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Abstract1

The nucleus accumbens (NAc) is important for learning from feedback, and for biasing and invigorating2

behavior in response to cues that predict motivationally relevant outcomes. NAc encodes outcome-related3

cue features such as the magnitude and identity of reward. However, little is known about how features4

of cues themselves are encoded. We designed a decision making task where rats learned multiple sets5

of outcome-predictive cues, and recorded single-unit activity in the NAc during performance. We found6

that coding of cue identity and location occurred alongside coding of expected outcome. Furthermore, this7

coding persisted both during a delay period, after the rat made a decision and was waiting for an outcome,8

and after the outcome was revealed. Encoding of cue features in the NAc may enable contextual modulation9

of ongoing behavior, and provide an eligibility trace of outcome-predictive stimuli for updating stimulus-10

outcome associations to inform future behavior.11
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Introduction12

Theories of nucleus accumbens (NAc) function generally agree that this brain structure contributes to moti-13

vated behavior, with some emphasizing a role in learning from reward prediction errors (RPEs) (Averbeck14

& Costa 2017; Joel et al. 2002; Khamassi & Humphries 2012; Lee et al. 2012; Maia 2009; Schultz 2016; see15

also the addiction literature on effects of drug rewards; Carelli 2010; Hyman et al. 2006; Kalivas & Volkow16

2005), and others a role in the modulation of ongoing behavior through stimuli associated with motivation-17

ally relevant outcomes (invigorating, directing; Floresco, 2015; Nicola, 2010; Salamone & Correa, 2012).18

These proposals echo similar ideas on the functions of the neuromodulator dopamine (Berridge, 2012; Maia,19

2009; Salamone & Correa, 2012; Schultz, 2016), with which the NAc is tightly linked functionally as well20

as anatomically (Cheer et al., 2007; du Hoffmann & Nicola, 2014; Ikemoto, 2007; Takahashi et al., 2016).21

Much of our understanding of NAc function comes from studies of how cues that predict motivationally22

relevant outcomes (e.g. reward) influence behavior and neural activity in the NAc. Task designs that asso-23

ciate such cues with rewarding outcomes provide a convenient access point, eliciting conditioned responses24

such as sign-tracking and goal-tracking (Hearst & Jenkins, 1974; Robinson & Flagel, 2009), Pavlovian-25

instrumental transfer (Estes, 1943; Rescorla & Solomon, 1967) and enhanced response vigor (Nicola, 2010;26

Niv et al., 2007), which tend to be affected by NAc manipulations (Chang et al. 2012; Corbit & Balleine27

2011; Flagel et al. 2011; although not always straightforwardly; Chang & Holland 2013; Giertler et al.28

2004). Similarly, analysis of RPEs typically proceeds by establishing an association between a cue and sub-29

sequent reward, with NAc responses transferring from outcome to the cue with learning (Day et al., 2007;30

Roitman et al., 2005; Schultz et al., 1997; Setlow et al., 2003).31

Surprisingly, although substantial work has been done on the coding of outcomes predicted by such cues32

(Atallah et al., 2014; Bissonette et al., 2013; Cooch et al., 2015; Cromwell & Schultz, 2003; Day et al., 2006;33

Goldstein et al., 2012; Hassani et al., 2001; Hollerman et al., 1998; Lansink et al., 2012; McGinty et al., 2013;34

Nicola, 2004; Roesch et al., 2009; Roitman et al., 2005; Saddoris et al., 2011; Schultz et al., 1992; Setlow et35
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al., 2003; Sugam et al., 2014; West & Carelli, 2016), much less is known about how outcome-predictive cues36

themselves are encoded in the NAc (but see; Sleezer et al., 2016). This is an important issue for at least two37

reasons. First, in reinforcement learning, motivationally relevant outcomes are typically temporally delayed38

relative to the cues that predict them. In order to solve the problem of assigning credit (or blame) across such39

temporal gaps, some trace of preceding activity needs to be maintained (Lee et al., 2012; Sutton & Barto,40

1998). For example, if you become ill after eating food X in restaurant A, depending on if you remember the41

identity of the restaurant or the food at the time of illness, you may learn to avoid all restaurants, restaurant42

A only, food X only, or the specific pairing of X-in-A. Therefore, a complete understanding of what is43

learned following feedback requires understanding what trace is maintained. Since NAc is a primary target44

of dopamine signals interpretable as RPEs, and NAc lesions impair RPEs related to timing, its activity trace45

will help determine what can be learned when RPEs arrive (Hamid et al., 2015; Hart et al., 2014; Ikemoto,46

2007; McDannald et al., 2011; Takahashi et al., 2016). Similarly, in a neuroeconomic framework, NAc is47

thought to represent a domain-general subjective value signal for different offers (Bartra et al., 2013; Levy48

& Glimcher, 2012; Peters & Büchel, 2009; Sescousse et al., 2015); having a representation of the offer itself49

alongside this value signal would provide a potential neural substrate for updating offer value.50

Second, for ongoing behavior, the relevance of cues typically depends on context. In experimental set-51

tings, context may include the identity of a preceding cue, spatial or configural arrangements (Bouton, 1993;52

Holland, 1992; Honey et al., 2014), and unsignaled rule changes, as occurs in set shifting and other cogni-53

tive control tasks (Cohen & Servan-Schreiber, 1992; Floresco et al., 2006; Grant & Berg, 1948; Sleezer et54

al., 2016). In such situations, the question arises how selective, context-dependent processing of outcome-55

predictive cues is implemented. For instance, is there a gate prior to NAc such that only currently relevant56

cues are encoded in NAc, or are all cues represented in NAc but their current values dynamically updated57

(FitzGerald et al., 2014; Goto & Grace, 2008; Sleezer et al., 2016)? Representation of cue identity would58

allow for context-dependent mapping of outcomes predicted by specific cues.59

Thus, both from a learning and a flexible performance perspective, it is of interest to determine how cue iden-60
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tity is represented in the brain, with NAc of particular interest given its anatomical and functional position at61

the center of motivational systems. We sought to determine whether cue identity is represented in the NAc,62

if cue identity is represented alongside other motivationally relevant variables, such as cue outcome, and if63

these representations are maintained after a behavioral decision has been made (see Figure 1 for a schematic64

representation of the specific hypotheses tested). To address these questions, we recorded the activity of NAc65

units as rats performed a task in which multiple, distinct sets of cues predicted the same outcome.66
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Figure 1: Schematic of hypothetical coding scenarios for cue feature coding employed by single units in the NAc across different cue
features (A) and phases of a trial (B). A: Schematic peri-event time histograms (PETHs) illustrating putative responses to different
cues under different hypotheses of how cue identity (light, sound; L, S) and outcome (reward-available, reward-unavailable; +, -) are
coded. Left panel: Coding of identity is absent in the NAc. Top: Unit A encodes a motivationally relevant variable, such as expected
outcome, similarly across other cue features, such as identity or physical location. Hypothetical plot is firing rate across time. L1+
(red) signifies a reward-available light cue, S1+ (navy blue) a reward-available sound cue, L2- (green) a reward-unavailable light cue,
S2- (light blue) a reward-unavailable sound cue. Dashed line indicates onset of cue. Bottom: No units within the NAc discriminate
their firing according to cue identity. Middle panel: Coding of identity occurs in a separate population of units from coding of other cue
features such as expected outcome or physical location. Top: Same as left panel, with unit A discriminating between reward-available
and reward-unavailable cues. Bottom: Unit B discriminates firing across stimulus modalities, depicted here as firing to light cues but
not sound cues. Note lack of coding overlap in both units. Right panel: Coding of identity occurs in an overlapping population of cells
with coding of other motivationally relevant variables. Hypothetical example demonstrating a unit that responds to reward-available
cues, but firing rate is also modulated by the stimulus modality of the cue, firing most for the reward-available light cue. B: Schematic
PETHs illustrating potential ways in which identity coding may persist over time. Left panel: Cue-onset triggers a transient response
to a unit that codes for cue identity. Dashed lines indicate time of a behavioral or environmental event. ’Cue-ON’ signifies cue-onset,
’NP’ signifies nosepoke at a reward receptacle, ’Out’ signifies when the outcome is revealed, ’OFF’ signifies cue-offset. Middle and
right panel: Identity coding persists at other time points, shown here during a nosepoke hold period until outcome is revealed. Coding
can either be maintained by a sequence of units (middle panel) or by the same unit as during cue-onset (right panel). C: Schematic
pool of NAc units, illustrating different analysis outcomes that discriminate between hypotheses. R values represent the correlation
between sets of recoded regression coefficients (see text for analysis details). Left panel: Cue identity is not coded (A: left panel), or
is only transiently represented in response to the cue (B: left panel). Middle panel: Negative correlation (r < 0) suggests that identity
and outcome coding are represented by separate populations of units (A: middle panel), or identity coding is represented by distinct
units across different points in a trial (B: middle panel). Red circles represents coding for one cue feature or point in time, blue circles
for the other cue feature or point in time. Right panel: Identity and outcome coding (A: right panel), or identity coding at cue-onset and
nosepoke (B: right panel) are represented by overlapping populations of units, shown here by the purple circles. The absence of a
correlation (r = 0) suggests that the overlap of identity and outcome coding, or identity coding at cue-onset and nosepoke, is expected
by chance and that the two cue features, or points in time, are coded by overlapping but independent populations from one another. A
positive correlation (r > 0) implies a higher overlap than expected by chance, suggesting coding by a joint population. Note: The same
logic applies to other aspects of the environment when the cue is presented, such as the physical location of the cue, as well as other
time epochs within the task, such as when the animal receives feedback about an approach.
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Results67

