabolites in over 75% of simulations; Gray: 
Both organisms gave and received essential nutrients in most simulations. 
 
organisms are auxotrophic for a wide range of amino acids and other central metabolites, 241 

necessitating dependence on a rich set of metabolic products produced by the host or 242 

other commensal microbes. In our simulations, however, these organisms failed to grow 243 

in all environments and with all species pairs even after any costless metabolites were 244 

secreted. This failure to sustain growth of highly dependent organisms suggests that there 245 

is an upper limit to the degree to which costless metabolite production can enable species 246 
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growth, especially in the minimal environments that were tested. Aside from these 247 

extreme cases, our analysis sheds light on the performance of generalist organisms, such 248 

as E. coli, K. pneumoniae, S. cerevisiae, and S. enterica. These organisms grew in at 249 

least half of all tested environmental conditions, in contrast with organisms such as M. 250 

extorquens or Z. mobilis, which exhibited much more limited pairwise growth capabilities. 251 

These patterns suggest a greater dependence of these organisms on the metabolic 252 

byproducts of their partners, particularly in anoxic conditions. These patterns underscore 253 

the importance of not only the number of metabolites secreted, but also of the specific 254 

metabolic needs of the receiving organism in determining the contribution of costless 255 

metabolites to the growth of a partner. 256 

 257 

Exchange mediated by costless metabolites yields species-specific obligate 258 

partnerships. After analyzing general growth outcomes across our entire simulation set, 259 

we sought to determine which specific organisms could not grow in our environments 260 

without the costless secretions of a partner. This question is of particular interest as co-261 

occurrence in natural communities is widespread 36–38 and suggests patterns of species 262 

codependence 39, potentially providing a mechanistic view into the assembly of complex 263 

microbial ecosystems. Our simulations identified a diverse space of codependent 264 

organisms, with most species exhibiting at least one case of obligate syntrophy with all 265 

others (Figure 4 c, d). Many organisms had balanced distributions of codependence 266 

(organism A enabled the growth of organism B in some cases, and organism B enabled 267 

the growth of A in others), but the majority of co-dependent relationships were 268 

unidirectional. One striking example of this phenomenon is that of cyanobacteria and 269 

heterotrophic organisms, with Synechocystis (grown here in the absence of light) 270 

indicating high degrees of dependence on other organisms. With oxygen, Synechocystis 271 

was dependent on 9 different organisms across the vast majority of simulations in which 272 

it grew with a partner. As all organisms were grown heterotrophically, carbon dioxide and 273 

ammonium were the main byproducts that enabled growth of Synechocystis in these 274 

simulations. Previous studies have confirmed ammonium as the preferred nitrogen 275 

source of cyanobacteria 40–42, indicating that the ability to fix carbon and consume nitrogen 276 
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are accurately reflected in the in silico metabolic requirements of Synechocystis. We also 277 

observed that E. coli, B. subtilis, and S. cerevisiae, three species commonly used as 278 

model microbial organisms, were more frequently the giving organisms in cases of 279 

obligate syntrophy. These pairings not only shed light on the mechanisms behind 280 

interspecies codependencies, but may also serve as a map for assembling co-dependent 281 

synthetic communities stabilized by costless metabolic exchange. 282 

 283 

Carbon sources exhibit cooperativity in determining growth potential. In addition to 284 

characterizing the global space of in silico growth phenotypes, we examined how 285 

cooperativity of primary carbon sources could enhance growth capabilities in organism 286 

pairs. Drawing from techniques used to quantify epistasic interactions 43, we defined the 287 

cooperativity index C of two carbon sources 𝛼 and 𝛽 as the difference between the number 288 

of simulations that result in growth from both carbon sources and the product of the 289 

number of simulations that result from single carbon sources. These counts were 290 

normalized by the total number of simulations involving the specific pairing of carbon 291 

sources being analyzed (represented here by the combinatorial formula 1𝑁24), as follows: 292 

 293 

 
C5,6 =

𝑔5,6

1𝑁5,6
2
4
− 9

𝑔5
1𝑁52 4

∗
𝑔6

1𝑁6
2
4
; (E1) 

 294 

This metric therefore aims to reflect the cooperative potential of each carbon source pair 295 

relative to that of each carbon source in isolation. In this way, when averaging a single 296 

carbon source over its cooperativity index, we obtain a relative degree to which a carbon 297 

source “depends” on another to sustain growth. By framing cooperativity in this context, 298 

we observed that simple sugars such as glucose and sucrose had relatively low 299 

cooperativity indices, that is, they were able to sustain growth efficiently on their own. In 300 

contrast, more complex molecules and dipeptides had higher average cooperativity 301 

indices, indicating they performed better in the presence of another carbon source. We 302 

grouped these average cooperativity indices through hierarchical clustering (Figure S7) 303 
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and observed general clustering by carbon source type – especially with sugars and 304 

amino acids appearing in distinct groups. This analysis illustrates the nonlinear effects of 305 

adding additional nutrients to a minimal medium, underscoring the observed complex 306 

metabolite usage patterns in organism pairs. 307 

 308 

Organisms competing for the same carbon source can simultaneously benefit each 309 

other through costless secretions. Our analysis so far has examined the contexts in 310 

which a metabolite can be secreted costlessly, as well as the potential for these 311 

metabolites to promote growth. Based on these insights, we wished to more 312 

fundamentally understand these interspecies interactions and how they compare to 313 

ecological expectations of cooperation and competition. To do this, we defined six types 314 

of possible interactions: non-interaction, commensalism (unidirectional exchange), and 315 

mutualism (bidirectional exchange), each with or without competition for a primary carbon 316 

source. We chose to decouple competition for nutrients from cooperation via secreted 317 

metabolites in order to more fully understand the degree to which the latter can promote 318 

organism coexistence despite resource scarcity (Figure 5a). When analyzing our dataset 319 

under this framework, we found that competition for one or both carbon sources 320 

constituted the majority of the space of all interactions across all simulations (Figure 5b), 321 

as previously observed experimentally 44. However, these predicted competitive 322 

phenotypes were observed to occur simultaneously with potentially beneficial interactions 323 

mediated by metabolic byproducts. Here, we found that uni- and bidirectional exchange 324 

accounted for a majority of all interactions predicted with and without the presence of 325 

oxygen. 326 

 327 

Our modeling predicted bidirectional interactions to be far more common without oxygen 328 

than with oxygen (Figure 5c). We obtained a more fine-grained perspective on costless 329 

metabolic interactions by considering the distributions of interaction types by species 330 

pairs (Figure 5d). For example, the majority of pairings of M. extorquens with B. subtilis, 331 

E. coli, and K. pneumoniae exhibited commensal interactions (chiefly with M. extorquens 332 

receiving).   In  contrast,   the  distribution  of  interactions  shifted  toward  mutualism  when  333 
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Figure 5. Distribution of metabolic interaction types. (a) Schematic representation of interaction types 
arising from costlessly-secreted metabolites. Competition is defined as both organisms consuming the 
same carbon source. Commensalism is defined as a unidirectional exchange of one or more costlessly-
secreted metabolites, and mutualism is defined as a bidirectional exchange of one or more costlessly-
secrete metabolites. (b) Overall distributions of competitive/noncompetitive interactions for oxic (out of 
164,939 simulations that yielded pairwise growth) and anoxic conditions (out of 115,463 simulations that 
yielded pairwise growth). (c) Overall distributions of general interactions mediated by costless metabolites 
for oxic and anoxic conditions. These interactions at the level of secreted metabolites exist simultaneously 
with competition or no competition for a primary carbon source. (d) Organism-specific growth outcomes 
and interaction type distributions. Size of circles represent the relative number of environments in which an 
organism was able to grow out of 5,774 in silico experiments with each partner. Organisms are abbreviated 
as follows: BS: B. subtilis; EC: E. coli; KP: K. pneumoniae; LL: L. lactis; ME: M. extorquens; PA: P. 
aeruginosa; PG: P. gingivalis; RS: R. sphaeroides; SB: S. boydii; SC: S. cerevisiae; SE: S. enterica; SO: 
S. oneidensis; SS: Synechocystis; ZM: Z. mobilis.  
 
