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Abstract 

Messenger RNA (mRNA) degradation plays a critical role in regulating transcript levels 

in eukaryotic cells. Previous work by us and others has shown that codon identity exerts 

a powerful influence on mRNA stability. In Saccharomyces cerevisiae, studies using a 

handful of reporter mRNAs show that optimal codons increase translation elongation 

rate, which in turn increase mRNA stability. However, a direct link between elongation 

rate and mRNA stability has not been established across the entire yeast transcriptome. 

In addition, there is evidence from work in higher eukaryotes that amino acid identity 

influences mRNA stability, raising the question as to whether the impact of translation 

elongation on mRNA decay is at the level of tRNA decoding, amino acid incorporation, 

or some combination of each. To address these questions, we performed ribosome 

profiling of wildtype yeast. In good agreement with other studies, our data showed faster 

codon-specific elongation over optimal codons and faster transcript-level elongation 

correlating with transcript optimality. At both the codon-level and transcript-level, faster 

elongation correlated with increased mRNA stability. These findings were reinforced by 

showing increased translation efficiency and kinetics for a panel of 11 HIS3 reporter 

mRNAs of increasing codon optimality. While we did observe that elongation measured 

by ribosome profiling is composed of both amino acid identity and synonymous codon 

effects, further analyses of these data establish that A-site tRNA decoding rather than 

other steps of translation elongation is driving mRNA decay in yeast.  
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Introduction 

The major eukaryotic mRNA degradation pathway is initiated by removal of the 3’ 

poly(A) tail (deadenylation), followed by cleavage of the 5’ 7mGpppN cap (decapping), 

and exonucleolytic degradation of the mRNA body in the 5’-3’ direction (Coller and 

Parker 2004; Ghosh and Jacobson 2010). Despite being targeted by a common 

degradation pathway, turnover rates for individual mRNAs differ dramatically, with half-

lives in yeast ranging from <1 minute to >60 minutes (Coller and Parker 2004). While 

RNA features in untranslated regions have been identified that influence the stability of 

some mRNAs (Muhlrad and Parker 1992; Lee and Lykke-Andersen 2013; Geisberg et 

al. 2014), we previously demonstrated that codon optimality (i.e., the balance between 

tRNA supply and codon demand) influences mRNA decay rates in a more global 

manner (Presnyak et al. 2015). 

 

The tight coupling between translation status and mRNA turnover in dividing cells has 

long been appreciated (Jacobson and Peltz 1996; Coller and Parker 2004). Specifically, 

mRNA that is efficiently translated is more stable than mRNA that is translated poorly. 

The most parsimonious explanation for the link between translation efficiency and 

mRNA stability is that translation elongation rate is a major driver of mRNA decay rates.  

Indeed, Saccharomyces cerevisiae ribosome profiling studies have shown that cognate 

tRNA abundances correlate with translation efficiency (Hussmann et al. 2015; Weinberg 

et al. 2016), providing support that our observed correlation between codon optimality 

and mRNA stability may be due to differences in translation kinetics that feedback to the 

degradation machinery. Importantly, however, the links between codon optimality, 
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translation efficiency, and mRNA stability have not been previously demonstrated on a 

genome-wide scale.  In addition, since work in higher eukaryotes suggests that both A-

site decoding and amino acid identity influence mRNA stability (Bazzini et al. 2016), we 

sought to determine which of these two aspects of translation elongation correlate more 

strongly with mRNA stability in S. cerevisae.  In this study, we demonstrate that global 

codon- and transcript-level elongation rate estimates inferred by ribosome profiling 

correlate with mRNA stability. Further analysis of ribosome profiling and of translation 

efficiency and kinetics of reporter constructs indicate that A-site decoding links 

translation elongation to mRNA stability in yeast, while the amino acid effects on decay 

suggested in higher eukaryotes are either weaker or unrelated to translation elongation.  

 

Results 

Codon-specific translation elongation rates correlate with their influence on 

mRNA stability 

In order to estimate relative codon-specific elongation rates, we generated a 

Saccharomyces cerevisiae ribosome profiling dataset using cells not pretreated with 

cycloheximide in order to accurately measure codon-level ribosome dynamics 

(Gerashchenko and Gladyshev 2014; Hussmann et al. 2015). As expected, a meta-

analysis of ribosome protected fragments (RPFs) relative to the start of the coding 

sequence across all yeast mRNAs shows a clear periodicity of reads in frame with the 

coding sequence. The well-characterized pileup of reads 12 nucleotides upstream of the 

start codon is also present in 28 nucleotide RPFs (Fig. 1A). This is consistent with the 

start codon residing within the P-site of the ribosome, and we used this positioning to fix 
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the location of the A-site within the reads (Ingolia et al. 2009). Relative per-codon 

ribosome elongation rates were estimated by utilizing a statistical framework that 

leverages linear mixed effects modeling of ribosome dynamics across a transcript (see 

Methods). This approach allows us to robustly model the error associated with ribosome 

density estimates and to quantify our confidence in the resulting estimates, while at the 

same time enabling us to relax arbitrary constraints on the data that we leverage to fit 

these models. Consistent with previous analyses (Hussmann et al. 2015; Weinberg et 

al. 2016), we find that our per-codon ribosome elongation rate estimates (ERE) 

correlate well (Pearson r = 0.55, p < 10-5) with the tRNA adaptation index (tAI), a 

measure of relative tRNA availability to the translation machinery of the cell (dos Reis et 

al. 2004) (Fig. 1B). This indicates that higher tRNA abundance is associated with more 

rapid elongation rates, presumably since the ribosome will more rapidly bind a codon’s 

cognate tRNA when that tRNA is more abundant within the cell.  

 

We next probed the relationship between our estimates of per-codon elongation rate 

and the codon occurrence to mRNA stability correlation coefficient (CSC), a measure of 

how individual codons contribute to the stability of mRNA transcripts (Presnyak et al. 

2015). Consistent with the correlation previously observed between tAI and CSC values 

(Presnyak et al. 2015), we find a significant and positive relationship between ERE and 

CSC, both at the level of individual codons (r = 0.45 [0.22, 0.63], p < 10-3; Fig. 1C) and 

when elongation rates and CSC values are averaged across each mRNA (Pearson r = 

0.61 [0.59, 0.63], p < 10-16; Fig. 1D). This latter analysis shows that mRNAs enriched in 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 12, 2018. ; https://doi.org/10.1101/300467doi: bioRxiv preprint 

https://doi.org/10.1101/300467
http://creativecommons.org/licenses/by-nc-nd/4.0/


Hanson, Alhusaini et al.  

6 

destabilizing codons are highly enriched in codons that facilitate slow ribosomal 

elongation.  

  

Having shown a strong global relationship between ribosome elongation and the 

influence of codons on mRNA stability using our own data, we next sought to expand 

our analysis to examine this relationship using other ribosome profiling datasets. To this 

end, we analyzed ten S. cerevisiae ribosome profiling datasets generated without the 

use of cycloheximide (Cai and Futcher 2013; Gerashchenko and Gladyshev 2014; 

Guydosh and Green 2014; Jan et al. 2014; Lareau et al. 2014; Pop et al. 2014; Williams 

et al. 2014; Nedialkova and Leidel 2015; Young et al. 2015; Weinberg et al. 2016) 

(Supplemental Table S1) using the same analysis pipeline as our data. While the final 

normalized EREs varied across datasets, there is a clear partitioning of codons by 

elongation rate that is consistent across most of the datasets analyzed (Supplemental 

Table S1). A meta-analysis framework was adopted to estimate the true relationship 

between ERE and CSC values by aggregating the results obtained for each dataset into 

a population-level estimate of this relationship (Fig. 2A). This meta-analysis 

demonstrates that the body of generated ribosome profiling data in S. cerevisiae, 

considered in aggregate, is consistent with a significant relationship between per-codon 

elongation rate estimates and each codon’s influence on mRNA stability (rAggregate = 0.45 

[0.34, 0.55], p < 10-4).  