Behavior68

Rats were trained to discriminate between cues signaling the availability and absence of reward on a square69

track with four identical arms for two distinct set of cues (Figure 2A). During each session, rats were pre-70

sented sequentially with two behavioral blocks containing cues from different sensory modalities, a light and71

a sound block, with each block containing a cue that signaled the availability of reward (reward-available),72

and a cue that signaled the absence of reward (reward-unavailable). To maximize reward receipt, rats should73

approach reward sites on reward-available trials, and skip reward sites on reward-unavailable trials (see Fig-74

ure 2B for an example learning curve). All four rats learned to discriminate between the reward-available and75

reward-unavailable cues for both the light and sound blocks as determined by reaching significance (p < .05)76

on a daily chi-square test comparing approach behavior for reward-available and reward-unavailable cues for77

each block, for at least three consecutive days (range for time to criterion: 22 - 57 days). Maintenance of78

behavioral performance during recording sessions was assessed using linear mixed effects models for pro-79

portion of trials where the rat approached the receptacle. Analyses revealed that the likelihood of a rat to80

make an approach was influenced by whether a reward-available or reward-unavailable cue was presented,81

but was not significantly modulated by whether the rat was presented with a light or sound cue (Percent-82

age approached: light reward-available = 97%; light reward-unavailable = 34%; sound reward-available =83

91%; sound reward-unavailable 35%; cue identity p = .115; cue outcome p < .001; Figure 2C). Additional84

analyses separated each block into two halves to assess possible within session learning. Adding block half85

into the model did not improve prediction of behavioral performance (p = .86), arguing against within ses-86

sion learning. Thus, rats successfully discriminated the cues according to whether or not they signaled the87

availability of reward at the reward receptacle.88
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Figure 2: Schematic and performance of the behavioral task. A: Apparatus was a square track consisting of multiple identical T-choice
points. At each choice point, the availability of 12% sucrose reward at the nearest reward receptacle (light blue fill) was signaled by
one of four possible cues, presented when the rat initiated a trial by crossing a photobeam on the track (dashed lines). Photobeams
at the ends of the arms by the receptacles registered nosepokes. Arrows outside of track indicate correct running direction. Left: light
block showing an example trajectory for a correct reward-available (approach trial; red) and reward-unavailable (skip trial; green) trial.
Rectangular boxes with yellow fill indicate location of LEDs used for light cues. Right: sound block with a correct reward-available
(approach trial; navy blue) and reward-unavailable (skip trial; light blue) trial. Speakers for sound cues were placed underneath the
choice points, indicated by magenta speaker icons. Ordering of the light and sound blocks was counterbalanced across sessions.
Reward-available and reward-unavailable cues were presented pseudo-randomly, such that not more than two of the same type of
cue could be presented in a row. Location of the cue on the track was irrelevant for behavior, all cue locations contained an equal
amount of reward-available and reward-unavailable trials. B-C: Performance on the behavioral task. B. Example learning curves
across sessions from a single subject (R060) showing the proportion of trials approached for reward-available (red line for light block,
navy blue line for sound block) and reward-unavailable trials (green line for light block, light blue line for sound block) for light (top)
and sound (bottom) blocks. Fully correct performance corresponds to an approach proportion of 1 for reward-available trials and 0 for
reward-unavailable trials. Rats initially approach on both reward-available and reward-unavailable trials, and learn with experience to
skip reward-unavailable trials. Red bars indicate days in which a rat statistically discriminated between reward-available and reward-
unavailable cues, determined by a chi square test. Dashed line indicates time of electrode implant surgery. C: Proportion of trials
approached for each cue, averaged across all recording sessions and shown for each rat. Different columns indicate the different
cues (reward-available (red) and reward-unavailable (green) light cues, reward-available (navy blue) and reward-unavailable (light blue)
sound cues). Different symbols correspond to individual subjects; horizontal black line shows the mean. All rats learned to discriminate
between reward-available and reward-unavailable cues, as indicated by the clear difference of proportion approached between reward-
available (∼90% approached) and reward-unavailable cues (∼30% approached), for both blocks (see Results for statistics).8



NAc encodes behaviorally relevant and irrelevant cue features89

We sought to address which parameters of our task were encoded by NAc activity, specifically whether90

the NAc encodes aspects of motivationally relevant cues not directly tied to reward, such as the identity91

and location of the cue, and whether this coding is accomplished by separate or overlapping populations92

(Figure 1A). We recorded a total of 443 units with > 200 spikes in the NAc from 4 rats over 57 sessions93

(Table 1; range: 12 - 18 sessions per rat) while they performed a cue discrimination task (Figure 2A). Units94

that exhibited a drift in firing rate over the course of either block, as measured by a Mann-Whitney U test95

comparing firing rates for the first and second half of trials within a block, were excluded from further96

analysis, leaving 344 units for further analysis. The activity of 133 (39%) of these 344 units were modulated97

by the cue, as determined by comparing 1 s pre- and post-cue activity with a Wilcoxon signed-rank test,98

with more showing a decrease in firing (n = 103) than an increase (n = 30) around the time of cue-onset99

(Table 1). Within this group, 24 were classified as putative fast spiking interneurons (FSIs), while 109 were100

classified as putative medium spiny neurons (MSNs). Upon visual inspection, we observed several patterns101

of firing activity, including units that discriminated firing upon cue-onset across various cue conditions,102

showed sustained differences in firing across cue conditions, had transient responses to the cue, showed103

a ramping of activity starting at cue-onset, and showed elevated activity immediately preceding cue-onset104

(Figure 3, 3-supplement 1, 3-supplement 2).105
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Task parameter Total ↑MSN ↓MSN ↑ FSI ↓ FSI
All units 443 155 216 27 45
Rat ID

R053 145 51 79 4 11
R056 70 12 13 17 28
R057 136 55 75 3 3
R060 92 37 49 3 3

Analyzed units 344 117 175 18 34
Cue modulated units 133 24 85 6 18

GLM aligned to cue-onset
Cue identity 42 (32%) 9 (38%) 25 (29%) 0 (-) 8 (44%)
Cue location 55 (41%) 11 (46%) 33 (39%) 3 (50%) 8 (44%)
Cue outcome 26 (20%) 5 (21%) 15 (18%) 1 (17%) 5 (28%)
Approach behavior 32 (24%) 8 (33%) 19 (22%) 2 (33%) 3 (17%)
Trial length 22 (17%) 5 (21%) 14 (16%) 0 (-) 3 (17%)
Trial number 42 (32%) 11 (46%) 20 (24%) 1 (17%) 10 (56%)
Trial history 8 (6%) 1 (4%) 5 (6%) 0 (-) 1 (6%)

GLM aligned to nosepoke
Cue identity 28 (21%) 3 (13%) 17 (20%) 2 (33%) 6 (33%)
Cue location 30 (23%) 2 (8%) 21 (25%) 2 (33%) 5 (28%)
Cue outcome 23 (17%) 2 (8%) 14 (16%) 1 (17%) 6 (33%)

GLM aligned to outcome
Cue identity 25 (19%) 4 (17%) 15 (18%) 2 (33%) 4 (22%)
Cue location 31 (23%) 5 (21%) 23 (27%) 0 (-) 3 (17%)
Cue outcome 34 (26%) 6 (25%) 15 (18%) 4 (67%) 9 (50%)