oxygen was made unavailable. These patterns were also mirrored in a majority of 334 

individual species pairings. As with the positive shift observed in the distributions of 335 

secreted metabolites (Figure  2b,  c),  we  may  attribute  the  increased  prevalence  of  336 

mutualistic interactions without oxygen to a greater availability of metabolic byproducts 337 

that can contribute to reciprocity. To test this hypothesis, we performed a small subset of 338 

“hybrid” in silico experiments, where we analyzed the interactions that arose from one 339 

species being grown in the presence of oxygen and the other anoxically. We looked at 340 

the examples of E. coli with B. subtilis and S. enterica, whose pairwise simulations 341 

showed greater amounts of mutualistic interactions without oxygen. When E. coli was 342 

grown   anaerobically   but   its   partner   was   grown   with   oxygen,     the   vast   majority   of  343 
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Figure 6. Interaction type distributions from hybrid oxic-anoxic in silico experiments for two 
organism pairs: E. coli with B. subtilis (a), and E. coli with S. enterica (b). 
 
interactions observed were unidirectional, with E. coli providing costless metabolites to 344 

its partner (Figure 6). When E. coli was grown with oxygen, its anoxic partner then 345 

provided the majority of metabolites that were exchanged. These intermediate hybrid 346 

simulations thus serve as a type of stepping stone, in which an organism grown anoxically  347 

can provide a higher number of useful byproducts to its aerobic partner, leading to 348 

bidirectional interactions when both are grown without oxygen. 349 

 350 

Interaction motifs form a basis for synthetic community assembly. Lastly, we wished 351 

to use data generated by our algorithm to understand how multiple simultaneous 352 

interactions between two organisms could combine into network patterns (motifs) with 353 

different chance of appearance in a community and different dynamical stability 354 

properties. In particular, we sought to understand how the competition for common 355 

nutrients and the rise of costless exchange could jointly affect the stability of microbial 356 

consortia in resource-poor environments. These criteria could also serve as an atlas for 357 

guiding the engineering of stable synthetic consortia built off of costless metabolic 358 

relationships. As a first step in this analysis, we enumerated possible interaction network 359 

motifs based on our three interaction types and competition statuses (Figure 7a). These 360 

motifs encompassed all the possible permutations of interactions we identified in our 361 

dataset, accounting for non-interaction, commensalism, and mutualism with or without 362 
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competition. For non-interacting motifs, our simulations predicted an almost exclusive 363 

representation of relationships involving competition for a primary carbon source (Figure 364 

7b). The distribution between competitive and non-competitive types motifs was more 365 

balanced for commensal and mutualistic interactions, showing a slight preference for 366 

interactions involving competition. 367 

 368 

In order to simulate how these interactions could contribute to stable symbioses, we 369 

created a dynamical chemostat model of two arbitrary species consuming carbon sources 370 

and exchanging costless metabolites according to each motif type (see Methods). By 371 

varying the specific growth rates of each species from 0 to 1 hr-1, we simulated the growth 372 

of the pair under each motif type for 500 hours. If both species were still present at the 373 

end of the simulation, we determined the motif type to enable stability at that combination 374 

of specific growth rates. We mapped the space of stable species pairs under each motif 375 

type, observing that competitive interactions generally have a reduced parameter space 376 

for enabling stability (Figure 7c). Notably, though motif N1b was highly prevalent in the 377 

costless FBA simulation set, this motif represents classic competitive exclusion and 378 

cannot result in long-term stability. In contrast, though complete nutrient-organism 379 

orthogonality can yield stability over the whole space of parameters (N2a), this motif was 380 

not predicted to occur in the mechanistic simulations. An intermediate case between 381 

these two extremes (N2b) is the one in which there is a balance between competition and 382 

independence with respect to external carbon source utilization: in this case, which 383 

frequently occurs in our dataset, stability is achievable only for a narrow set of parameters. 384 

 385 

A marked increase in stability is predicted when costless metabolite exchange is enabled 386 

(commensalism and mutualism). For motif C2b, for example, both organisms are 387 

competing for a carbon source and organism 1 is providing one or more costless 388 

metabolites to organism 2. Our dynamical modeling showed that the growth rate of 389 

organism 1 must be greater than that of organism 2 in order for both species to be stable. 390 

When feedback was allowed to occur (mutualism), the potential for stability vastly 391 

increases across our parameter space. M2a and M2b even allowed for very low specific 392 
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growth rates for both organisms, indicating a strong dependence on costless metabolites 393 

for long-term coexistence. 394 

 
 

Figure 7. Interaction motif analysis and dynamical modeling of motif stability. (a) Schematic 
representation of specific motif types. Motifs are named according to three features: the interaction type 
(non-interacting, N; commensal, C; mutualistic, M), the number of carbon sources consumed by the pair 
(1-2), and competition for a primary carbon source (no competition, a; competition, b). Orange circles 
denote organisms, black dots denote primary carbon sources, and violet dots indicate any arbitrary number 
of costlessly-shared metabolites. Arrows indicate direction of metabolite flow. (b) Frequency of specific 
motif types. Height of empty white bars indicate the total number of simulations that exhibited the general 
motif type (Non-interacting, commensal, mutualistic). Colored bars within indicate the number of the specific 
motif type (N1a, N1b, etc.). (c) Stability space of motifs from dynamical chemostat modeling, as a function 
of the specific growth rates of the two organisms involved (GR1, GR2). Red indicates area of stable 
coculture. 
 
 395 

DISCUSSION 396 

We have investigated the pairwise growth phenotypes and interactions of 14 diverse 397 

microbial species in over 106 computational experiments. We found that resource-poor 398 

environments provide the basis for release of a wide variety of useful metabolic products 399 

secreted without cost by their producing organism; these costless metabolic products 400 

provide, in an oxygen-dependent manner, valuable environmental enrichment, nearly 401 
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doubling the potential of minimal environments to sustain growth. We further found that 402 

exchange of costless metabolites establishes beneficial uni- and bidirectional 403 

interspecies interactions, associated with different chance of stability of the ensuing 404 

consortia. Overall, both the metabolic capabilities of the organisms and the environmental 405 

contexts in which they are grown (particularly oxygen availability) determine which 406 

metabolites will be secreted without cost and how these secretions will contribute to 407 

interspecies interactions. 408 

 409 

Our modeling pipeline represents a novel in silico representation of distinct organisms 410 

growing in environments progressively enriched by their partner’s secreted byproducts. 411 