 

To test whether the observed codon effects are specific to codons located in the A-site 

of the ribosome, we repeated our analysis for a range of positions relative to the A-site, 
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including the E-site and P-site, as well as regions further upstream and downstream of 

these sites (Fig. 2B). This allows us to test where the observed relationship between 

codon identity and transcript stability (CSC) occurs within the ribosome footprint. Only 

when codons are located in the A-site does the observed relationship between codon-

specific EREs and CSCs correlate maximally, consistent with previous observations that 

codon identity within the A-site is uniquely associated with tAI (Weinberg et al. 2016). 

 

Ribosomal A-site decoding mediates the link between elongation rate and mRNA 

stability  

The codon stability coefficient (CSC) is only an estimate of how codon content may be 

associated with transcript stability. More directly relevant is the relationship between the 

average elongation rate estimates across a transcript and that transcript’s stability, as 

determined by mRNA half-life measurements. Using published mRNA half-life data 

(Presnyak et al. 2015), we globally assessed the relationship between average ERE 

across a transcript and that transcript’s half-life. We find a significant and positive 

relationship between average elongation rate estimates and transcript half-life in our 

data (r = 0.28 [0.25, 0.31], p < 10-16; Fig. 3A) as well as in all datasets analyzed (Fig. 

3B; red). 

 

It has long been established that tRNA decoding is not the only step that can influence 

ribosome elongation dynamics. Different amino acids vary in the speed at which they 

are incorporated into a nascent polypeptide (Johansson et al. 2011), and certain amino 

acids are thought to have a significant impact on elongation (Wohlgemuth et al. 2008; 
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Tanner et al. 2009; Watts and Forster 2010; Lareau et al. 2014). However, the observed 

relationship between tRNA abundance and CSC suggests that it is decoding that is 

driving the relationship between codon identity and mRNA stability rather than other 

aspects that affect elongation rate (i.e. amino acid identity). To distinguish these 

possibilities, we plotted the relationship between each codon's ERE and CSC values 

after grouping the encoded amino acids based on their properties (Fig. 3C). From this 

analysis, we observe that individual amino acids span a wide range of elongation rates. 

For example, codons encoding proline and arginine exhibit some of the slowest 

elongation rates, as one might expect. However, it can readily be observed that for 

these two amino acids, synonymous codons still span a range of elongation rates that 

positively correlate with CSC (Fig. 3C). Considering all slopes of the correlation 

between ERE and CSC for all 18 amino acids decoded by more than one codon, the 

predominant trend is for these slopes to be positive (t(17) = 2.16, p < 0.05), showing 

that, in general, the faster the elongation rate for a given synonymous codon that 

encodes a certain amino acid, the higher the associated CSC value. Notably, five amino 

acids exhibit either no relationship between ERE and CSC for synonymous codons 

(asparagine) or a negative relationship (phenylalanine, tyrosine, aspartic acid, and 

histidine). While both tRNA decoding and amino acid identity are thought to influence 

translation elongation rate, these data suggest that tRNA decoding is primarily driving 

mRNA decay.  

 

To explore this idea, we reasoned that if both decoding and amino acid contributions to 

elongation were influencing mRNA decay, then isolating decoding effects on translation 
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elongation should decrease the correlation between transcript-level ERE and mRNA 

stability. To this end, we corrected the ERE metric calculated for each transcript such 

that it falls between 0 and 1, with 0 indicating the use of the slowest elongating codons 

at every amino acid position, and 1 indicating the use of the fastest elongating codons 

at every position (see Methods). This correction for amino acid identity results in the 

calculation of elongation rate estimates that only takes into account synonymous codon 

effects on elongation (EREcodons only), in contrast to our original elongation rate estimates 

that took into account both codon and amino acid effects on elongation (EREcodons + aa). 

Compared to the correlation we previously observed in our data between transcript-level 

EREcodons + aa and mRNA half-life, the correlation between EREcodons only and mRNA half-

life is significantly higher (Fig. 3B; r = 0.34 compared to r = 0.28, r = 0.06, N=3969, p < 

0.01), indicating that it is ribosomal A-site decoding that links translation elongation 

rates to mRNA decay rates. 

 

The true impact of the amino acid correction is evident when we observe the effect of 

applying this correction to all S. cerevisiae datasets considered. While the correlation 

between EREcodons + aa and transcript half-life in all datasets analyzed is 0.27, the 

correlation becomes even stronger when using EREcodons only for our analysis (Fig. 3B; 

black). Interestingly, the relationship between EREcodons only and transcript half-life shows 

significantly reduced between-dataset variability compared to the correlations observed 

with EREcodons + aa. This suggests that the primary source of variation between ribosome 

profiling datasets is in amino acid effects, and not in codon effects within a given amino 

acid. The clear consensus we observe between the datasets in support of a strong 
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relationship between the amino acid-corrected EREcodons only and mRNA stability is highly 

consistent with tRNA decoding rate being the primary component of elongation that 

determines mRNA stability in yeast. 

 

Ribosomal A-site decoding contributes to translation efficiency 

Our global ribosome profiling analysis indicates that decoding of the codon in the 

ribosomal A-site, rather than encoded amino acid identity, impacts translation 

elongation rate and, subsequently, mRNA stability. While these genomic relationships 

are intriguing, we sought to validate these findings using a controlled system in which 

we use synonymous codons to manipulate codon optimality while maintaining the 

encoded amino acid sequence. To this end, we used a set of 11 HIS3 reporters that 

vary from each other only in their percent codon optimality, from 0-100% in 10% 

increments (Fig. 4A).   Importantly, by controlling for the encoded His3 protein sequence 

as well as 5’ and 3’ untranslated region sequences in each of these constructs, we can 

specifically study the impact of codon decoding on translation efficiency without 

interference from the effect that these parameters can have on translation rate. We 

previously used these HIS3 reporters to demonstrate the positive correlation between 

codon optimality and mRNA stability, and we found that even small increases in codon 

optimality (e.g., 10%) can cause clearly detectable increases in mRNA stability 

(Radhakrishnan et al. 2016).  

         

To test the effect of codon optimality on translation efficiency while eliminating amino 

acid and untranslated region-dependent effects, we performed Northern blot and 
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Western blot analyses to measure the steady state HIS3 mRNA and His3 protein levels 

expressed from each 0-100% optimality construct.  We observed that whereas the 

steady state mRNA abundance varied up to ~9-fold between each of the constructs 

(Fig. 4B), the steady state protein abundance differences were much more substantial 

(up to ~49-fold; Fig. 4C).  Due to the large range in steady state protein abundances 

that we observed for these constructs, and the relatively small dynamic range of 

Westerns, we present Fig. 4C for illustration purposes but performed protein abundance 

measurements after diluting samples to variable extents to minimize saturation effects. 

We calculated the protein output per mRNA as a measure of the translation efficiency of 

each construct and found that as percent codon optimality increases, translation 

efficiency generally increases (Fig. 4D).  Interestingly, similar to our previous 

observation that even small differences in codon optimality cause detectable differences 

in mRNA stability, we see that even 10% differences in codon optimality also result in 

detectable differences in protein output per mRNA. The positive correlation between 

codon optimality and both translation efficiency and mRNA stability for this controlled 

set of constructs suggests that A-site decoding rates impact translation efficiency, and 

these differences in translation efficiency in turn affect the susceptibility of the mRNA to 

the decay machinery. 

 

Ribosomal A-site decoding contributes to translation kinetics 

As an independent assay to test the influence of codon optimality on translation kinetics, 

we grew yeast cells expressing each of the 0-100% optimality HIS3 constructs to mid-

log phase before adding 35S-methionine/cysteine and harvesting the cells at different 
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time points.  The levels of 35S-methionine/cysteine-labeled His3 protein expressed from 

each construct at each time point were determined after running immunoprecipitated 

His3 protein on SDS-PAGE gels and detecting the 35S-labeled protein on a 

phosphorimager screen.  To control for the effects of construct-dependent mRNA 

abundance or stability differences on the level of 35S-methionine/cysteine-labeled His3 

protein produced, we internally normalized the data from each construct by calculating 

the amount of 35S-labeled His3 protein at each time point relative to the amount 

detected at the 2 minute time point for that construct. 