Table 1: Overview of recorded NAc units and their relationship to task variables at various time epochs. Percentage is relative to the
number of cue-modulated units (n = 133).
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Figure 3: Examples of cue-modulated NAc units influenced by different task parameters. A: Example of a cue-modulated NAc unit that
showed an increase in firing following the cue, and exhibited identity coding. Top: rasterplot showing the spiking activity across all trials
aligned to cue-onset. Spikes across trials are color-coded according to cue type (red: reward-available light; green: reward-unavailable
light; navy blue: reward-available sound; light blue: reward-unavailable sound). Green and magenta bars indicate trial termination
when a rat initiated the next trial or made a nosepoke, respectively. White space halfway up the rasterplot indicates switching from
one block to the next. Dashed line indicates cue-onset. Bottom: PETHs showing the average smoothed firing rate for the unit for trials
during light (red) and sound (blue) blocks, aligned to cue-onset. Lightly shaded area indicates standard error of the mean. Note this
unit showed a larger increase in firing to sound cues. B: An example of a unit that was responsive to cue identity as in A, but for a unit
that showed a decrease in firing to the cue. Note the sustained higher firing rate during the light block. C-D: Cue-modulated units that
exhibited location coding. Each color in the PETHs represents average firing response for a different cue location. C: The firing rate
of this unit only changed on arm 3 of the task. D: Firing rate decreased for this unit on all arms but arm 4. E-F: Cue-modulated units
that exhibited outcome coding, with the PETHs comparing reward-available (red) and reward-unavailable (green) trials. E: This unit
showed a slightly higher response during presentation of reward-available cues. F: This unit showed a dip in firing when presented with
reward-available cues. G-H: Examples of cue-modulated units that encoded multiple cue features. G: This unit showed both identity
and outcome coding. H: An example of a unit that coded for both identity and location.
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To characterize more formally whether these cue-modulated responses were influenced by various aspects of106

the task, we fit a sliding window generalized linear model (GLM) to the firing rate of each cue-modulated unit107

surrounding cue-onset, using a forward selection stepwise procedure for variable selection, a bin size of 500108

ms for firing rate and a step size of 100 ms for the sliding window. Fitting GLMs to all trials within a session109

revealed that a variety of task parameters accounted for a significant portion of firing rate variance in NAc110

cue-modulated units (Figure 4A, 4-supplement 1, 4-supplement 2, Table 1). Notably, a significant proportion111

of units discriminated between the light and sound block (identity coding: ∼32% of cue-modulated units,112

accounting for ∼5% of firing rate variance) or the arms of the apparatus (location coding: ∼41% of cue-113

modulated units, accounting for ∼4% of firing rate variance) throughout the entire window surrounding114

cue-onset. Additionally, a substantial proportion of units discriminating between the common portion of115

reward-available and reward-unavailable trials (outcome coding: ∼20% of cue-modulated units, accounting116

for ∼4% of firing rate variance) was not observed until after the onset of the cue (z-score > 1.96 when117

comparing observed proportion of units to a shuffled distribution obtained when shuffling the firing rates of118

each unit across trials before running the GLM). Furthermore, our variable selection method ensured that the119

observed coding was not due to potential confounds from other task variables, such as behavioral response at120

the choice point (approach behavior; left vs. right), variability in response vigor (trial length; see McGinty121

et al. 2013), drift due to the passage of time (trial number), and the pseudorandom nature of cue presentation122

(trial history). In addition to accounting for firing rate variance explained due to whether the rat turned left123

or right, we ran our cue-onset GLM using only approach trials, and found a similar proportion of outcome124

coding units (34 units;∼26% of cue-modulated units), providing further support that these units were coding125

the expected outcome of the cue. Taken together, these results from the GLMs suggest that the NAc encodes126

features of outcome-predictive cues in addition to expected outcome.127
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Figure 4: Summary of influence of cue features on cue-modulated NAc units at time points surrounding cue-onset. A: Sliding window
GLM (bin size: 500 ms; step size: 100 ms) demonstrating the proportion of cue-modulated units where cue identity (blue solid line),
location (red solid line), and outcome (green solid line) significantly contributed to the model at various time epochs relative to cue-
onset. Dashed colored lines indicate the average of shuffling the firing rate order that went into the GLM 100 times. Error bars indicate
1.96 standard deviations from the shuffled mean. Solid lines at the bottom indicate when the proportion of units observed was greater
than the shuffled distribution (z-score > 1.96). Points in between the two vertical dashed lines indicate bins where both pre- and
post-cue-onset time periods were used in the GLM. B: Sliding window LDA (bin size: 500 ms; step size: 100 ms) demonstrating the
classification rate for cue identity (blue solid line), location (red solid line), and outcome (green solid line) using a pseudoensemble
consisting of the 133 cue-modulated units. Dashed colored lines indicate the average of shuffling the firing rate order that went into the
cross-validated LDA 100 times. Solid lines at the bottom indicate when the classifier performance greater than the shuffled distribution
(z-score > 1.96). Points in between the two vertical dashed lines indicate bins where both pre- and post-cue-onset time periods were
used in the classifier. C-D: Correlation matrices testing the presence and overlap of cue feature coding at cue-onset. C: Schematic
outlining the possible outcomes for coding across cue features at cue-onset, generated by correlating the recoded beta coefficients
from the GLMs and comparing to a shuffled distribution (see text for analysis details). Top left: coding is not present, therefore no
comparison is possible. Top right: cue features are coded by separate populations of units. Displayed is a correlation matrix with each
of the 9 blocks representing correlations for two cue features across the post-cue-onset time bins from the sliding window GLM, with
green representing positive correlations (r > 0), pink representing negative correlations (r < 0), and white representing no correlation
(r = 0). X- and y-axis have the same axis labels, therefore the diagonal represents the correlation of a cue feature against itself at
that particular time point (r = 1). Here the large amount of pink in the off-diagonal elements suggests that coding of cue features
occur separately from one another. Bottom left: Coding of cue features occurs in overlapping but independent populations of units,
shown here by the abundance of white and relative lack of green and pink in the off-diagonal elements. Bottom right: Coding of cue
features occurs in a joint (correlated) overlapping population, shown here by the large amount of green in the off-diagonal elements.
D: Correlation matrix showing the correlation among cue identity, location, and outcome coding surrounding cue-onset. The window of
GLMs used in each block is from cue-onset to the 500 ms window post-cue-onset, in 100 ms steps. Each individual value is for a sliding
window GLM within that range, with the scale bar contextualizing step size. Color bar displays relationship between correlation value
and color. Colored square borders around each block indicate the result of a comparison of the mean correlation of a block to a shuffled
distribution, with pink indicating separate populations (z-score < -1.96), grey indicating overlapping but independent populations, and
green indicating joint overlapping populations (z-score > 1.96).
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To assess what information may be encoded at the population level, we trained a classifier on a pseudoensem-128

ble of the 133 cue-modulated units (Figure 4B). Specifically, we used the firing rate of each unit for each129

trial as an observation, and different cue conditions as trial labels (e.g. light block, sound block). A lin-130

ear discriminant analysis (LDA) classifier with 10-fold cross-validation could correctly predict a trial above131

chance levels for the identity and location of a cue across all time points surrounding cue-onset (z-score >132

1.96 when comparing classification accuracy of data versus a shuffled distribution), whereas the ability to133

predict whether a trial was reward-available or reward-unavailable (outcome coding) was not significantly134

higher than the shuffled distribution for the time point containing 500 ms of pre-cue firing rate, and increased135

gradually as a trial progressed, providing evidence that cue information is also present in the pseudoensemble136

level.137

To quantify the overlap of cue feature coding we correlated recoded beta coefficients from the GLMs, as-138

signing a value of ‘1’ if a cue feature was a significant predictor for that unit and ‘0’ if not, and calculated139

a z-score comparing the mean of the obtained correlations to the mean and standard deviation of a shuffled140

distribution, generated by shuffling the unit ordering within an array (Figure 1A,C, 4C,D). This revealed that141

identity was coded independently from outcome (mean r = .01, z-score = 0.81), and by a joint population142

with location (mean r = .10, z-score = 6.61), while location and outcome were coded by a joint population of143

units (mean r = .12, z-score = 8.07). Together, these findings show that various cue features are represented144

in the NAc at both the single-unit and pseudoensemble level, with location being coded by joint populations145

with identity and outcome, but that identity is coded independently from outcome.146

NAc population activity distinguishes all task phases:147

Next, we sought to determine how coding of cue features evolved over time. Two main possibilities can148

be distinguished (Figure 1B); a unit coding for a feature such as cue identity could remain persistently149

active, or a progression of distinct units could activate in sequence. To visualize the distribution of responses150

throughout our task space and test if this distribution is modulated by cue features, we z-scored the firing rate151
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of each unit, plotted the normalized firing rates of all units aligned to cue-onset, and sorted them according152

to the time of peak firing rate (Figure 5). We did this separately for both the light and sound blocks, and153

found a nearly uniform distribution of firing fields in task space that was not limited to alignment to the154

cue (Figure 5A). Furthermore, to determine if this population level activity was similar across blocks, we155

also organized firing during the sound blocks according to the ordering derived from the light blocks. This156

revealed that while there was some preservation of order, the overall firing was qualitatively different across157

the two blocks, implying that population activity distinguishes between light and sound blocks.158

To control for the possibility that any comparison of trials would produce this effect, we divided each block159

into two halves and looked at the correlation of the average smoothed firing rates across various combina-160

tions of these halves across our cue-onset centered epoch to see if the across block comparisons were less161

correlated than the within block correlations. A linear mixed effects model revealed that within block corre-162

lations (e.g. one half of light trials vs other half of light trials) were higher and more similar than across block163

correlations (e.g. half of light trials vs half of sound trials) suggesting that activity in the NAc discriminates164

across light and sound blocks (mean within block correlation = .38; mean across block correlation = .34; p165

