Abstract
During in vivo functional imaging, animals are head-fixed and thus deprived from vestibular inputs, which severely hampers the design of naturalistic virtual environments. To overcome this limitation, we developed a miniaturized ultra-stable light-sheet microscope that can be dynamically rotated during imaging along with a head-restrained zebrafish larva. We demonstrate that this system enables whole-brain functional imaging at single-cell resolution under controlled vestibular stimulation. We recorded for the first time the dynamic whole-brain response of a vertebrate to physiological vestibular stimulation. This development largely expands the potential of virtual-reality systems to explore complex multisensory-motor integration in 3D.
Copyright
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.