This iterative medium expansion method provides a useful lens into the emergence of 412 

higher-order interactions in microbial communities, allowing us to observe which 413 

metabolites are secreted in response to others in a mechanistic fashion. We highlight the 414 

utility of applying metabolic modeling to this area, particularly considering the 415 

experimental inaccessibility of measuring metabolic secretions, interactions, and stability 416 

across all the species and environmental conditions we tested. We observe that, despite 417 

allowing organisms to secrete new metabolic products in response to changing medium 418 

conditions, the amount and types of metabolites secreted is not enough to sustain 419 

prolonged expansion iterations in most cases. This medium expansion distribution hints 420 

at an upper limit to higher-order interactions mediated by costless metabolites in microbial 421 

ecology. 422 

 423 

We nonetheless emphasize that even in the simple, minimal environments we studied, 424 

our modeling framework, based on fundamental stoichiometric constraints and metabolic 425 

efficiency assumptions, predicts the widespread prevalence of molecular products that 426 

are secreted without a metabolic burden and that can benefit other organisms. An 427 

important implication of this prediction is that costless metabolites may significantly 428 

contribute to enriching environments and sustaining biodiversity, even when organisms 429 

are competing for the same primary nutrients. By using costless secretions to cooperate 430 

while simultaneously competing for primary nutrients, organisms may escape some of the 431 
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limitations of pure competition, which has been predicted to limit biodiversity 45. This 432 

inference could help understanding microbial metabolic dynamics in many different 433 

environments, ranging from structured soil communities to large oligotrophic microbial 434 

communities, such as those found in the open ocean. This type of exchange, similar to 435 

metabolic leakage behind the Black Queen Hypothesis 17,20, may contribute to the 436 

maintenance of small genomes in resource-poor environments, as the metabolic needs 437 

of some organisms can be fulfilled by others. We look specifically at the obligate 438 

partnerships predicted by our analysis, which mirror previously-studied codependencies 439 
9,40,41. While our algorithm explored only pairs of organisms in coculture, one may wonder 440 

whether more complex communities would display qualitatively different features. Our 441 

analysis indeed suggests that higher order communities can support growth of highly 442 

auxotrophic organisms such as L. lactis, P. gingivalis, and R. sphaeroides: in our pairwise 443 

combinations, these organisms did not obtain enough byproducts from any single partner; 444 

however, most of the metabolites that these organisms require to grow on a minimal 445 

medium were producible separately by multiple species. 446 

 447 

Our interaction analysis also provides deeper mechanistic insight into the increased 448 

prevalence of mutualistic interactions without oxygen, a phenomenon that has been 449 

previously predicted computationally 46 and that provides a window into metabolic 450 

relationships in environments harboring steep oxygen gradients, such as the human gut 451 
47. By carrying out a set of hybrid oxic-anoxic in silico experiments, we observed that the 452 

additional metabolites secreted anoxically by a facultative anaerobe (e.g. fermentation 453 

byproducts) could provide extensive food supply for aerobically growing organisms. This 454 

phenomenon has been suggested to play an important role in maintaining equilibrium in 455 

communities at oxic-anoxic interfaces in the mammalian gut 48,49 and could be the subject 456 

of further mechanistic studies. 457 

  458 

Although our modeling method considers a wide space of mechanistic constraints in 459 

predicting costless metabolic exchange, we acknowledge that secretion patterns and 460 

exchange potential are also defined by a variety of other biological factors that fall outside 461 
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the scope of constraint-based modeling 50, such as signaling-based decisions, regulatory 462 

states, and thermodynamic gradients induced by metabolite concentrations. Thus, our 463 

analysis, in addition to demonstrating the plausibility of widespread costless cross-464 

feeding, could serve as the basis for prioritization of future specific experiments, for which 465 

model predictions could be thought of as a null hypothesis against which to compare 466 

empirical measurements. Moreover, though our analysis may accurately predict some 467 

instances of metabolism-driven synergistic interactions, there may exist experimental 468 

barriers (e.g. temperature or pH incompatibilities) to co-culturing some of the organisms 469 

in our list, which are not captured in our modeling method. Nonetheless, our mechanistic 470 

modeling framework may be applied to finding candidate species-environment pairs that 471 

yield mutualistic relationships. Dynamical modeling coupled with these metabolic 472 

analyses could then be used to obtain the parameter space most likely to yield desired 473 

stable partnerships in vivo. Because this approach relies on screening environments that 474 

can yield synergy as opposed to engineering individual strains, this approach has the 475 

potential to simplify the process of assembling novel synthetic communities 51. Our 476 

analysis is also easily scalable to a large number of organisms and environments, and 477 

could help produce a global atlas of expected, environment-dependent costless 478 

secretions and their potential roles in mediating ecological interactions, with applications 479 

in understanding and engineering microbiomes. 480 

 481 

METHODS 482 

Selection and modification of genome-scale metabolic models. A genome-scale 483 

metabolic reconstruction was obtained for each of the 14 facultative anaerobic organisms 484 

used in the analysis 52–65. Genome-scale metabolic models are mathematical 485 

representations of an organism’s known metabolic network, which are used to generate 486 

mechanistic predictions of growth and resource allocation in a variety of environmental 487 

conditions. The process of generating a genome-scale metabolic model has been 488 

outlined conceptually 66–69 and described procedurally 70 by various groups, and generally 489 

comprises an automatic generation of a model based on pathway and genome data 490 

followed by manual curation by integrating phenotyping, metabolomic, or transcriptomic 491 
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data 71. We note that although an automatically-generated draft metabolic model can be 492 

constructed for virtually any organism for which a genome annotation exists, the space of 493 

high-quality, experimentally-verified metabolic models that have undergone the manual 494 

curation process summarized above is comparatively very small 72. This is due to the time 495 

and resources needed to complete the curation process, which can span from six months 496 
70 to more than ten years for the iteratively-refined model of E. coli K-12 64. We 497 

nonetheless consider this process to be essential in producing models that can generate 498 

the mechanistic cross-feeding predictions detailed here, which rely on verified metabolic 499 

capabilities in monoculture.  500 

 501 

The models used in this analysis span four taxonomic kingdoms, including 502 

representatives from eight bacterial taxa, as well as a variety of primary metabolic 503 

strategies (Supplementary Information 1). In addition, these models describe several 504 

organisms that are commonly used for in vivo studies (E. coli K-12, S. enterica LT2, etc.), 505 

making the resulting costless cross-feeding predictions particularly useful for synthetic 506 

ecology experiments and microbial community assembly. 507 

 508 

Each model was imported into MATLAB (The MathWorks, Inc., Natick, Massachusetts) 509 

using the COnstraint-Based Reconstruction and Analysis (COBRA) Toolbox 73, a 510 

software platform for constraint-based modeling of metabolic networks. In order to enable 511 

in silico cross-feeding to be correctly classified, the namespace of all of the metabolic 512 

compounds in each of the models was standardized to be internally consistent. This was 513 

performed via a computational pipeline with additional manual curation for irregularly-514 

annotated metabolites. 515 

 516 

Computational methodology description and inputs. Our computational method 517 

comprises a set of programs written in MATLAB that use Flux Balance Analysis (FBA) to 518 

mechanistically define the growth status and metabolic exchange of microbes through 519 

costlessly-secreted byproducts. Briefly, FBA is a mathematical method that determines 520 

an optimal distribution of metabolic flux through a biochemical network that will maximize 521 
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a given objective, usually biomass 74. An FBA problem is framed in the context of several 522 

constraints, namely: (i) 𝑆, the stoichiometric matrix of dimensions 𝑚 × 𝑛 where	𝑚 is the 523 