< .001). This process was repeated for cue location (Figure 5B; mean within block correlation = .36; mean166

across block correlation = .29; p < .001) and cue outcome (Figure 5C; mean within block correlation = .35;167

mean across block correlation = .25; p < .001). Additionally, given that the majority of our units showed an168

inhibitory response to the cue, we also plotted the firing rates according to the lowest time in firing, and again169

found some maintenance of order, but largely different ordering across the two blocks (Figure 5-supplement170

1). Together, these results illustrate that NAc coding of task space was not confined to salient events such as171

cue-onset, but was approximately uniformly distributed throughout the task.172
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n = 443

Figure 5: Distribution of NAc firing rates across time surrounding cue-onset. Each panel shows normalized (z-score) peak firing rates
for all recorded NAc units (each row corresponds to one unit) as a function of time (time 0 indicates cue-onset), averaged across all
trials for a specific cue type, indicated by text labels. A, left: Heat plot showing smoothed normalized firing activity of all recorded
NAc units ordered according to the time of their peak firing rate during the light block. Each row is a units average activity across
time to the light block. Dashed line indicates cue-onset. Notice the yellow band across time, indicating all aspects of visualized task
space were captured by the peak firing rates of various units. A, middle: Same units ordered according to the time of the peak firing
rate during the sound block. Note that for both blocks, units tile time approximately uniformly with a clear diagonal of elevated firing
rates. A, right: Unit firing rates taken from the sound block, ordered according to peak firing rate taken from the light block. Note that
a weaker but still discernible diagonal persists, indicating partial similarity between firing rates in the two blocks. Color bar displays
relationship between z-score and color. B: Same layout as in A, except that the panels now compare two different locations on the track
instead of two cue modalities. As for the different cue modalities, NAc units clearly discriminate between locations, but also maintain
some similarity across locations, as evident from the visible diagonal in the right panel. Two example locations were used for display
purposes; other location pairs showed a similar pattern. C: Same layout as in A, except that panels now compare reward-available and
reward-unavailable trials. Overall, NAc units coded experience on the task, as opposed to being confined to specific task events only.
Units from all sessions and animals were pooled for this analysis.
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NAc encoding of cue features persists until outcome:173

In order to be useful for credit assignment in reinforcement learning, a trace of the cue must be maintained174

until the outcome, so that information about the outcome can be associated with the outcome-predictive cue175

(Figure 1B). Investigation into the post-approach period during nosepoke revealed units that discriminated176

various cue features, with some units showing discriminative activity at both cue-onset and nosepoke (Figure177

6, 6-supplement 1, 6-supplement 2). To quantitatively test whether representations of cue features persisted178

post-approach until the outcome was revealed, we fit sliding window GLMs to the post-approach firing179

rates of cue-modulated units aligned to both the time of nosepoke into the reward receptacle, and after the180

outcome was revealed (Figure 7A,B, 7-supplement 1 A-D, Table 1). This analysis showed that a variety181

of units discriminated firing according to cue identity (∼20% of cue-modulated units), location (∼25% of182

cue-modulated units), and outcome (∼25% of cue-modulated units), but not other task parameters, showing183

that NAc activity discriminates various cue conditions well into a trial.184
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Light block
Sound block
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Figure 6: Examples of cue-modulated NAc units influenced by cue features at time of nosepoke. A: Example of a cue-modulated
NAc unit that exhibited identity coding at both cue-onset and during subsequent nosepoke hold. Top: rasterplot showing the spiking
activity across all trials aligned to nosepoke. Spikes across trials are color coded according to cue type (red: reward-available light;
green: reward-unavailable light; navy blue: reward-available sound; light blue: reward-unavailable sound). White space halfway up the
rasterplot indicates switching from one block to the next. Black dashed line indicates nosepoke. Red dashed line indicates receipt of
outcome. Bottom: PETHs showing the average smoothed firing rate for the unit for trials during light (red) and sound (blue) blocks,
aligned to nosepoke. Lightly shaded area indicates standard error of the mean. Note this unit showed a sustained increase in firing to
sound cues during the trial. B: An example of a unit that was responsive to cue identity at time of nosepoke but not cue-onset. C-D:
Cue-modulated units that exhibited location coding, at both cue-onset and nosepoke (C), and only nosepoke (D). Each color in the
PETHs represents average firing response for a different cue location. E-F: Cue-modulated units that exhibited outcome coding, at
both cue-onset and nosepoke (E), and only nosepoke (F), with the PETHs comparing reward-available (red) and reward-unavailable
(green) trials.
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Figure 7: Summary of influence of cue features on cue-modulated NAc units at time points surrounding nosepoke and subsequent
receipt of outcome. A-B: Sliding window GLM illustrating the proportion of cue-modulated units influenced by various predictors around
time of nosepoke (A), and outcome (B). A: Sliding window GLM (bin size: 500 ms; step size: 100 ms) demonstrating the proportion of
cue-modulated units where cue identity (blue solid line), location (red solid line), and outcome (green solid line) significantly contributed
to the model at various time epochs relative to when the rat made a nosepoke. Dashed colored lines indicate the average of shuffling
the firing rate order that went into the GLM 100 times. Error bars indicate 1.96 standard deviations from the shuffled mean. Solid
lines at the bottom indicate when the proportion of units observed was greater than the shuffled distribution (z-score > 1.96). Points in
between the two vertical dashed lines indicate bins where both pre- and post-cue-onset time periods were used in the GLM. B: Same as
A, but for time epochs relative to receipt of outcome after the rat got feedback about his approach. C-F: Correlation matrices testing the
persistence of cue feature coding across points in time. C: Schematic outlining the possible outcomes for coding of a cue feature across
various points in a trial, generated by correlating the recoded beta coefficients from the GLMs and comparing to a shuffled distribution
(see text for analysis details). Top left: coding is not present, therefore no comparison is possible. Top right: a cue feature is coded by
separate populations of units across time. Displayed is a correlation matrix with each of the 9 blocks representing correlations for a cue
feature across time bins for two task events from the sliding window GLM, with green representing positive correlations (r > 0), pink
negative correlations (r < 0), and white representing significant correlation (r = 0). X- and y-axis have the same axis labels, therefore
the diagonal represents the correlation of cue feature against itself at that particular time point (r = 1). Here the large amount of pink in
the off-diagonal elements suggests that coding of a cue feature is accomplished by separate populations of units across time. Bottom
left: Coding of a cue feature across time occurs in overlapping but independent populations of units, shown here by the abundance of
white and relative lack of green and pink in the off-diagonal elements. Bottom right: Coding of a cue feature across time occurs in a
joint overlapping population, shown here by the large amount of green in the off-diagonal elements. D: Correlation matrix showing the
correlation of units that exhibited identity coding across time points after cue-onset, nosepoke, and outcome receipt. The window of
GLMs used in each block is from the onset of the task phase to the 500 ms window post-onset, in 100 ms steps. Each individual value
is for a sliding window GLM within that range, with the scale bar contextualizing step size. Color bar displays relationship between
correlation value and color. Colored square borders around each block indicate the result of a comparison of the mean correlation of a
block to a shuffled distribution, with pink indicating separate populations (z-score < -1.96), grey indicating overlapping but independent
populations, and green indicating joint overlapping populations (z-score > 1.96). E-F: Same as D, but for location and outcome coding,
respectively.
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To determine whether NAc representations of cue features at nosepoke and outcome were encoded by a185

similar pool of units as during cue-onset, we correlated recoded beta coefficients from the GLMs for a cue186

feature across time points in the task, and compared the obtained correlations to correlations generated by187

shuffling unit ordering within a recoded array (Figure 1B,C, 7C-F). This revealed that identity coding was188

accomplished by a joint population across all three task events (cue-onset and nosepoke: mean r = .05, z-189

score = 3.47; cue-onset and outcome: mean r = .08, z-score = 5.55; nosepoke and outcome: mean r = .15,190

z-score= 10.91). Applying this same analysis for cue location revealed a similar pattern for location coding191

(cue-onset and nosepoke: mean r = .06, z-score = 4.15; cue-onset and outcome: mean r = .09, z-score =192

6.40; nosepoke and outcome: mean r = .20, z-score = 14.29). However, outcome coding at cue-onset was193

separate from coding at nosepoke (mean r = -.04, z-score = -3.10), and independent from coding at outcome194

(mean r = .03, z-score = 1.65), while joint coding was observed between nosepoke and outcome (mean r =195