 

In comparing the two optimality extremes (0% and 100%), we observed that the protein 

expression from the 0% optimality construct was substantially lower than the protein 

expression from the 100% optimality construct, consistent with what we observed in Fig. 

4C (Fig. 5A).  Importantly, the increase in protein expression from one time point to the 

next was much slower for the 0% optimality construct relative to the 100% optimality 

construct (Fig. 5A, B).  Specifically, the rate of 35S incorporation was 2.8-fold slower for 

the 0% optimal construct than for the 100% optimal construct, indicating that translation 

of the higher optimality construct is more efficient (Fig. 5C). When analyzing the level of 

increase in the abundance of 35S-methionine/cysteine-labeled His3 protein over the time 

course for the remaining 9 constructs, we observed a general trend that was consistent 

with what was observed for the extremes, with relative 35S incorporation rates 

correlating with codon optimality (Fig. 5B, C).  These data are in agreement with our 

previous observations and suggest that A-site decoding is linking translation kinetics to 

mRNA stability. 
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Discussion 

Previously, we had established that codon optimality is a powerful determinant of mRNA 

decay rates in the yeast S. cerevisiae (Presnyak et al. 2015). Other labs subsequently 

established this as a general principle across a number of species (Bazzini et al. 2016; 

Boël et al. 2016; Harigaya and Parker 2016; Mishima and Tomari 2016), leading to 

widespread interest in the general rules that dictate how translation elongation rates are 

communicated to the decay machinery. Our previous studies using reporter constructs 

suggest that decoding of codons in the A-site of the ribosome dictate elongation rate, 

which in turn sets mRNA decay rate via recruitment of the decapping factor Dhh1 

(Radhakrishnan et al. 2016). However, whether codon optimality-mediated differences 

in translation elongation link directly to differences in mRNA stability has not been 

shown on a genome-wide scale.   

 

We first performed ribosome profiling without cycloheximide in yeast as in (Hussmann 

et al. 2015; Weinberg et al. 2016) and were able to extract estimates of codon-specific 

elongation rates that correlate well with the tRNA adaptation index (tAI). Of note, these 

findings are in agreement with a number of ribosome profiling studies lacking 

cycloheximide (Hussmann et al. 2015; Weinberg et al. 2016). Further, codon-specific 

elongation rate estimates (EREs) correlate with codon occurrence to mRNA stability 

correlations (CSCs) that we calculated previously (Presnyak et al. 2015), suggesting 

that elongation rate at A-site codons genome-wide is influencing decay (Fig. 1C). Using 

our calculated per-codon ERE, we sought to determine how transcript-level elongation 
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rates might influence decay. As would be predicted from codon-level elongation rates, 

transcripts with increasing proportions of optimal codons exhibit higher average EREs 

(Fig. 1D). Extending these data revealed that transcript-level EREs positively correlate 

with mRNA half-lives. Further analysis revealed that 10 previously published ribosome 

profiling datasets also yield a significant ERE by mRNA half-life correlation (Fig. 3B).  

 

The correlations we observed between ERE and mRNA half-life in the 11 ribosome 

profiling datasets used in our study are statistically significant, but represent an 

aggregated correlation coefficient of only 0.27. This is not unexpected, as there are 

likely complex interactions between codons within open reading frames that are not 

accounted for by our modeling (Chevance et al. 2014; Gamble et al. 2016; Chevance 

and Hughes 2017). In addition, mRNA decay is not solely influenced by translation 

elongation, with clear contributions from other steps in translation and other mRNA 

features such as open reading frame length and cis-acting sequences in untranslated 

regions (Muhlrad and Parker 1992; Lee and Lykke-Andersen 2013; Geisberg et al. 

2014; Neymotin et al. 2016). Together, these data extend previously observed 

correlations between codon-specific tAI and elongation rate by demonstrating that a 

statistically significant relationship exists between transcript-level elongation rate 

estimates and mRNA stability. 

 

Translation elongation is a combination of decoding at the A-site as well as peptide 

bond formation rates that differ amongst amino acids (Watts and Forster 2010; Lareau 

et al. 2014). To uncover mechanistic features of how elongation might influence decay, 
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we showed that EREs of synonymous codons generally positively correlate with the 

impact of codons on mRNA stability, independent of the encoded amino acid (Fig. 3C). 

Further, when we isolate synonymous codon effects on elongation from amino acid-

specific effects, our correlations with mRNA half-life are improved (Fig. 3B). If amino 

acid-specific effects on elongation were contributing to mRNA decay rates, we would 

have seen a weakened correlation between codon-specific elongation rate (EREcodons 

only) and CSC (Fig. 3C). In addition, if amino acid identity substantially impacted mRNA 

decay rates, we would not have expected that most amino acids are encoded by 

synonymous codons that both contribute to the stabilization (positive CSC) and 

destabilization (negative CSC) of mRNAs. This highlights that A-site tRNA decoding is 

likely driving mRNA decay in yeast.  

 

To rigorously test whether A-site decoding is affecting translation elongation which in 

turn affects decay, we utilized a set of 11 HIS3 constructs that differ in total codon 

optimality from 0-100% in 10% increments. These constructs have the same 

untranslated regions, the same initiation context, and encode the exact same protein, 

making them an ideal system to isolate the effects of A-site decoding and to test 

incremental increase in the proportion of optimal codons. We had previously shown that 

the mRNAs expressed from these constructs exhibit an ~13-fold range in half-lives, with 

an ~3 minute half-life for the 0% optimal construct and an ~40 minute half-life for the 

100% optimal construct (Radhakrishnan et al. 2016). In the present study, we find a 

roughly 8.5-fold range of translation efficiency (protein per mRNA; Fig. 4) and a 2.8-fold 

range of relative 35S-methionine/cysteine incorporation rate across the HIS3 constructs 
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(Fig. 5), indicating differences in translation kinetics that are driven by decoding of 

codons. These data are in agreement with our previous observation that upon inhibiting 

translation initiation through glucose deprivation, existing ribosomes on the 100% 

optimal HIS3 construct were cleared from the mRNA faster than ribosomes associated 

with the 0% optimal HIS3 construct, presumably through more rapid elongation 

(Presnyak et al. 2015). While the codon-mediated effects on kinetics that we observed 

for this set of HIS3 constructs are weaker than the range of translation efficiencies or 

half-lives observed, all measures trend in the same direction indicating that codon 

optimality drives changes in translation kinetics that in turn drive changes in mRNA 

decay rates.   

 

This work makes two significant advances toward understanding the intimate 

relationship between mRNA translation and decay. First, we show that codon and 

transcript-level elongation rate estimates correlate with mRNA stability across the 

transcriptome. Second, we identify ribosomal A-site decoding as the step of elongation 

that impacts normal mRNA decay in yeast. In contrast, other work has suggested that 

both codon optimality and amino acid identity are important for influencing mRNA 

stability in zebrafish and Xenopus (Bazzini et al. 2016). These differences between 

yeast and higher eukaryotes may reflect differences in either the translation machinery, 

the decay machinery, or both. Alternatively, amino acid effects could be explained by 

the influence of amino acids on mRNA decay independent of translation elongation. For 

example, one possibility is that particular nascent amino acid sequences could recruit 

trans-acting factors that in turn regulate mRNA stability. 
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Strikingly, these findings are consistent with other known decay pathways: no-go, non-

stop, and nonsense-mediated decay all are triggered by different states of the ribosomal 

A-site. In future work, it will be fascinating to determine how A-site decoding rates are 

transmitted to the normal mRNA decay machinery in yeast and also to determine how 

translation elongation influences decay in higher eukaryotes. 
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Methods 

Yeast strains 

The genotypes of the S. cerevisiae strains used in this study are listed in Supplemental 

Table S2. Yeast cells were grown to mid-log phase at 24°C in synthetic media (pH 6.5) 

containing 2% glucose and appropriate amino acids. 