number of metabolites and 𝑛 is the number of reactions in the model; (ii) 𝑣, the vector of 524 

all reaction fluxes; and (iii) 𝑣ABC and 𝑣ADE, flux constraints placed on 𝑣, defined by 525 

enzymatic capacity and experimentally measured uptake rates. 526 

 527 

We employ FBA to determine if an organism is able to grow on the in silico growth media 528 

conditions we define, in addition to which metabolites are taken up and costlessly 529 

secreted. We first apply FBA by maximizing for growth and obtaining an optimal growth 530 

rate for an organism, 𝑣FGHIJK
(ADE) . To determine which metabolites are secreted costlessly, 531 

we set this growth rate as a minimum for the biomass flux and apply FBA again, recording 532 

any metabolites that were secreted. We also apply the additional constraint of minimizing 533 

all reaction fluxes across the network to more closely simulate efficient use of the 534 

proteome and minimize cycling of metabolites through the network 75. Our linear program 535 

therefore becomes: 536 

 537 

min	|𝑣|, 538 

s.t.: 539 

𝑆 ∙ 𝑣 = 0, 540 

𝑣ABC ≤ 𝑣 ≤	𝑣ADE , 541 

𝑣FGHIJK ≥ 𝑣FGHIJK
(ADE) . 542 

 543 

This optimization aims to encompass any enzymatic cost incurred by the organism in 544 

synthesizing and exporting any metabolite we deem to be ‘costless.’ During each step in 545 

which growth or metabolite absorption and secretion are computed, FBA optimizations 546 

are performed separately for each in silico organism 𝑖 and 𝑗, with biomass production set 547 

as the objective function while minimizing the sum of the absolute value of 𝑣. Because 548 

we focus on the emergence of potential metabolic exchange through the availability of 549 

costlessly-secreted metabolites, our modeling framework purposefully keeps FBA 550 
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optimizations separate for each model without accounting for spatial or temporal 551 

community structure. It is also for this reason that we establish the biomass fluxes of each 552 

in silico organism as the objective functions to be optimized, as we are concerned with 553 

secretion of potentially useful metabolic byproducts that arise out of “selfish” optimal 554 

growth. This assumption of maximum growth with proteome optimality is also key for 555 

translating these organisms and predictions to in vivo synthetic ecologies, where biomass 556 

optimization more closely describes the behavior of organisms in batch or continuous 557 

culture 76. 558 

 559 

Our algorithm requires six inputs: 1: a data structure containing the genome-scale 560 

metabolic models to be used, 2: a list of carbon sources, 3: the number 𝑁V of in silico 561 

organisms to be simulated together (for pairwise simulations 𝑁V = 2), 4: the number 𝑁W/ 562 

of carbon sources to be provided to each simulation, 5: a Boolean variable Ω = {1,0} that 563 

specifies if oxygen will be made available to the in silico organisms, and 6: a list of 564 

metabolites that makes up a simulated base growth medium, 𝑀ABC. This base medium 565 

contains various nitrogen, sulfur, and phosphorus sources, as well as vitamins, ions, and 566 

metals needed for growth of the organisms (Supplementary Information 3). 567 

 568 

We focused on pairwise species growth with two carbon sources (𝑁V,𝑁W/ = 2). Although 569 

each genome-scale metabolic model we used has been manually curated to reflect in 570 

vivo metabolic capabilities, very few experiments have been performed to verify FBA-571 

generated predictions for more than a single species 77,78. We therefore limit the number 572 

of in silico species to two, in order to interpret the growth and cross-feeding predictions 573 

with greater confidence. This limit also constrains the combinatorial space of the 574 

simulations, which grows exponentially and becomes numerically intractable with more 575 

models and carbon sources. In addition, limiting simulations to 𝑁V = 2 allows for greater 576 

experimental accessibility for assembling synthetic ecologies based on costless 577 

metabolite exchange. Our algorithm can nonetheless be applied to any {𝑁V,𝑁W/ > 0}. 578 

 579 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300046doi: bioRxiv preprint 

https://doi.org/10.1101/300046
http://creativecommons.org/licenses/by/4.0/


 25 

The list of all possible carbon sources was defined primarily from the carbon sources 580 

contained in the BIOLOG Phenotyping MicroArray 1 (PM1) plate, which is used for 581 

phenotyping and curation of genome-scale metabolic models 79–81. The carbon sources 582 

we selected are common mono- di- and polysaccharides, all 20 amino acids, dipeptides, 583 

and organic acids contained in the PM1 plate. We also supplemented the list with 584 

additional carbon sources known to be consumed by the in silico organisms, for a total of 585 

108 (Supplementary Information 2). 586 

 587 

To permit uptake of the metabolites in the medium, the constraint on the uptake flux bound 588 

𝑣ADE for each exchange reaction pertaining to a medium metabolite was removed in each 589 

of the models 𝑖 and 𝑗. This bound was fully removed (𝑣ADE = 1000𝑚𝑚𝑜𝑙 𝑔𝐷𝑊 ∗ ℎ𝑟⁄ ) for 590 

non-limiting medium components, and was set to 𝑣ADE = 10𝑚𝑚𝑜𝑙 𝑔𝐷𝑊 ∗ ℎ𝑟⁄  for the 591 

growth-limiting carbon sources 𝛼 and 𝛽. This latter value is drawn from experimentally-592 

estimated uptake rates of sugars by E. coli in exponential growth conditions 64, and is 593 

applied equally to all other species to simulate general availability of the carbon sources 594 

in the environment. All other exchange reaction 𝑣ADE values are set to zero to block 595 

uptake of metabolites not in the medium. 596 

 597 

Computing growth, secretion, and cross-feeding. We describe the FBA operations at 598 

the core of our algorithm as a function 𝐹 that, given a medium condition 𝑀 and organisms 599 

𝑖 and 𝑗, outputs the binary growth status 𝑔 of the organisms, as well as the set of 600 

metabolites 𝜎 secreted costlessly by the organisms:  601 

 602 

𝐹({𝑀, 𝑖, 𝑗}) = {𝑔, 𝜎} 603 

 604 

Each in silico experiment 𝐸 for a given organism pair with a pair of carbon sources is 605 

made up of an initialization step, an expansion step consisting of series of applications of 606 

𝐹, and a completion step (Figure S2). In the initialization step, two organisms 𝑖 and 𝑗 are 607 

selected, and a medium 𝑀d is defined. 𝑀d contains the minimal medium 𝑀ABC, two carbon 608 

sources 𝛼 and 𝛽, and the variable Ω, which denotes the presence or absence of oxygen. 609 
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 610 

In the expansion step, the function 𝐹 is applied for a series of iterations 𝑐. In each 611 

iteration,	𝐹 simulates the growth of both organisms in the current medium condition and 612 

returns the Boolean growth statuses 𝑔+ = {𝑔B, 𝑔e} (where 𝑔B, 𝑔e = {0,1}) of both organisms 613 

and the set of any costlessly-secreted metabolites, 𝜎+. To avoid recording metabolites 614 

reported to be secreted only as a result of numerical uncertainty in FBA, a minimal lower 615 

flux bound of 0.01	𝑚𝑚𝑜𝑙 𝑔𝐷𝑊 ∗ ℎ𝑟⁄  was applied as a cutoff for determining secretion. If 616 

at least one organism in the pair grows, the medium is supplemented with 𝜎+: 617 

 618 

𝑀+gh = 𝑀+ + 𝜎+. 619 

 620 

As long as new metabolites continue to be secreted into the medium, that is, 621 

 622 

𝑀+ > 𝑀+jh, 623 

 624 

𝐹 continues to be applied. This stepwise expansion simulates the organisms responding 625 

to the costlessly-secreted metabolites being secreted and generating a richer medium. 626 