.15, z-score = 9.74). Together, these findings show that the NAc maintains representations of cue identity196

and location by a joint overlapping population throughout a trial, while separate populations of units encode197

cue outcome before and after a behavioral decision has been made.198

To assess overlap among cue features at nosepoke and outcome receipt, we applied the same recoded coeffi-199

cient analysis (Figure 7-supplement 1 E,F). This revealed joint coding of cue features at the time of nosepoke200

(cue identity and location: mean r = .12, z-score = 8.26; cue identity and outcome: mean r = .05, z-score201

= 3.65; mean r = .10, z-score = 6.60); while at outcome, identity was coded by a joint population with202

both location (mean r = .09, z-score = 5.58), and outcome (mean r = .04, z-score = 2.93), and location and203

outcome were coded by an independent population of units (mean r = .00, z-score = 0.28).204

To assess the distributed coding of units for task space around outcome receipt, we aligned normalized205

peak firing rates to nosepoke onset (Figure 7-supplement 2). This revealed a clustering of responses around206

outcome receipt for all cue conditions where the rat would have received reward, in addition to the same207

pattern of higher within- vs across-block correlations for cue identity (Figure 7-supplement 2 A,C; mean208

within block correlation = .55; mean across block correlation = .48; p < .001), cue location (Figure 7-209
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supplement 2 B,E; mean within block correlation = .47; mean across block correlation = .41; p < .001), and210

cue outcome (Figure 7-supplement 2 C,F; mean within block correlation = .51; mean across block correlation211

= .41; p < .001), further reinforcing that NAc activity distinguishes all task phases.212

Discussion213

The main result of the present study is that NAc units encode not only the expected outcome of outcome-214

predictive cues, but also the identity of such cues (Figure 1A). The population of units that coded for cue215

identity was statistically independent from the population coding for expected outcome at cue-onset (i.e.216

overlap as expected from chance), while a joint overlapping population coded for identity and outcome217

at both nosepoke and outcome receipt (i.e. overlap greater than that expected from chance, Figure 1C).218

Importantly, this identity coding was maintained on approach trials by a similar population of units both219

during a delay period where the rat held a nosepoke until the outcome was received, and immediately after220

outcome receipt (Figure 1B,C). Cue identity information was also present at the population level, as indicated221

by high classification performance based on pseudoensembles. More generally, NAc unit activity profiles222

were not limited to salient task events such as the cue, nosepoke and outcome, but were distributed more223

uniformly throughout the task. This temporally distributed activity differed systematically between cue224

identities, expected outcomes and locations. We discuss these observations and their implications below.225

Identity coding:226

Our finding that NAc units can discriminate between different outcome-predictive stimuli with similar mo-227

tivational significance (i.e. encode cue identity) expands upon an extensive rodent literature examining NAc228

correlates of conditioned stimuli (Ambroggi et al., 2008; Atallah et al., 2014; Bissonette et al., 2013; Cooch229

et al., 2015; Day et al., 2006; Dejean et al., 2017; Goldstein et al., 2012; Ishikawa et al., 2008; Lansink et al.,230
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2012; McGinty et al., 2013; Nicola, 2004; Roesch et al., 2009; Roitman et al., 2005; Saddoris et al., 2011;231

Setlow et al., 2003; Sugam et al., 2014; West & Carelli, 2016; Yun et al., 2004). Perhaps the most comparable232

work in rodents comes from a study that found a subset of NAc units that modulated their firing for an odor233

when it predicted distinct but equally valued rewards (Cooch et al., 2015). The present study is complemen-234

tary to such outcome identity coding, in showing that NAc units encode cue identity in addition to the reward235

it predicts (Figure 1A). Setlow et al. (2003) paired two distinct odor cues with appetitive and aversive odor236

cues respectively in a Go/NoGo task, such that cue identity and cue outcome were linked. Although reversal237

sessions were run that uncoupled identity and outcome, the resulting changes in reinforcement history and238

behavioral performance precluded a clear test of cue identity coding. Thus, our study is distinct in asking239

how distinct cues encoding the same anticipated outcome are encoded. Our results suggest that the NAc dis-240

sociates cue identity representations at multiple levels of analysis (e.g. single-unit and population) even when241

the motivational significance of these stimuli is identical. Viewed within the neuroeconomic framework of242

decision making, functional magnetic resonance imaging (fMRI) studies have found support for NAc rep-243

resentations of offer value, a domain-general common currency signal that enables comparison of different244

attributes such as reward identity, effort, and temporal proximity (Bartra et al., 2013; Levy & Glimcher, 2012;245

Peters & Büchel, 2009; Sescousse et al., 2015). Our study adds to a growing body of electrophysiological246

research that suggests the view of the NAc as a value center, while informative and capturing major aspects247

of NAc processing, neglects additional contributions of NAc to learning and decision making such as the248

offer (cue) identity signal reported here.249

Our analyses were designed to eliminate several potential alternative interpretations to cue identity coding.250

Because the different cues were separated into different blocks, units that discriminated between cue identi-251

ties could instead be encoding time or other slowly-changing quantities. We excluded this possible confound252

by excluding units that showed a drift in firing between the first and second half within a block. Additionally,253

we included time as a nuisance variable in our GLMs, to exclude firing rate variance in the remaining units254

that could be attributed to this confound. Furthermore, we found that the temporally evolving firing rate255

throughout a trial was more strongly correlated within a block than across blocks. However, the possibility256
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remains that instead of, or in addition to, stimulus identity, these units encode a preferred context, or even257

a macroscale representation of progress through the session. Indeed, encoding of the current strategy could258

be an explanation for the presence of pre-cue identity coding (Figure 4A), as well as for the differential259

distributed coding of task structure across blocks observed in the current study (Figure 5).260

An overall limitation of the current study is that rats were never presented with both sets of cues simul-261

taneously, and were not required to switch strategies between multiple sets of cues (this was attempted in262

behavioral pilots, however animals took several days of training to successfully switch strategies). Addition-263

ally, our recordings were done during performance on the well-learned behavior, and not during the initial264

acquisition of the cue-outcome relationships when an eligibility trace would be most useful. Thus, it is265

unknown to what extent the cue identity encoding we observed is behaviorally relevant, although extrapo-266

lating data from other work (Sleezer et al., 2016) suggests that cue identity coding would be modulated by267

relevance. Furthermore, NAc core lesions have been shown to impair shifting between different behavioral268

strategies (Floresco et al., 2006), and it is possible that selectively silencing the units that prefer responding269

for a given modality or rule would impair performance when the animal is required to use that information,270

or artificial enhancement of those units would cause them to use the rule when it is the inappropriate strategy.271

NAc activity provides a rich task representation beyond reward alone:272

Beyond coding of cue identity, we found several other notable features of NAc activity. First, a substantial273

number of cue-modulated units was differentially active depending on location, consistent with previous re-274

ports (Lavoie & Mizumori, 1994; Mulder et al., 2005; Strait et al., 2016; Wiener et al., 2003). However, it is275

notable that in our task, location is explicitly uninformative about reward, yet coding of this uninformative276

variable persists. This is unlike previous work of location coding in the dorsolateral striatum, which was277

present when location was predictive of reward, and absent when it was uninformative (Schmitzer-Torbert278

and Redish, 2008). Persistent coding of location in the NAc is likely attributable to inputs from the hip-279

pocampus (Lansink et al., 2016; Sjulson et al., 2017; Tabuchi et al., 2000; van der Meer & Redish, 2011);280
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speculatively, this coding may map onto a bias in credit assignment, such that motivationally relevant events281

are likely to be associated with the locations where they occur.282

A second striking feature of NAc activity evident from this task is that NAc units were not only active at283

salient events such as cue presentation, nosepoking, and feedback about the outcome, but distributed their284

activity throughout a trial (Figure 5). This observation is consistent with previous work reporting that NAc285

units can signal progress through a sequence of cues and/or actions (Atallah et al., 2014; Berke et al., 2009;286

Khamassi et al., 2008; Lansink et al., 2012; Mulder et al., 2004; Shidara et al., 1998) and reminiscent of287

similar observations in the ventral pallidum (Tingley et al., 2014) to which the NAc projects. Extending this288

previous work, we show that the specific pattern of NAc units throughout a trial can be modified by task289

variables such as cue identity. This richer view of NAc activity recalls a dynamical systems perspective, in290

which different task conditions correspond to different trajectories in a neural state space (e.g. Buonomano291

and Maass, 2009; Shenoy et al. 2013). In any case, this view of NAc activity provides a substantially richer292

picture than that expected from encoding of reward-related variables alone.293

Functional relevance of cue identity coding:294

One possible function of cue identity coding is to support contextual modulation of the motivational rel-295

evance of specific cues. A context can be understood as a particular mapping between specific cues and296

their outcomes: for instance, in context 1 cue A but not cue B is rewarded, whereas in context 2 cue B297

but not cue A is rewarded. Successfully implementing such contextual mappings requires representation of298

the cue identities. Indeed, Sleezer et al. (2016) recorded NAc responses during the Wisconsin Card Sort-299

ing Task, a common set-shifting task used in both the laboratory and clinic, and found units that preferred300

firing to stimuli when a certain rule, or rule category was currently active. Further support for a modula-301

tion of NAc responses by strategy comes from an fMRI study that examined blood-oxygen-level dependent302