 

Ribosome profiling library preparation 

Using S. cerevisiae strain yJC2229, ribosome footprint RNA and control total RNA were 

isolated and libraries were prepared as was described in (Smith et al. 2014), with 

modifications.  Specifically, cycloheximide treatment was omitted prior to cell harvest 

but was included during cell lysis.  RNA purified from monosome fractions and control 

total RNA were depleted of ribosomal RNA once using the Yeast Ribo-Zero Gold rRNA 

Removal Kit (Illumina MRZY1324) according to the manufacturer’s instructions following 

the addition of an RNA Spike-In mix (Thermo Fisher Scientific 4456740) to the total 

RNA sample.  cDNA libraries were amplified using the indexed primer oKB690 (Smith et 

al. 2014) and were sequenced at the Case Western Reserve University Genomics Core 

Facility using the Illumina HiSeq2500 platform. 

 

Ribosome profiling and RNA sequencing data processing 

Adaptors were trimmed from the RNA and ribosome profiling datasets using cutadapt 

with the following parameters: -a CTGTAGGCACCATCAAT –trim-n –m 24 –M 36 –O 6. 

Other datasets were subject to adaptor trimming as appropriate using study-specific 

adaptor sequences, but otherwise identical trimming parameters. The ribosome profiling 
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reads were then aligned against an index of S. cerevisiae ribosomal RNA sequences 

from Ensembl using bowtie with the following parameters: -D 15 –R 2- N 1 –L 25 –I 

S,1,0.75. Sequences that failed to align to the ribosomal RNA index were taken to be 

from messenger RNA and were aligned to the entire S. cerevisiae genome using 

HISAT2, with release 84 of Ensembl’s gene annotations of the sacCer3 genome 

(ftp://ftp.ensembl.org/pub/release-

84/gtf/saccharomyces_cerevisiae/Saccharomyces_cerevisiae.R64-1-1.84.gtf.gz) to 

guide alignment to the transcriptome. Finally, multi-mapped reads were discarded and 

uniquely mapped ribosome footprint reads were transformed to transcriptome-based 

coordinates for further analysis using the sam2transcriptome python script. Ribosome 

footprint reads were then assigned to the A-site codon using the method outlined 

previously (Ingolia et al. 2009), where the P-site is identified based on the well 

characterized pileup of ribosome protected fragments over the start codon, with the P-

site generally located 12 nucleotides into the fragments located at this start site peak, 

and the A-site another 3 nucleotides past this point. RNA-sequencing data was 

quantified with htseq-count (Anders et al. 2015) to estimate per-gene expression as 

reads per million mapped reads (RPM). For any ribosome profiling datasets without 

RNA-seq data, we used per-gene FPKMs calculated as the mean of all other 

comparable datasets’ RNA-seq. 

 

Model 

Our primary aim was to extract estimates of the relative rates at which ribosomes move 

off of specific codons. Per-codon elongation rates have been estimated in the past 
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(Qian et al. 2012; Pop et al. 2014; Hussmann et al. 2015; Weinberg et al. 2016). 

However, the common approach to estimating codon-specific elongation times has 

been to simply calculate the ribosome density over a codon relative to the frequency of 

a codon in an mRNA, and then sum these values up across the entire transcriptome. 

This approach is intuitive and easily calculated, but it is difficult to assess the confidence 

of the estimates generated from this procedure. There is often no control for biases 

introduced by those genes with sparse ribosome protected fragment coverage, which 

are weighted equally with the rest of the transcriptome in the default approach.  

 

To extract more robust estimates of codon-specific ribosome elongation rates, we 

propose the following model, which is based on the assumption that ribosome initiation 

is typically a much slower process than elongation (Shah et al. 2013). Let  represent 

the initiation rate for a gene g, and  be the average elongation time for a codon type 

. Thus, under our assumption, for a single mRNA molecule 

from gene g, the proportion of time that a ribosome can be found on a position with 

codon c is: 

 .  

Let the relative concentration, as measured by RNA-seq reads mapped to gene g per 

million mapped reads for gene g be denoted by , and let the number of c codons in 

gene g be . Also, let  be the number of ribosome footprints mapping to c codons 

in gene g. Based on this, we assume that  follows an overdispersed Poisson 

distribution with the following mean: 
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An overdispersed Poisson distribution was chosen to model ribosomal reads as it has 

previously been found that the sampling rate of RNA fragments from their associated 

transcripts can rarely be described as following a Poisson distribution due to uneven 

scaling of variability with the mean (Soneson and Delorenzi 2013).  It must be 

understood that there is a degeneracy in this model; there are an infinite number of 

parameters which fit the data equally well. However, we can estimate the values  

relative to . To estimate the model parameters, we used a generalized linear mixed 

model which assumes that  where  and  are all 

estimated from the data using maximum likelihood with an overdispersed Poisson 

distribution. The mixed model gets around the degeneracy (i.e. identifiability problem) 

by assuming that on average across all genes .   However, it must be 

understood that the resultant parameter estimates (  and ) are relative. Given that 

estimates of codon-specific elongation times are relative, we will adopt the convention 

of first calculating the relative elongation rate  and then normalizing the 

resultant rate estimates so that  and , for ease of interpretability.  

This model implicitly more highly weights those transcripts with a greater density of 

information on ribosome dynamics, removing potential biases due to sparse ribosome 

protected fragment density and avoiding the need to set an arbitrary threshold for 

ribosome coverage in an attempt to mitigate these effects. However, because the model 
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can be easily represented as a linear mixed effects model, it can be estimated directly 

from ribosome profiling data using out of the box solvers in MATLAB or R, making it 

readily applicable to a variety of datasets.  

 

Ribosome profiling and RNA sequencing data analysis 

For each gene, we first find the number of codons c  in gene g, and also calculate 

the total number of ribosome protected fragments over gene g with the A-site mapped 

to codon c . Relative RNA concentration  is calculated using htseq-count and 

standardized as RPM, as outlined above. This procedure is performed for each gene in 

the dataset, with no restriction on total ribosome density or gene length, though only 

genes with non-zero RNA expression and RPF counts are included. Data from between 

4188 and 5245 genes were included, depending on the dataset analyzed, ensuring that 

we are able to leverage the majority of protein coding genes for analysis. For the model, 

data are structured as long-form arrays, with the number of rows equal to the product of 

the number of genes considered times the number of amino acid-coding codons (61), 

and the number of columns equal to 5 (codon identity, gene identity, number of 

ribosome protected fragments over a given codon in a gene, the total occurrence of that 

codon in a gene, and the estimate of gene expression). The model itself is fit using the 

fitglme function in the Statistical Toolbox of MATLAB, version R2016a. The code used 

to form ribosome profiling data into appropriate datasets, and the MATLAB code used to 

specify and run the model is available as supplementary information.  All other statistical 

analyses were carried out using the statsmodels and scipy packages for Python, and 

Matplotlib and Seaborn were used to generate Fig. 1-3. The method used to calculate 
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the statistical significance of a change in Pearson correlation coefficient was taken from 

(Cohen et al. 2013). Briefly, the test statistic for the change in the Pearson correlation 

coefficient can be found as follows: 

 

where  is the number of observations used to calculate  This statistic is drawn from 

a normal distribution, and the corresponding p-value can be found with the survival 

function of a normal distribution with  and .  

 

Calculation of robust Pearson correlation coefficients  

The standard method of calculating Pearson correlation coefficients has no facility to 

take into account the precision associated with the individual quantities that make up 

vectors  and , the two vectors for which the correlation is to be calculated. Therefore, 

we chose to leverage the modeling capabilities of Stan (Carpenter et al. 2017) to specify 

a model where  and  are latent variables sampled from a Gaussian distribution such 

that  and , where  and  are the point estimates 

for each quantity, and  and  are the standard errors associated with the values in  

and , respectively.  and  may be CSC values and ribosome elongation rate 

estimates, respectively, or gene-level average elongation rates and mRNA half-lives, 

depending on the needs of the analysis. Finally, we find the value of , the Pearson 

correlation coefficient, to maximize the likelihood of the latent variables  and  as 

samples drawn from a multivariate Gaussian distribution with means  and the 

covariance matrix described as follows: 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 12, 2018. ; https://doi.org/10.1101/300467doi: bioRxiv preprint 

https://doi.org/10.1101/300467
http://creativecommons.org/licenses/by-nc-nd/4.0/


Hanson, Alhusaini et al.  