The completion step occurs when no new metabolites are secreted, 627 

 628 

𝑀+ == 𝑀+jh 629 

 630 

and the final iteration before this stabilization occurs is defined as 𝑐/. Our algorithm 631 

therefore carries out individual in silico experiments 𝐸B,e
5,6,k, defined as the output resulting 632 

from 𝑐) applications of 𝐹 given organisms 𝑖 and 𝑗, carbon sources 𝛼 and 𝛽, and the 633 

presence or absence Ω of oxygen: 634 

 635 

𝐸B,e
5,6,k ≡ {𝑔+,𝑀+}+mh

+n = 𝐹({𝑀d, 𝑖, 𝑗})+mh
+n . 636 

 637 

Dynamical modeling of interaction motifs. We designed a dynamical modeling method 638 
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to simulate the long-term stability of each pairwise interaction type observed in our in 639 

silico experiments. We first established a graph theory framework to map each simulation 640 

to a specific interaction motif, each of which accounted for the general interaction type 641 

(non-interacting, commensal, or mutualistic), the number of carbon sources consumed by 642 

the pair, and the competition status for the carbon sources (“a” denotes no competition, 643 

“b” denotes competition) (Figure 5a). We next applied a differential equation-based 644 

growth model to each specific motif. Since motifs with two carbon sources can be 645 

represented by more than one motif topology, we selected one representative topology 646 

from these motifs to simplify the space of dynamical modeling simulations. These 647 

equations were modeled off Monod dynamics 82 and are intended to simulate growth of 648 

species in a chemostat, with constant replenishment of medium components. The 649 

abundance of each organism 𝑠B, in g/L, is modeled as follows: 650 

 651 

 𝑑𝑠B
𝑑𝑡 = 𝑠B𝜇ADE,B s

𝑚5

𝑘)u,Av + 𝑚5
w − 𝐷𝑠B (E2) 

 652 

where 𝜇ADE,B is the specific growth rate of organism 𝑖 in h-1, 𝑚5 is the concentration of 653 

carbon source 𝛼 in g/L, 𝑘)u,Av is the concentration of 𝛼 at which organism 𝑖 reaches half 654 

its maximal growth rate in g/L, and 𝐷 is the chemostat dilution rate in h-1. If two carbon 655 

sources are present and the organism is determined to take up both by the motif definition, 656 

the equation is modified to include a carbon source 𝛽 as follows: 657 

 658 

𝑑𝑠B
𝑑𝑡 = 𝑠B𝜇ADE,B s

𝑚5

𝑘)u,Av + 𝑚5
ws

𝑚6

𝑘)u,Ax +𝑚6
w − 𝐷𝑠B 659 

 660 

The concentrations of each carbon source are defined as follows: 661 

 662 

 𝑑𝑚5

𝑑𝑡 = 	𝐼Av −
𝑠B
𝐾Av

𝜇ADE,B s
𝑚5

𝑘)u,Av +𝑚5
w − 𝐷𝑚5 (E3) 

 663 
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where 	𝐼Av is the nutrient stock concentration for 𝑚5 in g/L, and 𝐾Av is the ratio of 664 

nutrient consumed by the organism 𝑖 in gnutrient/gcells. This equation is modified with an 665 

additional term (organism 𝑗) to simulate competition for 𝑚5. 666 

 667 

To simulate metabolic exchange, equations for the abundances of costlessly-produced 668 

metabolites (𝑚{ ) in g/L were defined as follows: 669 

 670 

 𝑑𝑚{B
𝑑𝑡 = 𝑘A{u ∗ 𝑠B −

𝑠e
𝐾A{u,)|

𝜇ADE,e s
𝑚{B

𝑘)|,A{u + 𝑚{B
w − 𝐷𝑚{B) (E4) 

 671 

Here, metabolite 𝑚{B is produced by organism 𝑖 and consumed by organism 𝑗. 𝑘A{u is the 672 

synthesis rate of the metabolite in hr-1, 𝐾A{u,)|  is the ratio of metabolite consumed by the 673 

population 𝑠e in gmetabolite/gcells, and 𝑘)|,A{u is the concentration of metabolite needed for 674 

the population 𝑠e to reach half of its maximum growth rate in g/L. 675 

 676 

We then combine equations E2-4 to fit the particular motif being modeled (Figure S8). 677 

The values of the parameter values are described in Supplementary Information 4 and 678 

are based on values reported by Smith 83, Balagaddé et al. 84, and those based on 679 

reasonable estimates for resource consumption. For each motif, we vary the specific 680 

growth rate of both organisms from 0 to 1 hr-1 and run the simulation for 500 hours. If 681 

both organism abundances are above 0.05 g/L at the end of the simulation, we 682 

determine the motif to be stable at the prescribed growth rates.  683 

 684 

ACKNOWLEDGEMENTS 685 

We thank Dr. Niels Klitgord for pioneering ideas that inspired launch of this work. We are 686 

also grateful to David Bernstein, Joshua E. Goldford, Meghan Thommes, Demetrius 687 

DiMucci, and all members of the Segrè Lab for helpful discussions. This work was 688 

supported by funding from the Defense Advanced Research Projects Agency (Purchase 689 

Request No. HR0011515303, Contract No. HR0011-15-C-0091), the U.S. Department of 690 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300046doi: bioRxiv preprint 

https://doi.org/10.1101/300046
http://creativecommons.org/licenses/by/4.0/


 29 

Energy (Grants DE-SC0004962 and DE-SC0012627), the NIH (Grants 5R01DE024468, 691 

R01GM121950 and Sub_P30DK036836_P&F), the National Science Foundation (Grants 692 

1457695 and NSFOCE-BSF 1635070), MURI Grant W911NF-12-1-0390, the Human 693 

Frontiers Science Program (grant RGP0020/2016), and the Boston University Inter-694 

disciplinary Biomedical Research Office. A.R.P. is supported by a National Academies of 695 

Sciences, Engineering, and Medicine Ford Foundation Predoctoral Fellowship and a 696 

Howard Hughes Medical Institute Gilliam Fellowship. 697 

 698 

CONTRIBUTIONS 699 

A.R.P. and D.S. designed the research. A.R.P. designed the computational framework, 700 

carried out all simulations, and conducted data analysis. M.M. contributed to the 701 

generation of standardized genome-scale models. A.R.P. and D.S. wrote the manuscript. 702 

All authors read and approved the final manuscript. 703 

 704 

COMPETING FINANCIAL INTERESTS 705 

The authors declare no competing financial interests. 706 

 707 

CORRESPONDING AUTHORS 708 

Correspondence to: dsegre@bu.edu. 709 

 710 

REFERENCES 711 

1. Welch, D. B. M. & Huse, S. M. Microbial Diversity in the Deep Sea and the 712 
Underexplored ‘Rare Biosphere’. Handb. Mol. Microb. Ecol. II Metagenomics 713 
Differ. Habitats 243–252 (2011). doi:10.1002/9781118010549.ch24 714 