(BOLD) levels during a set-shifting task (FitzGerald et al., 2014). In this task, participants learned two sets303

of stimulus-outcome contingencies, a visual set and an auditory set. During testing they were presented with304
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both simultaneously, and the stimulus dimension that was relevant was periodically shifted between the two.305

It was found that bilateral NAc activity reflected value representations for the currently relevant stimulus306

dimension, and not the irrelevant stimulus. Given that BOLD activity is thought to reflect the processing307

of incoming and local information, and not spiking output (Logothetis et al., 2001), it is possible that the308

relevance-gated value representations observed by FitzGerald et al. (2014) are integrated with the relevant309

identity coding in the output of the NAc, as observed in the current study.310

A different potential role for cue identity coding is in learning to associate rewards with reward-predictive311

features of the environment, a process referred to as credit assignment in the reinforcement learning literature312

(Sutton & Barto, 1998). Maladaptive decision making, as occurs in schizophrenia, addiction, Parkinson’s313

Disease and others can result from dysfunctional reward prediction errors (RPEs) and value signals (Frank et314

al., 2004; Gradin et al., 2011; Maia & Frank, 2011). This view has been successful in explaining both positive315

and negative symptoms in schizophrenia, and deficits in learning from feedback in Parkinson’s (Frank et al.,316

2004; Gradin et al., 2011). However, the effects of RPE and value updating are contingent upon encoding317

of preceding action and cue features, the eligibility trace (Lee et al., 2012; Sutton & Barto, 1998). Value318

updates can only be performed on these aspects of preceding experience that are encoded when the update319

occurs. Therefore, maladaptive learning and decision making can result from not only aberrant RPEs but also320

from altered cue feature encoding. For instance, on this task the environmental stimulus that signaled the321

availability of reward was conveyed by two distinct cues that were presented in four locations. Although in322

our current study, the location and identity of the cue did not require any adjustments in the animals behavior,323

we found coding of these features alongside the expected outcome of the cue that could be the outcome of324

credit assignment computations computed upstream (Akaishi et al., 2016; Asaad et al., 2017; Chau et al.,325

2015; Noonan et al., 2017). Identifying neural coding related to an aspect of credit assignment is important326

as inappropriate credit assignment could be a contributor to conditioned fear overgeneralization seen in327

disorders with pathological anxiety such as generalized anxiety disorder, post-traumatic stress disorder, and328

obsessive-compulsive disorder (Kaczkurkin et al., 2017; Kaczkurkin & Lissek, 2013; Lissek et al., 2014),329

and delusions observed in disorders such as schizophrenia, Alzheimer’s and Parkinson’s (Corlett et al., 2010;330
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Kapur, 2003). Thus, our results provide a starting point for studies of the neural basis of credit assignment,331

and the extent and specific manner in which this process fails in syndromes such as schizophrenia, obsessive-332

compulsive disorder, and others.333

Methods334

Subjects:335

A sample size of 4 adult male Long-Evans rats (Charles River, Saint Constant, QC) from an a priori de-336

termined sample of 5 were used as subjects (1 rat was excluded from the data set due to poor cell yield).337

Rats were individually housed with a 12/12-h light-dark cycle, and tested during the light cycle. Rats were338

food deprived to 85-90% of their free feeding weight (weight at time of implantation was 440 - 470 g), and339

water restricted 4-6 hours before testing. All experimental procedures were approved by the the University340

of Waterloo Animal Care Committee (protocol# 11-06) and carried out in accordance with Canadian Council341

for Animal Care (CCAC) guidelines.342

Overall timeline:343

Each rat was first handled for seven days during which they were exposed to the experiment room, the344

sucrose solution used as a reinforcer, and the click of the sucrose dispenser valves. Rats were then trained345

on the behavioral task (described in the next section) until they reached performance criterion. At this point346

they underwent hyperdrive implantation targeted at the NAc. Rats were allowed to recover for a minimum347

of five days before being retrained on the task, and recording began once performance returned to pre-348

surgery levels. Upon completion of recording, animals were gliosed, euthanized and recording sites were349

histologically confirmed.350

26



Behavioral task and training:351

The behavioral apparatus was an elevated, square-shaped track (100 x 100 cm, track width 10 cm) containing352

four possible reward locations at the end of track “arms” (Figure 2A). Rats initiated a trial by triggering a353

photobeam located 24 cm from the start of each arm. Upon trial initiation, one of two possible light cues (L1,354

L2), or one of two possible sound cues (S1, S2), was presented that signaled the presence (reward-available355

trial, L1+, S1+) or absence (reward-unavailable trial, L2-, S2-) of a 12% sucrose water reward (0.1 mL) at356

the upcoming reward site. A trial was classified as an approach trial if the rat turned left at the decision point357

and made a nosepoke at the reward receptacle (40 cm from the decision point), while trials were classified as358

a skip trial if the rat instead turned right at the decision point and triggered the photobeam to initiate the next359

trial. A trial was labeled correct if the rat approached (i.e. nosepoked) on reward-available trials, and skipped360

(i.e. did not nosepoke) on reward-unavailable trials. On reward-available trials there was a 1 second delay361

between a nosepoke and subsequent reward delivery. Trial length was determined by measuring the length362

of time from cue-onset until nosepoke (for approach trials), or from cue-onset until the start of the following363

trial (for skip trials). Trials could only be initiated through clockwise progression through the series of arms,364

and each entry into the subsequent arm on the track counted as a trial. Cues were present until 1 second after365

outcome receipt on approach trials, and until initiating the following trial on skip trials.366

Each session consisted of both a light block and a sound block with 100 trials each. Within a block, one cue367

signaled reward was available on that trial (L1+ or S1+), while the other signaled reward was not available368

(L2- or S2-). Light block cues were a flashing white light, and a steady yellow light. Sound block cues369

were a 2 kHz sine wave (low) and a 8 kHz sine wave (high) whose amplitude was modulated from 0 to370

maximum by a 2 Hz sine wave. Outcome-cue associations were counterbalanced across rats, e.g. for some371

rats L1+ was the flashing white light, and for others L1+ was the steady yellow light. The order of cue372

presentation was pseudorandomized so that the same cue could not be presented more than twice in a row.373

Block order within each day was also pseudorandomized, such that the rat could not begin a session with374

the same block for more than two days in a row. Each session consisted of a 5 minute pre-session period375
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on a pedestal (a terracotta planter filled with towels), followed by the first block, then the second block,376

then a 5 minute post-session period on the pedestal. For approximately the first week of training, rats were377

restricted to running in the clockwise direction by presenting a physical barrier to running counterclockwise.378

Cues signaling the availability and unavailability of reward, as described above, were present from the start379

of training. Rats were trained for 200 trials per day (100 trials per block) until they discriminated between380

the reward-available and reward-unavailable cues for both light and sound blocks for three consecutive days,381

according to a chi-square test rejecting the null hypothesis of equal approaches for reward-available and382

reward-unavailable trials, at which point they underwent electrode implant surgery.383

Surgery:384

Surgical procedures were as described previously (Malhotra et al., 2015). Briefly, animals were administered385

analgesics and antibiotics, anesthetized with isoflurane, induced with 5% in medical grade oxygen and main-386

tained at 2% throughout the surgery (∼0.8 L/min). Rats were then chronically implanted with a “hyperdrive”387

consisting of 20 independently drivable tetrodes, with 4 designated as references tetrodes, and the remaining388

16 either all targeted for the right NAc (AP +1.4 mm and ML +1.6 mm relative to bregma; Paxinos & Watson389

1998), or 12 in the right NAc and 4 targeted at the mPFC (AP +3.0 mm and ML +0.6 mm, relative to bregma;390

only data from NAc tetrodes was analyzed). Following surgery, all animals were given at least five days to391

recover while receiving post-operative care, and tetrodes were lowered to the target (DV -6.0 mm) before392

being reintroduced to the behavioral task.393

Data acquisition and preprocessing:394

After recovery, rats were placed back on the task for recording. NAc signals were acquired at 20 kHz with a395

RHA2132 v0810 preamplifier (Intan) and a KJE-1001/KJD-1000 data acquisition system (Amplipex). Sig-396

nals were referenced against a tetrode placed in the corpus callosum above the NAc. Candidate spikes for397

sorting into putative single units were obtained by band-pass filtering the data between 600-9000 Hz, thresh-398
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olding and aligning the peaks (UltraMegaSort2k, Hill et al., 2011). Spike waveforms were then clustered399

with KlustaKwik using energy and the first derivative of energy as features, and manually sorted into units400