24 

 

where  and  are the standard deviations of  and , respectively, and are also 

estimated in the model. The resultant sampled  values then represent the maximum a 

posteriori (MAP) distribution of . The code to accomplish this was adapted from (Lee 

and Wagenmakers 2014; Schwarzer and Carpenter 2015). All models in Stan were run 

with 1000 warmup samples and 1000 acquisition samples, across four separate chains. 

Models were assessed for convergence by ensuring that the scale reduction factor 

across chains, , was equal to 1.  

Meta-analysis 

The meta-analysis of Pearson correlation coefficients follows the Inverse Variance 

method for calculating the random effects estimate , using the DerSimonian–Laird 

estimator for calculating the between-study variability parameter , and employing the  

Hartung and Knapp correction when estimating . All meta-analyses were 

implemented in Python using custom code based on the methods presented in 

(Schwarzer and Carpenter 2015). Briefly, let the population estimate of the correlation 

between CSC and translation elongation rate (or average elongation rate and mRNA 

half-life), , be expressed as the normally distributed Fisher’s , with the 

point estimate and variance of  estimated from the a posteriori distribution of  

calculated from Stan. With  sampled from a normal distribution with known variance, 

for each dataset we can define individual estimates of  for dataset  as: 
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Where  is the true transformed correlation coefficient in the population of datasets, 

 captures the error due to heterogeneity between studies, while 

, scaled by the known standard error of , represents within-study 

error. The estimate of  is simply the weighted average of individual estimates , where 

the weight with which each study is considered in the analysis, , is inversely 

proportionate to the sum of the study-specific variance plus the between-study variance. 

, leaving us with 

 

 

In order to calculate the 95% confidence interval around , take . 

To express the results of this analysis is terms of , simply take the hyperbolic tangent 

of  and the upper and lower bounds of  calculated above.  

 

Calculation of amino acid-corrected elongation rate 

An imaginary polypeptide can be perfectly efficient if every amino acid is coded with the 

fastest elongating codon, or perfectly inefficient if every amino acid is coded with the 

slowest elongating codon. Any further changes would require altering the amino acid 

sequence. We wished to calculate the elongation rate of a natural transcript relative to 

these two extremes, in order to remove effects of amino acid choice and effectively 

correct for any biases due to a transcript being enriched in amino acids that happen to 

be associated with faster or slower total ribosome transit times, regardless of the 
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decoding speed. To accomplish this, we use elongation rate estimates to find the 

maximum and minimum elongation rate associated with each amino acid. Then, for a 

given transcript, we calculate the hypothetical maximum ( ) and minimum ( ) 

average elongation rates given the amino acid sequence associated with the transcript. 

The correction is then calculated as follows: , where  is 

the average elongation rate based on the actual codon sequence of the transcript.  

 

Northern and Western blot analysis 

S. cerevisiae cells expressing N-terminally FLAG-tagged 0-100% optimal HIS3 

(yJC2419 to yJC2429), or an untagged 100% optimal HIS3 control (yJC2088), were 

used for total RNA or protein isolation as was described in (Geisler et al. 2012).  Equal 

amounts of each RNA were run on 1.4% agarose formaldehyde gels, transferred onto  

nylon membrane, and probed using a 32P end-labeled oligonucleotide (oJC2564) 

(Presnyak et al. 2015), which is complementary to a 23 nucleotide region within each 

HIS3 construct that was maintained for detection purposes.  For protein analysis, either 

an equal amount of each sample, or variable amounts of each sample (in order to 

enable more accurate protein abundance quantification by minimizing signal saturation), 

were run on SDS-PAGE gels and were transferred onto PVDF membrane.  His3 protein 

was detected using rabbit anti-FLAG primary antibody (Sigma F7425) and goat anti-

rabbit secondary antibody (Pierce 31460).  Steady state RNA and protein abundance 

was quantified using ImageQuant and ImageJ software, respectively.  Translation 

efficiency was determined by dividing the steady state His3 protein abundance by the 

steady state HIS3 mRNA abundance for each construct. 
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35S-methionine/cysteine incorporation and FLAG-His3 protein 

immunoprecipitation assay 

S. cerevisiae cells expressing N-terminally FLAG-tagged 0-100% optimal HIS3 

(yJC2488 to yJC2498), were grown in the absence of supplemented methionine and 

cysteine.  At mid-log phase, the cells were concentrated 10-fold by pelleting and 

resuspending in the same media used for growth.  Next, 15 L of 35S-

methionine/cysteine mix (Perkin Elmer NEG072) per 50 mL of cells were added to each 

culture and cell aliquots were transferred into an equal volume of 2X Buffer A (50 mM 

sodium azide, 100 mM NaCl, 10 mM Tris-HCl pH 7.4, 5 mM MgCl2, 5 mM NH4Cl, 1 mM 

DTT, 2 L/mL protease inhibitor (Sigma p8215), 200 g/mL cycloheximide) on ice at the 

time points indicated in Fig. 5A.  Cells were pelleted, washed, and then lysed in 1X 

Buffer A using glass beads and alternating cycles of vortexing and incubating on ice.  

Lysates were quantified and an equivalent amount of each time point within a time 

course (typically between 25 and 40 OD260 units) were incubated with rabbit anti-FLAG 

antibody (13.3 L/mL) in 1X Buffer A supplemented with NP40 to 0.1% and 3 L/mL 

protease inhibitor for 1 hour 10 min. at 4°C.  Anti-FLAG antibody-bound His3 protein 

was then immunoprecipitated following a 1 hour incubation with Dynabeads Protein G 

(Invitrogen 10004D).  After removal of the supernatant, the Dynabeads were washed 5 

times with IP Wash Buffer (150 mM Tris-HCl pH 7.5, 125 mM NaCl, 2 mM MgCl2, 0.1% 

NP40) and FLAG-His3 protein was eluted by heating the beads at 95°C for 5 min. in IP 

Elution Buffer (50 mM Tris-HCl pH 7.5, 0.5% SDS, and 50 mM EDTA pH 8.0).  Eluates 

were run on SDS-PAGE gels, transferred onto PVDF membrane, and then exposed to a 
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phosphorimager screen.  Detected 35S-labeled His3 protein was quantified using 

ImageQuant software and normalized to the 2 min. time point for each time course. 
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Figure Legends  

 

Figure 1. Codon-specific translation elongation rate estimates correlate with codon 

influence on mRNA decay. (A) Meta-gene analysis of 28 nucleotide ribosome protected 

fragments, relative to the first nucleotide of the coding sequence (position = 0). Read 

positions are counted based on the 5’ end of the ribosome protected fragments. (B) 

Normalized per-codon translation elongation estimates (EREs), ordered from fastest to 

slowest. The EREs for each of the 61 codons have been standardized to have a mean 

of 0 and a variance of 1. Error bars represent the 95% confidence intervals [95CI] for 

the estimate. We have colored each codon to reflect a codon-specific tAI value (tAIc) 

above (green) or below (red) the median tAI. (C) The best-fit line describing the 

relationship between normalized per-codon EREs and codon stability coefficients 

(CSCs), a measure of the influence of codons on mRNA stability. This relationship takes 

into account the uncertainty in the estimates of elongation rates and CSCs to arrive at a 

more robust estimate of the overall error in the correlation between these values. 

Uncertainties in both ERE and CSC values are included in the plot as the x- and y-axis 

95% confidence intervals [95CI], respectively. The shaded region represents the 95% 

confidence intervals for the relationship between ERE and CSC. (D) Box plots showing 

the distribution of average transcript-level normalized EREs associated with the 

specified levels of percent stabilizing codons within mRNAs globally. Percent stabilizing 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 12, 2018. ; https://doi.org/10.1101/300467doi: bioRxiv preprint 

https://doi.org/10.1101/300467
http://creativecommons.org/licenses/by-nc-nd/4.0/


Hanson, Alhusaini et al.  