2. Tecon, R. & Or, D. Biophysical processes supporting the diversity of microbial life 715 
in soil. FEMS Microbiol. Rev. 41, 599–623 (2017). 716 

3. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic 717 
sequencing. Nature 464, 59–65 (2010). 718 

4. Hardin, G. The competitive exclusion principle. Science 131, 1292–7 (1960). 719 
5. Hutchinson, G. E. The paradox of the plankton. Am. Nat. 91, (1961). 720 
6. Wilson, M. & Lindow, S. E. Coexistence among Epiphytic Bacterial Populations 721 

Mediated through Nutritional Resource Partitioning. Appl. Environ. Microbiol. 60, 722 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300046doi: bioRxiv preprint 

https://doi.org/10.1101/300046
http://creativecommons.org/licenses/by/4.0/


 30 

4468–77 (1994). 723 
7. Inouye, R. S. & Tilman, D. Convergence and Divergence of Old-Field Plant 724 

Communities Along Experimental Nitrogen Gradients. Ecology 69, 995–1004 725 
(1988). 726 

8. Kim, H. J., Boedicker, J. Q., Choi, J. W. & Ismagilov, R. F. Defined spatial 727 
structure stabilizes a synthetic multispecies bacterial community. Proc. Natl. 728 
Acad. Sci. U. S. A. 105, 18188–93 (2008). 729 

9. Morris, B. E. L., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial 730 
syntrophy: Interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 731 
(2013). 732 

10. Fildes, P. Production of Tryptophan by Salmonella typhi and Escherichia coli. J. 733 
Gen. Microbiol. 15, 636–642 (1956). 734 

11. Goldford, J. E. et al. Emergent Simplicity in Microbial Community Assembly. 735 
bioRxiv 205831 (2017). doi:10.1101/205831 736 

12. Ponomarova, O. & Patil, K. R. Metabolic interactions in microbial communities: 737 
untangling the Gordian knot. Curr. Opin. Microbiol. 27, 37–44 (2015). 738 

13. Harcombe, W. Novel cooperation experimentally evolved between species. 739 
Evolution (N. Y). 64, 2166–72 (2010). 740 

14. Wintermute, E. H. & Silver, P. A. Emergent cooperation in microbial metabolism. 741 
Mol. Syst. Biol. 6, 1–7 (2010). 742 

15. Stolyar, S. et al. Metabolic modeling of a mutualistic microbial community. Mol. 743 
Syst. Biol. 3, 92 (2007). 744 

16. Vacca, I. Bacterial ecology: Cheaters take advantage. Nat. Rev. Microbiol. 15, 745 
575–575 (2017). 746 

17. Morris, J. J., Lenski, R. E. & Zinser, E. R. The Black Queen Hypothesis : Evolution 747 
of Dependencies through Adaptative Gene Loss. MBio 3, 1–7 (2012). 748 

18. Germerodt, S. et al. Pervasive Selection for Cooperative Cross-Feeding in 749 
Bacterial Communities. PLoS Comput. Biol. 12, 1–21 (2016). 750 

19. Hoek, M. J. A. va. & Merks, R. M. H. Emergence of microbial diversity due to 751 
cross-feeding interactions in a spatial model of gut microbial metabolism. BMC 752 
Syst. Biol. 11, 1–18 (2017). 753 

20. Zomorrodi, A. R. & Segrè, D. Genome-driven evolutionary game theory helps 754 
understand the rise of metabolic interdependencies in microbial communities. Nat. 755 
Commun. 8, 1563 (2017). 756 

21. Sachs, J. L., Mueller, U. G., Wilcox, T. P. & Bull, J. J. The evolution of 757 
cooperation. Q. Rev. Biol. 79, 135–60 (2004). 758 

22. West-Eberhard, M. J. The evolution of social behavior by kin selection. Q. Rev. 759 
Biol. 50, 1–33 (1975). 760 

23. Connor, R. C. The Benefits of Mutualism: A Conceptual Framework. Biol. Rev. 70, 761 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300046doi: bioRxiv preprint 

https://doi.org/10.1101/300046
http://creativecommons.org/licenses/by/4.0/


 31 

427–457 (1995). 762 
24. Brown, J. L. Cooperation—A Biologist’s Dilemma. Adv. Study Behav. 13, 1–37 763 

(1983). 764 
25. Orth, J. D., Thiele, I. & Palsson, B. O. What is flux balance analysis? Nat Biotech 765 

28, 245–248 (2010). 766 
26. Tiso, M. & Schechter, A. N. Nitrate reduction to nitrite, nitric oxide and ammonia 767 

by gut bacteria under physiological conditions. PLoS One 10, e0119712 (2015). 768 
27. Zelezniak, A. et al. Metabolic dependencies drive species co-occurrence in 769 

diverse microbial communities. Proc. Natl. Acad. Sci. 112, 6449–6454 (2015). 770 
28. Paczia, N. et al. Extensive exometabolome analysis reveals extended overflow 771 

metabolism in various microorganisms. Microb. Cell Fact. 11, 1–14 (2012). 772 
29. Swenson, T. L., Karaoz, U., Swenson, J. M., Bowen, B. P. & Northen, T. R. 773 

Linking soil biology and chemistry in biological soil crust using isolate 774 
exometabolomics. Nat. Commun. 9, (2018). 775 

30. Embree, M., Liu, J. K., Al-Bassam, M. M. & Zengler, K. Networks of energetic and 776 
metabolic interactions define dynamics in microbial communities. Proc. Natl. 777 
Acad. Sci. 112, 15450–15455 (2015). 778 

31. Velasco, I., Tenreiro, S., Calderon, I. L. & André, B. Saccharomyces cerevisiae 779 
Aqr1 is an internal-membrane transporter involved in excretion of amino acids. 780 
Eukaryot. Cell 3, 1492–503 (2004). 781 

32. Dassler, T., Maier, T., Winterhalter, C. & Bock, A. Identification of a major 782 
facilitator protein from Escherichia coli involved in efflux of metabolites of the 783 
cysteine pathway. Mol. Microbiol. 36, 1101–1112 (2000). 784 

33. Airich, L. G. et al. Membrane topology analysis of the Escherichia coli aromatic 785 
amino acid efflux protein YddG. J. Mol. Microbiol. Biotechnol. 19, 189–97 (2010). 786 

34. Ponomarova, O. et al. Yeast Creates a Niche for Symbiotic Lactic Acid Bacteria 787 
through Nitrogen Overflow. Cell Syst. 5, 345–357.e6 (2017). 788 

35. Stadie, J., Gulitz, A., Ehrmann, M. A. & Vogel, R. F. Metabolic activity and 789 
symbiotic interactions of lactic acid bacteria and yeasts isolated from water kefir. 790 
Food Microbiol. 35, 92–98 (2013). 791 

36. Williams, R. J., Howe, A. & Hofmockel, K. S. Demonstrating microbial co-792 
occurrence pattern analyses within and between ecosystems. Front. Microbiol. 5, 793 
1–10 (2014). 794 

37. HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. 795 
Rethinking Community Assembly through the Lens of Coexistence Theory. Annu. 796 
Rev. Ecol. Evol. Syst. 43, 227–248 (2012). 797 