(MClust 3.5, A.D. Redish et al., http://redishlab.neuroscience.umn.edu/MClust/MClust.html). Isolated units401

containing a minimum of 200 spikes within a session were included for subsequent analysis. Units were402

classified as FSIs by an absence of interspike intervals (ISIs) > 2 s, while MSNs had a combination of ISIs403

> 2 s and phasic activity with shorter ISIs (Atallah et al., 2014; Barnes et al., 2005).404

Data analysis:405

Behavior. To determine if rats distinguished behaviorally between the reward-available and reward-unavailable406

cues (cue outcome), we generated linear mixed effects models to investigate the relationships between cue407

type and the proportion of trials approached, with cue outcome (reward available or not) and cue identity408

(light or sound) as fixed effects, and the addition of an intercept for rat identity as a random effect. For each409

cue, the average proportion of trials approached for a session was used as the response variable. Contribu-410

tion of cue outcome to behavior was determined by comparing the full model to a model with cue outcome411

removed. To assess within session learning we divided each block into two halves, and compared a model412

including a block half variable to a null model excluding this variable, to see if adding block half improved413

prediction of overall behavioral performance.414

Neural data. Given that some of our analyses compare firing rates across time, particularly comparisons415

across blocks, we sought to exclude units with unstable firing rates that would generate spurious results416

reflecting a drift in firing rate over time unrelated to our task. We used a multipronged strategy to address this417

potential confound. As a first step, we ran a Mann-Whitney U test comparing the cue-modulated firing rates418

for the first and second half of trials within a block, and excluded 99 of 443 units from analysis that showed419

a significant change for either block, leaving 344 units for further analyses by our GLM. Furthermore, we420

included time (trial number) as a nuisance variable in our GLMs to control for firing rate variance account421

for by this confound (see below). To investigate the contribution of different cue features (cue identity, cue422
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location and cue outcome) on the firing rates of NAc single units, we first determined whether firing rates for423

a unit were modulated by the onset of a cue by collapsing across all cues and comparing the firing rates for the424

1 s preceding cue-onset with the 1 s following cue-onset. Single units were considered to be cue-modulated425

if a Wilcoxon signed-rank test comparing pre- and post-cue firing was significant at p < .01. Cue-modulated426

units were then classified as either increasing or decreasing if the post-cue activity was higher or lower than427

the pre-cue activity, respectively.428

To determine the relative contribution of different task parameters to firing rate variance (as in Figure 4A,429

4-supplement 1), a forward selection stepwise GLM using a Poisson distribution for the response variable430

was fit to each cue-modulated unit, using data from every trial in a session. Cue identity (light block, sound431

block), cue location (arm 1, arm 2, arm 3, arm 4), cue outcome (reward-available, reward-unavailable),432

behavior (approach, skip), trial length, trial number, and trial history (reward availability on the previous 2433

trials) were used as predictors, with firing rate as the response variable. The GLMs were fit using a 500 ms434

sliding window moving in 100 ms steps centered at 250 ms pre-cue (so no post-cue activity was included)435

to centered at 750 ms post-cue, such that 11 different GLMs were fit for each unit, tracking the temporal436

dynamics of the influence of task parameters on firing rate around the onset of the cue. Units were classified437

as being modulated by a given task parameter if addition of the parameter significantly improved model fit438

using deviance as the criterion (p < .01), and the total proportion of cue-modulated units influenced by a439

task parameter was counted for each time bin. A comparison of the R-squared value between the final model440

and the final model minus the predictor of interest was used to determine the amount of firing rate variance441

explained by the addition of that predictor for a given unit. To control for the amount of units that would442

be affected by a predictor by chance, we shuffled the trial order of firing rates for a particular unit within a443

time bin, ran the GLM with the shuffled firing rates, counted the proportion of units encoding a predictor,444

and took the average of this value over 100 shuffles. We then calculated how many z-scores the observed445

proportion was from the mean of the shuffled distribution. For this and all subsequent shuffle analyses, we446

used a z-score of greater than 1.96 or less than -1.96 as a marker of significance. To further control for447

whether outcome coding could be attributed to subsequent behavioral variability at the choice point, we ran448
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our cue-onset GLM for approach trials only.449

To get a sense of the predictive power of these cue feature representations we trained a classifier using firing450

rates from a pseudoensemble comprised of our 133 cue-modulated units (Figure 4B). We created a matrix451

of firing rates for each time epoch surrounding cue-onset where each row was an observation representing452

the firing rate for a trial, and each column was a variable representing the firing rate for a given unit. Trial453

labels, or classes, were each condition for a cue feature (e.g. light and sound for cue identity), making sure454

to align trial labels across units. We then ran LDA on these matrices, using 10-fold cross validation to train455

the classifier on 90% of the trials and testing its predictions on the held out 10% of trials, and repeated this456

approach to get the classification accuracy for 100 iterations. To test if the classification accuracy was greater457

by chance, we shuffled the order of firing rates for each unit before we trained the classifier. We repeated458

this for 100 shuffled matrices for each time point, and calculated how many z-scores the mean classification459

rate of the observed data was from the mean of the shuffled distribution.460

To determine the degree to which coding of cue identity, cue location, and cue outcome overlapped within461

units we correlated the recoded beta coefficients from the GLMs for the cue features (Figure 4C,D). Specifi-462

cally, we generated an array for each cue feature at each point in time where for all cue-modulated units we463

coded a ‘1’ if the cue feature was a significant predictor in the final model, and ‘0’ if it was not. We then464

correlated an array of the coded 0s and 1s for one cue feature with a similar array for another cue feature, re-465

peating this process for all post cue-onset sliding window combinations. The NAc was determined as coding466

a pair of cue features in a) separate populations of units if there was a significant negative correlation (r <467

0), b) an independently coded overlapping population of units if there was no significant correlation (r = 0),468

or c) a jointly coded overlapping population of units if there was a significant positive correlation (r > 0).469

To summarize the correlation matrices generated from this analysis, we shuffled the unit ordering for each470

array 100 times, took the mean of the 36 correlations for a block comparison for each of the 100 shuffles471

for an analysis window, and used the mean and standard deviation of these shuffled correlation averages to472

compare to the mean of the comparison block for the actual data.473
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To better visualize responses to cues and enable subsequent population level analyses (as in Figures 3, 5),474

spike trains were convolved with a Gaussian kernel (σ = 100 ms), and peri-event time histograms (PETHs)475

were generated by taking the average of the convolved spike trains across all trials for a given task condition.476

To visualize NAc representations of task space within cue conditions, normalized spike trains for all units477

were ordered by the location of their maximum or minimum firing rate for a specified cue condition (Figure478

5). To compare representations of task space across cue conditions for a cue feature, the ordering of units479

derived for one condition (e.g. light block) was then applied to the normalized spike trains for the other480

condition (e.g. sound block). To assess whether the task distributions were different across cue conditions,481

we split each cue condition into two halves, controlling for the effects of time by shuffling trial ordering482

before the split, and calculated the correlation of the temporally evolving smoothed firing rate across each of483

these halves, giving us 6 correlation values for each unit. We then concatenated these 6 values across all 443484

units to give us an array of 2658 correlation coefficients. We then fit a linear mixed effects model, trying to485

predict these block comparison correlations with comparison type (e.g. 1st half of light block vs. 1st half of486

sound sound) as a fixed-effect term, and unit number as a random-effect term. Comparison type is nominal,487

so dummy variables were created for the various levels of comparison type, and coefficients were generated488

for each condition, referenced against one of the within-within comparison types (e.g. 1st half of light block489

vs. 2nd half of light block). The NAc was considered to discriminate across cue conditions if across-block490

correlations were lower than within-block correlations. Additionally, we ran a model comparison between491

the above model and a null model with just unit number, to see if adding comparison type improved model492

fit.493

To identify the responsivity of units to different cue features at the time of nosepoke into a reward receptacle,494

and subsequent reward delivery, the same cue-modulated units from the cue-onset analyses were analyzed at495

the time of nosepoke and outcome receipt using identical analysis techniques for all approach trials (Figures496

6, 7). To compare whether coding of a given cue feature was accomplished by the same or distinct population497

of units across time epochs, we ran the recoded coefficient correlation that was used to assess the degree of498

overlap among cue features within a time epoch. All analyses were completed in MATLAB R2015a, the499
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code is available on our public GitHub repository (http://github.com/vandermeerlab/papers), and the data500

can be accessed through DataLad.501

Histology:502

Upon completion of the experiment, recording channels were gliosed by passing 10 µA current for 10 sec-503

onds and waiting 5 days before euthanasia, except for rat R057 whose implant detached prematurely. Rats504

were anesthetized with 5% isoflurane, then asphyxiated with carbon dioxide. Transcardial perfusions were505

performed, and brains were fixed and removed. Brains were sliced in 50 µm coronal sections and stained506

with thionin. Slices were visualized under light microscopy, tetrode placement was determined, and elec-507

trodes with recording locations in the NAc were analyzed (Figure 8).508

Figure 8: Histological verification of recording sites. Upon completion of experiments, brains were sectioned and tetrode placement
was confirmed. A: Example section from R060 showing a recording site in the NAc core just dorsal to the anterior commissure (arrow).
B: Schematic showing recording areas for all subjects.
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Figure supplements509
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Figure 3 supplement 1: Expanded examples of cue-modulated NAc units influenced by different task parameters for Figure 3A-D,
showing firing rate breakdown by: cue type (top PETH), cue identity (top-middle PETH), cue location (bottom-middle PETH), and cue
outcome (bottom PETH).
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Figure 3 supplement 2: Expanded examples of cue-modulated NAc units influenced by different task parameters for Figure 3E-H,
showing firing rate breakdown by: cue type (top PETH), cue identity (top-middle PETH), cue location (bottom-middle PETH), and cue
outcome (bottom PETH).