30 

codons reflects the proportion of codons in an mRNA with a CSC value greater than 0. 

Average transcript-level EREs are obtained by averaging per-codon EREs across the 

entire coding sequence of an mRNA. Notches reflect the standard error of the overall 

average EREs within each bin. Bin intervals are closed on the left and open on the right. 

 

Figure 2. Translation elongation rates of codons within the ribosomal A-site correlate 

with codon influence on mRNA stability. (A) Forest plot describing the meta-analysis of 

the correlations between normalized elongation rate estimates (EREs) and codon 

stability coefficients (CSCs), a measure of the influence of codons on mRNA stability, 

using data from 11 cycloheximide-minus ribosome profiling experiments. The correlation 

between EREs and CSCs for each dataset are shown by the squares, with the error 

bars representing the associated 95% confidence interval [95CI]. The combined 

Pearson correlation estimate is represented by the large black diamond, with the width 

of the diamond representing the 95% confidence interval of the aggregate correlation 

estimate. I2 (the percentage of the variation across studies that is attributable to true 

between-study heterogeneity) and Cochran’s Q are also reported as standard measures 

of heterogeneity. (B) Bar plot showing the correlation between ERE and CSC values of 

codons located at specific locations within the ribosome protected fragments. The E-

site, P-site, and A-site correspond to the trinucleotide sequence located at the +9, +12, 

and +15 positions within the ribosome protected fragments respectively, and this 

analysis is extended beyond these positions within the ribosome in either direction. The 

dashed lines represents the critical r value, such that values outside of the dashed lines 

represent statistically significant correlations at an uncorrected  = 0.05.  
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Figure 3. Ribosomal A-site decoding drives the relationship between elongation rate 

estimates and mRNA stability. (A) Scatter plot and best-fit line describing the 

relationship between average normalized elongation rate estimates (EREs) across a 

transcript and transcript stability. Transcript stability is plotted as the log of the transcript 

half-life, using data from (Presnyak et al. 2015). The correlation between transcript-level 

ERE and transcript half-life takes into account the per-gene variability in these 

estimates. (B) Forest plot describing the meta-analysis across 11 cycloheximide-minus 

ribosome profiling datasets of the correlation between the log of mRNA half-life and 

either transcript-level ERE (EREcodons + aa; red squares) or transcript-level ERE that takes 

into account the influence of codon identity, but not the influence of amino acid identity, 

on elongation rate (EREcodons only; black squares) with the lines corresponding to the 

95% confidence interval. The aggregate correlation estimates for the EREcodons + aa and 

EREcodons only analyses are represented by the large red and black diamonds, 

respectively, with the width of the diamond corresponding to the 95% confidence 

interval of the aggregate estimate. I2 and Cochran’s Q are also reported as standard 

measures of heterogeneity. (C) Scatter plots of the relationship between normalized 

per-codon ERE and CSC, with grouping based on the properties of the encoded amino 

acid. The best-fit lines in each plot describe the relationship between ERE and CSC for 

each amino acid associated with more than 1 codon. 

 

Figure 4.  Translation efficiency is influenced by codon optimality. (A) Schematic 

representation of a HIS3 mRNA with an N-terminal FLAG tag.  The HIS3 coding 
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sequence was randomly altered using synonymous codons to generate constructs with 

varying percent codon optimality, from 0% to 100%.  The average codon stability 

coefficient (CSC) for each construct is shown.  CSC is a measure of the contribution of 

each codon to mRNA stability, and positive CSC values represent optimal codons while 

negative CSC values represent non-optimal codons. (B) Steady state HIS3 mRNA 

levels expressed from the 0-100% optimal HIS3 constructs were analyzed by Northern 

blot and were quantified relative to an SCR1 loading control. (C) Steady state protein 

levels expressed from the 0-100% optimal HIS3 constructs were analyzed by Western 

blot using anti-FLAG antibody.  While the image presented here illustrates the clear 

correlation between codon optimality and steady state protein abundance using 

equivalent loading for each sample, more accurate quantification of protein levels was 

performed using variably diluted samples to minimize protein saturation of the higher 

optimality constructs.   These more accurate values were used for the analysis shown in 

(Fig. 4D).  The asterisk in this figure indicates the position of a non-specific band that is 

indicative of equal loading in all lanes. (D) Graphical representation of the translation 

efficiency of each HIS3 construct relative to the 0% optimal construct.  Translation 

efficiencies were determined by dividing the steady state protein abundance by the 

steady state mRNA abundance for each construct. 

 

Figure 5.  Codon optimality contributes to the rate of His3 protein production following 

35S-methionine/cysteine labeling. (A) A representative image showing levels of 35S-

methionine/cysteine-labeled His3 protein at each time point following addition of 35S-

methionine/cysteine to S. cerevisiae cells at mid-log phase.  His3 protein expressed 
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from the 0% and 100% optimal HIS3 constructs is presented. (B) Graphical 

representation of the increase in 35S-methionine/cysteine-labeled His3 protein 

abundance over time, relative to the protein abundance at the 2 minute time point, for 

each of the 0-100% optimal HIS3 constructs. (C) The slope of each curve in Fig. 5B, 

normalized to the slope for the 0% optimal construct, is plotted as a measure of the 

relative rate of 35S incorporation per minute for each HIS3 construct.  

 

Supplemental Figure S1. Comparison of elongation rate estimates from 11 S. 

cerevisiae datasets. Heat map of elongation rate estimates from 11 datasets, 

standardized within each dataset to allow easy comparison of rates across datasets. 

This heat map reveals strong groupings of codons into relatively fast (red) and slow 

(blue) sets that hold across most datasets analyzed. On the right, the correlation matrix 

of elongation rates across all datasets is presented, showing the strong positive 

correlations between many datasets, as well as highlighting those datasets that are less 

well correlated with the others. Pearson correlation coefficients are encoded in the color 

of the cells in the matrix, as well as in the printed text within each cell.  
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Supplemental Methods 

Ribosome profiling and RNA sequencing data processing 

Adaptors were trimmed from the RNA and ribosome profiling datasets using cutadapt with the 

following parameters: -a CTGTAGGCACCATCAAT –trim-n –m 24 –M 36 –O 6. Other datasets 

were subject to adaptor trimming as appropriate using study-specific adaptor sequences, but 

otherwise identical trimming parameters. The ribosome profiling reads were then aligned 

against an index of S. cerevisiae ribosomal RNA sequences from Ensembl using bowtie with the 

following parameters: -D 15 –R 2- N 1 –L 25 –I S,1,0.75. Sequences that failed to align to the 

ribosomal RNA index were taken to be from messenger RNA and were aligned to the entire S. 

cerevisiae genome using HISAT2, with release 84 of Ensembl’s gene annotations of the 

sacCer3 genome (ftp://ftp.ensembl.org/pub/release-84/gtf/saccharomyces_cerevisiae/

Saccharomyces_cerevisiae.R64-1-1.84.gtf.gz) to guide alignment to the transcriptome. Finally, 

multi-mapped reads were discarded and uniquely mapped ribosome footprint reads were 

transformed to transcriptome-based coordinates for further analysis using the 

sam2transcriptome python script. Ribosome footprint reads were then assigned to the A-site 

codon using the method outlined previously (Ingolia et al. 2009), where the P-site is identified 

based on the well characterized pileup of ribosome protected fragments over the start codon, 

with the P-site generally located 12 nucleotides into the fragments located at this start site peak, 

and the A-site another 3 nucleotides past this point. RNA-sequencing data was quantified with 

htseq-count (Anders et al. 2015) to estimate per-gene expression as reads per million mapped 

reads (RPM).  