38. Tilman, D. Resource competition and community structure. (Princeton University 798 
Press, 1982). 799 

39. Faust, K. et al. Microbial co-occurrence relationships in the Human Microbiome. 800 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300046doi: bioRxiv preprint 

https://doi.org/10.1101/300046
http://creativecommons.org/licenses/by/4.0/


 32 

PLoS Comput. Biol. 8, (2012). 801 
40. Lindell, D. & Post, A. F. Ecological Aspects of ntcA Gene Expression and Its Use 802 

as an Indicator of the Nitrogen Status of Marine Synechococcus spp. Appl. 803 
Environ. Microbiol. 67, 3340–3349 (2001). 804 

41. Glibert, P. M. & Ray, R. T. Different patterns of growth and nitrogen uptake in two 805 
clones of marineSynechococcus spp. Mar. Biol. 107, 273–280 (1990). 806 

42. Flores, E. & Herrero, A. in The Molecular Biology of Cyanobacteria 487–517 807 
(Springer Netherlands, 1994). doi:10.1007/978-94-011-0227-8_16 808 

43. Segrè, D., DeLuna, A., Church, G. M. & Kishony, R. Modular epistasis in yeast 809 
metabolism. Nat. Genet. 37, 77–83 (2005). 810 

44. Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions 811 
among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012). 812 

45. Ashby, B., Watkins, E., Lourenço, J., Gupta, S. & Foster, K. R. Competing 813 
species leave many potential niches unfilled. Nat. Ecol. Evol. 1, 1495–1501 814 
(2017). 815 

46. Heinken, A. & Thiele, I. Anoxic Conditions Promote Species-Specific Mutualism 816 
between Gut Microbes In Silico. Appl. Environ. Microbiol. 81, 4049–61 (2015). 817 

47. Espey, M. G. Role of oxygen gradients in shaping redox relationships between 818 
the human intestine and its microbiota. Free Radic. Biol. Med. 55, 130–140 819 
(2013). 820 

48. Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the 821 
bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2015). 822 

49. He, G. et al. Noninvasive measurement of anatomic structure and intraluminal 823 
oxygenation in the gastrointestinal tract of living mice with spatial and spectral 824 
EPR imaging. Proc. Natl. Acad. Sci. U. S. A. 96, 4586–91 (1999). 825 

50. Bordbar, A., Monk, J. M., King, Z. A. & Palsson, B. O. Constraint-based models 826 
predict metabolic and associated cellular functions. Nat. Rev. Genet. 15, 107–120 827 
(2014). 828 

51. Lindemann, S. R. et al. Engineering microbial consortia for controllable outputs. 829 
ISME J. 10, 2077–2084 (2016). 830 

52. Mazumdar, V., Snitkin, E. S., Amar, S. & Segrè, D. Metabolic network model of a 831 
human oral pathogen. J. Bacteriol. 91, 74–90 (2009). 832 

53. Motamedian, E., Saeidi, M. & Shojaosadati, S. A. Reconstruction of a charge 833 
balanced genome-scale metabolic model to study the energy-uncoupled growth of 834 
Zymomonas mobilis ZM1. Mol. BioSyst. 12, 1241–1249 (2016). 835 

54. Peyraud, R. et al. Genome-scale reconstruction and system level investigation of 836 
the metabolic network of Methylobacterium extorquens AM1. BMC Syst. Biol. 5, 837 
(2011). 838 

55. Imam, S. et al. IRsp1095: A genome-scale reconstruction of the Rhodobacter 839 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300046doi: bioRxiv preprint 

https://doi.org/10.1101/300046
http://creativecommons.org/licenses/by/4.0/


 33 

sphaeroides metabolic network. BMC Syst. Biol. 5, 116 (2011). 840 
56. Flahaut, N. A. L. et al. Genome-scale metabolic model for Lactococcus lactis 841 

MG1363 and its application to the analysis of flavor formation. Appl. Microbiol. 842 
Biotechnol. 97, 8729–8739 (2013). 843 

57. Pinchuk, G. E. et al. Constraint-Based Model of Shewanella oneidensis MR-1 844 
Metabolism: A Tool for Data Analysis and Hypothesis Generation. PLoS Comput. 845 
Biol. 6, e1000822 (2010). 846 

58. Liao, Y. C. et al. An experimentally validated genome-scale metabolic 847 
reconstruction of Klebsiella pneumoniae MGH 78578, iYL1228. J. Bacteriol. 193, 848 
1710–1717 (2011). 849 

59. Nogales, J., Gudmundsson, S., Knight, E. M., Palsson, B. O. & Thiele, I. Detailing 850 
the optimality of photosynthesis in cyanobacteria through systems biology 851 
analysis. Proc. Natl. Acad. Sci. 109, 2678–2683 (2012). 852 

60. Monk, J. M. et al. Genome-scale metabolic reconstructions of multiple Escherichia 853 
coli strains highlight strain-specific adaptations to nutritional environments. Proc. 854 
Natl. Acad. Sci. 110, 20338–20343 (2013). 855 

61. Zomorrodi, A. R. & Maranas, C. D. Improving the iMM904 S. cerevisiae metabolic 856 
model using essentiality and synthetic lethality data. BMC Syst. Biol. 4, 178 857 
(2010). 858 

62. Thiele, I. et al. A community effort towards a knowledge-base and mathematical 859 
model of the human pathogen Salmonella Typhimurium LT2. BMC Syst. Biol. 5, 8 860 
(2011). 861 

63. Oberhardt, M. A., Puchałka, J., Fryer, K. E., Martins dos Santos, V. A. P. & Papin, 862 
J. A. Genome-scale metabolic network analysis of the opportunistic pathogen 863 
Pseudomonas aeruginosa PAO1. J. Bacteriol. 190, 2790–803 (2008). 864 

64. Orth, J. D. et al. A comprehensive genome-scale reconstruction of Escherichia 865 
coli metabolism--2011. Mol. Syst. Biol. 7, 535 (2011). 866 

65. Henry, C. S., Zinner, J. F., Cohoon, M. P. & Stevens, R. L. iBsu1103: a new 867 
genome-scale metabolic model of Bacillus subtilis based on SEED annotations. 868 
Genome Biol. 10, R69 (2009). 869 

66. Reed, J. L., Famili, I., Thiele, I. & Palsson, B. O. Towards multidimensional 870 
genome annotation. Nat. Rev. Genet. 7, 130–141 (2006). 871 

67. Feist, A. M., Herrgård, M. J., Thiele, I., Reed, J. L. & Palsson, B. Ø. 872 
Reconstruction of biochemical networks in microorganisms. Nat. Rev. Microbiol. 873 
7, 129–143 (2008). 874 

68. Price, N. D., Papin, J. A., Schilling, C. H. & Palsson, B. O. Genome-scale 875 
microbial in silico models: the constraints-based approach. Trends Biotechnol. 21, 876 
162–169 (2003). 877 

69. Durot, M., Bourguignon, P.-Y. & Schachter, V. Genome-scale models of bacterial 878 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300046doi: bioRxiv preprint 

https://doi.org/10.1101/300046
http://creativecommons.org/licenses/by/4.0/


 34 

metabolism: reconstruction and applications. FEMS Microbiol. Rev. 33, 164–190 879 
(2009). 880 

70. Thiele, I. & Palsson, B. O. A protocol for generating a high-quality genome-scale 881 
metabolic reconstruction. Nat. Protoc. 5, (2010). 882 

71. Oh, Y.-K., Palsson, B. O., Park, S. M., Schilling, C. H. & Mahadevan, R. Genome-883 
scale reconstruction of metabolic network in Bacillus subtilis based on high-884 
throughput phenotyping and gene essentiality data. J. Biol. Chem. 282, 28791–9 885 
(2007). 886 