35



A

FED

CB

Approach behavior
Trial length

Trial number
Trial history

Identity coding
Location coding
Outcome coding

Figure 4 supplement 1: Summary of influence of various task parameters on cue-modulated NAc units at time points surrounding
cue-onset. A-C: Sliding window GLM illustrating the proportion of cue-modulated units influenced by various predictors around time of
cue-onset. A: Sliding window GLM (bin size: 500 ms; step size: 100 ms) demonstrating the proportion of cue-modulated units where
cue identity (blue solid line), location (red solid line), and outcome (green solid line) significantly contributed to the model at various time
epochs relative to cue-onset. Dashed colored lines indicate the average of shuffling the firing rate order that went into the GLM 100
times. Error bars indicate 1.96 standard deviations from the shuffled mean. Solid lines at the bottom indicate when the proportion of
units observed was greater than the shuffled distribution (z-score > 1.96). Points in between the two vertical dashed lines indicate bins
where both pre- and post-cue-onset time periods were used in the GLM. B: Same as A, but for approach behavior and trial length. C:
Same as A, but for trial number and trial history. D-F: Average improvement to model fit. D: Average percent improvement to R-squared
for units where cue identity, location, or outcome were significant contributors to the final model for time epochs surrounding cue-onset.
Shaded area around mean represents the standard error of the mean. E: Same as D, but for approach behavior and trial length. F:
Same D, but for trial number and trial history.
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Figure 4 supplement 2: Scatter plot depicting comparison of firing rates for cue-modulated units across light and sound blocks.
Crosses are centered on the mean firing rate, range represents the standard error of the mean. Colored crosses represents units that
had cue identity as a significant predictor of firing rate variance in the GLM centered at cue-onset (blue are sound block preferring,
red are light block preferring), whereas black crosses represent units where cue identity was not a significant predictor of firing rate
variance. Diagonal dashed line indicates point of equal firing across blocks.

37



A

B

C

n = 443

Figure 5 supplement 1: Distribution of NAc firing rates across time surrounding cue-onset. Each panel shows normalized (z-score)
minimum firing rates for all recorded NAc units (each row corresponds to one unit) as a function of time (time 0 indicates cue-onset),
averaged across all trials for a specific cue type, indicated by text labels. A: Responses during different stimulus blocks as in Figure 5A,
but with units ordered according to the time of their minimum firing rate. B: Responses during trials on different arms as in Figure 5B,
but with units ordered by their minimum firing rate. C: Responses during cues signaling different outcomes as in Figure 5C, but with
units ordered by their minimum firing rate. Overall, NAc units coded experience on the task, as opposed to being confined to specific
task events only. Units from all sessions and animals were pooled for this analysis.
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Figure 6 supplement 1: Expanded examples of cue-modulated NAc units influenced by different cue features at both cue-onset and
during subsequent nosepoke hold for Figure 6A,C,E, showing firing rate breakdown by: cue type (top PETH), cue identity (top-middle
PETH), cue location (bottom-middle PETH), and cue outcome (bottom PETH).
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Figure 6 supplement 2: Expanded examples of cue-modulated NAc units influenced by different cue features at time of nosepoke for
Figure 6B,D,F, showing firing rate breakdown by: cue type (top PETH), cue identity (top-middle PETH), cue location (bottom-middle
PETH), and cue outcome (bottom PETH).
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Figure 7 supplement 1: Summary of influence of cue features on cue-modulated NAc units at time points surrounding nosepoke
and subsequent receipt of outcome. A-B: Sliding window GLM illustrating the proportion of cue-modulated units influenced by various
predictors around time of nosepoke (A), and outcome (B). A: Sliding window GLM (bin size: 500 ms; step size: 100 ms) demonstrating
the proportion of cue-modulated units where cue identity (blue solid line), location (red solid line), and outcome (green solid line)
significantly contributed to the model at various time epochs relative to when the rat made a nosepoke. Dashed colored lines indicate
the average of shuffling the firing rate order that went into the GLM 100 times. Error bars indicate 1.96 standard deviations from the
shuffled mean. Solid lines at the bottom indicate when the proportion of units observed was greater than the shuffled distribution
(z-score > 1.96). Points in between the two vertical dashed lines indicate bins where both pre- and post-cue-onset time periods were
used in the GLM. B: Same as A, but for time epochs relative to receipt of outcome after the rat got feedback about his approach. C-D:
Average improvement to model fit. C: Average percent improvement to R-squared for units where cue identity (blue solid line), location
(red solid line), or outcome (green solid line) were significant contributors to the final model for time epochs relative to nosepoke.
Dashed colored lines indicate the average of shuffling the firing rate order that went into the GLM 100 times. Shaded area around
mean represents the standard error of the mean. D: Same C, but for time epochs relative to receipt of outcome. E-F: Correlation
matrices testing the presence and overlap of cue feature coding at nosepoke (E) and outcome (F). E: Correlation matrix showing the
correlation among identity, location, and outcome coding at nosepoke. Each of the 9 blocks represents correlations for two cue features
across various nosepoke-centered time bins from the sliding window GLM, with green representing positive correlations (r > 0), pink
negative correlations (r < 0), and grey representing no significant correlation (r = 0). X- and y-axis have the same axis labels, therefore
the diagonal represents the correlation of a cue feature against itself at that particular time point (r = 1). The window of GLMs used in
each block is from the onset of the task phase to the 500 ms window post-onset, in 100 ms steps. Each individual value is for a sliding
window GLM within that range, with the scale bar contextualizing step size. Colored square borders around each block indicate the
result of a comparison of the mean correlation to a shuffled distribution, with pink indicating separate populations (z-score < -1.96),
grey indicating overlapping but independent populations, and green indicating joint overlapping populations (z-score > 1.96). F: Same
as E, but for time bins following outcome receipt. Color bar displays relationship between correlation value and color.
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Figure 7 supplement 2: Distribution of NAc firing rates across time surrounding nosepoke for approach trials. Each panel shows
normalized (z-score) firing rates for all recorded NAc units (each row corresponds to one unit) as a function of time (time 0 indicates
nosepoke), averaged across all approach trials for a specific cue type, indicated by text labels. A-C: Heat plots aligned to normalized
peak firing rates. A, far left: Heat plot showing smoothed normalized firing activity of all recorded NAc units ordered according to the
time of their peak firing rate during the light block. Each row is a units average activity across time to the light block. Black dashed
line indicates nosepoke. Red dashed line indicates reward delivery occurring 1 s after nosepoke for reward-available trials. Notice
the yellow band across time, indicating all aspects of visualized task space were captured by the peak firing rates of various units. A,
middle: Same units ordered according to the time of the peak firing rate during the sound block. Note that for both blocks, units tile time
approximately uniformly with a clear diagonal of elevated firing rates, and a clustering around outcome receipt. A, right: Unit firing rates
taken from the sound block, ordered according to peak firing rate taken from the light block. Note that a weaker but still discernible
diagonal persists, indicating partial similarity between firing rates in the two blocks. Color bar displays relationship between z-score and
color. B: Same layout as in A, except that the panels now compare two different locations on the track instead of two cue modalities. As
for the different cue modalities, NAc units clearly discriminate between locations, but also maintain some similarity across locations, as
evident from the visible diagonal in the right panel. Two example locations were used for display purposes; other location pairs showed
a similar pattern. C: Same layout as in A, except that panels now compare correct reward-available and incorrect reward-unavailable
trials. The disproportionate coding around outcome receipt for reward-available, but not reward-unavailable trials suggests encoding
of reward receipt by NAc units. D-F: Heat plots aligned to normalized minimum firing rates. D: Responses during different stimulus
blocks as in A, but with units ordered according to the time of their minimum firing rate. E: Responses during trials on different arms as
in B, but with units ordered by their minimum firing rate. F: Responses during cues signaling different outcomes as in C, but with units
ordered by their minimum firing rate. Overall, NAc units coded experience on the task, as opposed to being confined to specific task
events only. Units from all sessions and animals were pooled for this analysis.
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