Model to estimate elongation rate 

Our primary aim was to extract estimates of the relative rates at which ribosomes move off of 

specific codons. Per-codon elongation rates have been estimated in the past (Qian et al. 2012; 

Pop et al. 2014; Hussmann et al. 2015; Weinberg et al. 2016). However, the common approach 
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to estimating codon-specific elongation times has been to simply calculate the ribosome density 

over a codon relative to the frequency of a codon in an mRNA, and then sum these values up 

across the entire transcriptome. This approach is intuitive and easily calculated, but it is difficult 

to assess the confidence of the estimates generated from this procedure. There is often no 

control for biases introduced by those genes with sparse ribosome protected fragment 

coverage, which are weighted equally with the rest of the transcriptome in the default approach. 

To extract more robust estimates of codon-specific ribosome elongation rates, we propose the 

following model, which is based on the assumption that ribosome initiation is typically a much 

slower process than elongation (Shah et al. 2013). Let !  represent the initiation rate for a gene 

g, and !  be the average elongation time for a codon type 

! . Thus, under our assumption, for a single mRNA 

molecule from gene g, the proportion of time that a ribosome can be found on a position with 

codon c is: 

 ! .  

Let the relative concentration, as measured by RNA-seq reads mapped to gene g per million 

mapped reads for gene g be denoted by ! , and let the number of c codons in gene g be ! . 

Also, let !  be the number of ribosome footprints mapping to c codons in gene g. Based on 

this, we assume that !  follows an overdispersed Poisson distribution with the following mean: 

!  

                               !  

ρg

τc

c ∈ {A A A, A AC, A AG, …, T T T}

ρgτc

Mg Ng,c

Yg,c

Yg,c

Ε(Yg,c) = Mg Ng,cρgτc

= exp[log(Mg Ng,c) + log(ρg) + log(τc)]
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An overdispersed Poisson distribution was chosen to model ribosomal reads as it has 

previously been found that the sampling rate of RNA fragments from their associated transcripts 

can rarely be described as following a Poisson distribution due to uneven scaling of variability 

with the mean (Soneson and Delorenzi 2013).  It must be understood that there is a degeneracy 

in this model; there are an infinite number of parameters which fit the data equally well. 

However, we can estimate the values !  relative to ! . To estimate the model parameters, we 

used a generalized linear mixed model which assumes that !  where !  

and !  are all estimated from the data using maximum likelihood with an overdispersed 

Poisson distribution. The mixed model gets around the degeneracy (i.e. identifiability problem) 

by assuming that on average across all genes ! .   However, it must be 

understood that the resultant parameter estimates (!  and ! ) are relative. Given that estimates 

of codon-specific elongation times are relative, we will adopt the convention of first calculating 

the relative elongation rate !  and then normalizing the resultant rate estimates so that 

!  and ! , for ease of interpretability.  

This model implicitly more highly weights those transcripts with a greater density of information 

on ribosome dynamics, removing potential biases due to sparse ribosome protected fragment 

density and avoiding the need to set an arbitrary threshold for ribosome coverage in an attempt 

to mitigate these effects. However, because the model can be easily represented as a linear 

mixed effects model, it can be estimated directly from ribosome profiling data using out of the 

box solvers in MATLAB or R, making it readily applicable to a variety of datasets. 

τc ρg

log(ρg)~Nor mal(0,s2) s2

log(τc)

Ε[log(ρg)] = 0

ρ̂g τ̂c

λ̂c = ρ̂c

−1

Ε[λ̂c] = 0 s2 = 1
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Ribosome profiling and RNA sequencing data analysis 

For each gene, we first find the number of codons c !  in gene g, and also calculate the total 

number of ribosome protected fragments over gene g with the A-site mapped to codon c ! . 

Relative RNA concentration !  is calculated using htseq-count and standardized as RPM, as 

outlined above. This procedure is performed for each gene in the dataset, with no restriction on 

total ribosome density or gene length, though only genes with non-zero RNA expression and 

RPF counts are included. Data from between 4188 and 5245 genes were included, depending 

on the dataset analyzed, ensuring that we are able to leverage the majority of protein coding 

genes for analysis. For the model, data are structured as long-form arrays, with the number of 

rows equal to the product of the number of genes considered times the number of amino acid-

coding codons (61), and the number of columns equal to 5 (codon identity, gene identity, 

number of ribosome protected fragments over a given codon in a gene, the total occurrence of 

that codon in a gene, and the estimate of gene expression). The model itself is fit using the 

fitglme function in the Statistical Toolbox of MATLAB, version R2016a. The code used to form 

ribosome profiling data into appropriate datasets, and the MATLAB code used to specify and 

run the model is available as supplementary information.  All other statistical analyses were 

carried out using the statsmodels and scipy packages for Python, and Matplotlib and Seaborn 

were used to generate Fig. 1-3. The method used to calculate the statistical significance of a 

change in Pearson correlation coefficient was taken from (Cohen et al. 2013). Briefly, the test 

statistic for the change in the Pearson correlation coefficient can be found as follows: 

!  

(Ng,c)

(Yg,c)

(Mg)

z1−2 = tanh−1(r1) − tanh−1(r2)

(N1 − 3)−1 + (N2 − 3)−1
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where !  is the number of observations used to calculate !  This statistic is drawn from a 

normal distribution, and the corresponding p-value can be found with the survival function of a 

normal distribution with !  and ! .  

Calculation of robust Pearson correlation coefficients  

The standard method of calculating Pearson correlation coefficients has no facility to take into 

account the precision associated with the individual quantities that make up vectors !  and ! , 

the two vectors for which the correlation is to be calculated. Therefore, we chose to leverage the 

modeling capabilities of Stan (Carpenter et al. 2017) to specify a model where !  and !  are 

latent variables sampled from a Gaussian distribution such that !  and 

! , where !  and !  are the point estimates for each quantity, and !  and 

!  are the standard errors associated with the values in !  and ! , respectively. !  and !  may 

be CSC values and ribosome elongation rate estimates, respectively, or gene-level average 

elongation rates and mRNA half-lives, depending on the needs of the analysis. Finally, we find 

the value of ! , the Pearson correlation coefficient, to maximize the likelihood of the latent 

variables !  and !  as samples drawn from a multivariate Gaussian distribution with means 

!  and the covariance matrix described as follows: 

!  

where !  and !  are the standard deviations of !  and ! , respectively, and are also estimated in 

the model. The resultant sampled !  values then represent the maximum a posteriori (MAP) 

distribution of ! . The code to accomplish this was adapted from (Lee et al. 2014). All models in 

Stan were run with 1000 warmup samples and 1000 acquisition samples, across four separate 

Ni ri .

μ = 0 σ = 1

X Y

X Y

X ∼ Nor mal(X, Λ1)

Y ∼ Nor mal(Y, Λ2) X Y Λ1

Λ2 X Y X Y

r

X Y

μX, μY

(X, Y) ∼ MvGau ssian((μX, μY ), [ σ2
1 σ1σ2r
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chains. Models were assessed for convergence by ensuring that the scale reduction factor 

across chains, ! , was equal to 1.  

Meta-analysis 

The meta-analysis of Pearson correlation coefficients follows the Inverse Variance method for 

calculating the random effects estimate ! , using the DerSimonian–Laird estimator for 

calculating the between-study variability parameter ! , and employing the  Hartung and Knapp 

correction when estimating ! . All meta-analyses were implemented in Python using 

custom code based on the methods presented in (Schwarzer et al. 2015). Briefly, let the 

population estimate of the correlation between CSC and translation elongation rate (or average 

elongation rate and mRNA half-life), ! , be expressed as the normally distributed Fisher’s 

! , with the point estimate and variance of !  estimated from the a posteriori 

distribution of !  calculated from Stan. With !  sampled from a normal distribution with known 

variance, for each dataset we can define individual estimates of !  for dataset !  as: 

!  

Where !  is the true transformed correlation coefficient in the population of datasets, 

!  captures the error due to heterogeneity between studies, while ! , 

scaled by the known standard error of ! , represents within-study error. The 

estimate of !  is simply the weighted average of individual estimates ! , where the weight with 

which each study is considered in the analysis, ! , is inversely proportionate to the sum of the 

study-specific variance plus the between-study variance. ! , leaving us with 

̂
R

θR

τ2

var(θR)

r

z = tanh−1(r) z

r z

z k

zk = z + u K + σkϵk

z

u k ∼ N(0,τ2) ϵk ∼ N(0,1)

σ2
k = var(zk)

z zk

w*k

w*k = 1
(τ2 + σ2
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!  