72. King, Z. A. et al. BiGG Models: A platform for integrating, standardizing and 887 
sharing genome-scale models. Nucleic Acids Res. 44, D515–D522 (2016). 888 

73. Becker, S. A. et al. Quantitative prediction of cellular metabolism with constraint-889 
based models: the COBRA Toolbox. Nat Protoc 2, (2007). 890 

74. Orth, J. D., Thiele, I. & Palsson, B. Ø. What is flux balance analysis? Nat. 891 
Biotechnol. 28, 245–248 (2010). 892 

75. Holzhütter, H.-G. The principle of flux minimization and its application to estimate 893 
stationary fluxes in metabolic networks. Eur. J. Biochem. 271, 2905–2922 (2004). 894 

76. Lewis, N. E. et al. Omic data from evolved E. coli are consistent with computed 895 
optimal growth from genome-scale models. Mol. Syst. Biol. 6, 390 (2010). 896 

77. Harcombe, W. R. et al. Metabolic resource allocation in individual microbes 897 
determines ecosystem interactions and spatial dynamics. Cell Rep. 7, 1104–1115 898 
(2014). 899 

78. Zomorrodi, A. R. & Segrè, D. Synthetic Ecology of Microbes: Mathematical 900 
Models and Applications. J. Mol. Biol. (2015). doi:10.1016/j.jmb.2015.10.019 901 

79. Reed, J. L. et al. Systems approach to refining genome annotation. Proc. Natl. 902 
Acad. Sci. 103, 17480–17484 (2006). 903 

80. Oberhardt, M. A., Puchałka, J., Martins dos Santos, V. A. P. & Papin, J. A. 904 
Reconciliation of Genome-Scale Metabolic Reconstructions for Comparative 905 
Systems Analysis. PLoS Comput. Biol. 7, e1001116 (2011). 906 

81. Henry, C. S. et al. High-throughput generation, optimization and analysis of 907 
genome-scale metabolic models. Nat. Biotechnol. 28, 977–982 (2010). 908 

82. Monod, J. The Growth of Bacterial Cultures. Annu. Rev. Microbiol. 3, 371–394 909 
(1949). 910 

83. Smith, H. L. Bacterial growth. (2006). 911 
84. Balagaddé, F. K. et al. A synthetic Escherichia coli predator-prey ecosystem. Mol. 912 

Syst. Biol. 4, 187 (2008).   913 
 

 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300046doi: bioRxiv preprint 

https://doi.org/10.1101/300046
http://creativecommons.org/licenses/by/4.0/


 35 

SUPPLEMENTARY FIGURES 
 

 
 
Figure S1. Three modes of in silico metabolite secretion by E. coli (iJO1366) in anoxic conditions 
as defined by FBA. What makes a metabolite costless is dependent on the environment. (a) 
Increasing the secretion flux of a ‘costly’ product, such as succinate, imposes a reduction in growth rate 
when glucose and glycerol are supplied as carbon sources. When the carbon sources are replaced with 
citrate and trehalose, succinate is secreted without a cost to growth rate. (b) With glucose and glycerol as 
carbon sources, E. coli is predicted to have a wide range of fluxes at which formate can be secreted without 
a cost to its growth rate. Formate would, according to our definition, be secreted ‘costlessly’ by E. coli under 
the applied environmental conditions. (c) Some costlessly-secreted metabolites must be secreted at a given 
rate in order to maximize growth. If an upper bound is placed on acetate secretion, E. coli must allocate 
resources away from biomass in order to cope with its limited ability to secrete fermentation byproducts. 
Acetate would therefore also be considered a costlessly-secreted metabolite by our definition. 
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Figure S2. Detailed example of single in silico experiment, illustrating three phases. Initialization: A 
minimal medium 𝑀ABC common to all simulated conditions (composed of salts, metals, vitamins, as well as 
nitrogen, phosphorous, and sulphur sources) is defined prior to execution of the pipeline. This medium is 
supplemented with two carbon sources, 𝛼 and 𝛽.The Boolean variable Ω = {0,1} defines whether or not 
oxygen is present in the environment. Here, Ω = 1. These together define the initial medium set, 
𝑀d.  Expansion: The function 𝐹 is applied to genome-scale metabolic models of two organisms (𝑖, 𝑗) in a 
series of iterations, 𝑐. In each iteration, 𝐹 simulates the growth of both organisms in the current medium 
condition and returns the Boolean growth statuses 𝑔+ = {𝑔B,𝑔e} of both organisms and the set of any 
costlessly-secreted metabolites, 𝜎+. Here, in the first iteration, 𝑔h = {1,0} since organism 𝑖 grew but 
organism 𝑗 did not. Since at least one organism in the pair grew, the medium is updated (𝑀+gh = 𝑀+ + 𝜎+) 
and 𝐹 is applied again until no new metabolites are secreted. Completion: When no new metabolites are 
added to the medium, the experiment is complete. The last iteration with any new secreted metabolites is 
defined as 𝑐/. 
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Figure S3. Correlation between total number of metabolites secreted costlessly and the number of 
expansions in each in silico experiment for (a) oxic and (b) anoxic conditions. We observe a poor 
correlation between number of secreted metabolites and number of expansions in both oxic and anoxic 
simulations. This lack of correlation suggests a lower rate of metabolite exchange with increasing iterations, 
with most organisms quickly stabilizing their environment within one or two expansions. With oxygen, for 
example, only the K. pneumoniae and Synechocystis pair exhibited more than three medium expansions, 
with acetate, formate, citrate, and L-malate being the only metabolites secreted at these iterations. These 
scenarios accounted for only 40 simulations. Without oxygen, there were 697 experiments that reached 
more than three medium expansions, with 10 organisms being represented. However, this anaerobic set 
was dominated by the S. cerevisiae-P. aeruginosa pair, with fermentation byproducts being secreted at late 
iterations. 
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Figure S4. Principal component analysis (PCA) plots for metabolite secretion profiles. To address 
whether there is one chief contributing factor to patterns of costless metabolite secretion, we carried out 
principal component analysis (PCA), a dimensionality reduction technique. Each point represents the 
secreted metabolites of a single organism in one in silico experiment. (a-c) PCA plots for metabolites 
secreted before medium expansions (c = 1). (d-f) PCA plots for secreted metabolites after all medium 
expansions. Points are clustered by oxygen availability (a, d), organisms (b, e), and carbon source category 
(c, f). 
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Figure S5. Range of costlessly-secreted and exchanged metabolites. (a) Cumulative sum of in silico 
experiments in which metabolite was secreted (top), and sorted heatmap of metabolites secreted in at least 
one simulation, arranged by secreting organism (bottom). (b) Cumulative sum of in silico experiments in 
which each secreted metabolite was taken up by another organism (top), and sorted heatmap of 
metabolites secreted and taken up in at least one simulation, arranged by secreting organism (bottom). 
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Figure S6. Clustered Spearman correlation of secreted metabolites for (a) oxic and (b) anoxic in 
silico experiments. 
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Figure S7. Cooperativity indices of all carbon source pairs in oxic (a) and anoxic (b) conditions, 
clustered by average carbon source cooperativity index. 
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Figure S8. Example of dynamical modeling equations for motif M2a (two carbon sources consumed, 
no competition, mutualism).  
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