!  

In order to calculate the 95% confidence interval around ! , take ! . To 

express the results of this analysis is terms of ! , simply take the hyperbolic tangent of !  and the 

upper and lower bounds of !  calculated above. 

Calculation of amino acid-corrected elongation rate 

An imaginary polypeptide can be perfectly efficient if every amino acid is coded with the fastest 

elongating codon, or perfectly inefficient if every amino acid is coded with the slowest elongating 

codon. Any further changes would require altering the amino acid sequence. We wished to 

calculate the elongation rate of a natural transcript relative to these two extremes, in order to 

remove effects of amino acid choice and effectively correct for any biases due to a transcript 

being enriched in amino acids that happen to be associated with faster or slower total ribosome 

transit times, regardless of the decoding speed. To accomplish this, we use elongation rate 

estimates to find the maximum and minimum elongation rate associated with each amino acid. 

Then, for a given transcript, we calculate the hypothetical maximum (! ) and minimum 

( ! ) average elongation rates given the amino acid sequence associated with the transcript. 

The correction is then calculated as follows: ! , where 

!  is the average elongation rate based on the actual codon sequence of the transcript. 

z =
∑K

k= 1 wk*zk
∑K

k= 1 wk*

var(z ) = 1
K

K

∑
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w*k
∑K

k= 1 wk*
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z z ± t(K−1;1− α
2 ) var(z )

r z

z

ERmax
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Supplementary Figure Legends 

Supplementary Figure S1: Heat map of elongation rate estimates from 11 datasets. Heat 

map of elongation rate estimates from 11 datasets, standardized within each dataset to allow 

easy comparison of rates across datasets. This heat map reveals strong groupings of codons 

into relatively fast (red) and slow (blue) sets that hold across most datasets analyzed. On the 

right, the correlation matrix of elongation rates across all datasets is presented, showing the 

strong positive correlations between many datasets, as well as highlighting those datasets that 

are less well correlated with the others. Pearson correlation coefficients are encoded in the color 

of the cells in the matrix, as well as in the printed text within each cell.  

References 

Anders S, Pyl PT, Huber W. 2015. HTSeq--a Python framework to work with high-
throughput sequencing data. Bioinformatics 31: 166-169. 

Carpenter B, Gelman A, Hoffman M, Lee D, Goodrich B, Betancourt M, Brubaker M, 
Guo J, Li P, 

Riddell A. 2017. Stan: A Probabilistic Programming Language. Journal of 
Statistical Software 76(1). 

Cohen J, Cohen P, West SG, Aiken LS. 2013. Applied Multiple Regression/Correlation 
Analysis 

for the Behavioral Science. 
Hussmann JA, Patchett S, Johnson A, Sawyer S, Press WH. 2015. Understanding Biases 

in Ribosome Profiling Experiments Reveals Signatures of Translation Dynamics in 
Yeast. PLoS Genet 11: e1005732. 

Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. 2009. Genome-wide analysis 
in vivo of translation with nucleotide resolution using ribosome profiling. 
Science (New York, NY) 324: 218-223. 

Lee M, Wagenmakers E. 2014. Bayesian cognitive modeling: A practical course.  
Pop C, Rouskin S, Ingolia NT, Han L, Phizicky EM, Weissman JS, Koller D. 2014. Causal 

signals between codon bias, mRNA structure, and the efficiency of translation 
and elongation. Molecular systems biology 10: 770-770. 

Qian W, Yang JR, Pearson NM, Maclean C, Zhang J. 2012. Balanced codon usage 
optimizes eukaryotic translational efficiency. PLoS Genet 8: e1002603. 

Schwarzer G, Carpenter J. 2015. Meta-analysis with R.  
Shah P, Ding Y, Niemczyk M, Kudla G, Plotkin JB. 2013. Rate-limiting steps in yeast 

protein translation. Cell 153: 1589-1601. 
Soneson C, Delorenzi M. 2013. A comparison of methods for differential expression 

analysis of RNA-seq data. BMC Bioinformatics 14: 91. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 12, 2018. ; https://doi.org/10.1101/300467doi: bioRxiv preprint 

https://doi.org/10.1101/300467
http://creativecommons.org/licenses/by-nc-nd/4.0/


Weinberg DE, Shah P, Eichhorn SW, Hussmann JA, Plotkin JB, Bartel DP. 2016. 
Improved Ribosome-Footprint and mRNA Measurements Provide Insights into 
Dynamics and Regulation of Yeast Translation. Cell reports 14: 1787-1799. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 12, 2018. ; https://doi.org/10.1101/300467doi: bioRxiv preprint 

https://doi.org/10.1101/300467
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lareau

Green

Pop

Nedialkova

Cai

Gerashchenko

(Our Data)

Young

Weinberg

Jan

Williams

-1.0             -0.5              0               0.5              1.0

Correlation Coefficient

W
illiam

s

Jan

W
einberg

Young

(O
ur D

ata)

G
erashchenko

C
ai

N
edialkova

Pop

G
reen

Lareau

C
odons

Datasets ERE

30-3

ER
E: Elongation R

ate Estim
ate

H
anson et al., Figure S1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 12, 2018. ; https://doi.org/10.1101/300467doi: bioRxiv preprint 

https://doi.org/10.1101/300467
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S1: Datasets

Dataset Strain/Cell Type Media GEO Accession # Dataset IDs RNA-seq Dataset IDs

This study BY4741 SD GSE102837   

Cai BY4743 YPD GSE51164 GSM1239959 GSM1239961

Gerashchenko BY4741 YPD GSE59573 GSM1439584  

Guydosh BY4741 YPD GSE52968 GSM1279570 GSM1279566

Jan sec63::SEC63-
mVenus-
BirA::HIS5 
rpl16a::RPL16a-
HA-TEV-AVI 
rpl16b::RPL16b-
HA-TEV-AVI 
ura3Δ0 met15Δ0 
his3Δ1

SD + D-
biotin

GSE61012 GSM1495521  

Lareau BY4741 YEPD GSE58321 GSM1406453 
GSM1406454 
GSM1406455

 

Pop 288C Unknown GSE63789 GSM1557447 GSM1557442
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Williams om45::OM45-
mVenus-
BirA::HIS5 
rpl16a::RPL16a-
HA-TEV-AVI 
rpl16b::RPL16b-
HA-TEV-AVI 
leu2::pPGK1-
BirA::LEU2 ura3Δ0 
met15Δ0 his3Δ

SD + D-
biotin

GSE61011 GSM1495503  

Nedialkova BY4741 YPD GSE67387 GSM1646084 
GSM1646085 
GSM1646086

GSM1646027 
GSM1646028 
GSM1646029

Young BY4741 YPD GSE69414 GSM1700885 GSM1700893

Weinberg BY4741 YPD GSE53313 GSM1289257 GSM1289256

CFBE CFBE41o- DMEM/MEM 
+ 10% FBS 
+ 2 mM L-
glutamate

GSE74365 (ribo-
seq) GSE63900 
(rna-seq)

GSM1918965 
GSM1918967 
GSM1918969

GSM1560010 
GSM1560011 
GSM1560012
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Table S2: Yeast 
strains

Strain name Genotype Source

yJC2088 MATa, ura3, leu2, his3, met15, [100% optimal HIS3, URA3] This study

yJC2229
MATa, ura3, leu2, his3, met15, [100% optimal HIS3, URA3], [0% optimal HIS3, 
LEU2] This study

yJC2419 MATa, ura3, leu2, his3, met15, [N-terminally FLAG tagged 0% optimal HIS3, URA3] This study

yJC2420 MATa, ura3, leu2, his3, met15, [N-terminally FLAG tagged 10% optimal HIS3, URA3] This study

yJC2421 MATa, ura3, leu2, his3, met15, [N-terminally FLAG tagged 20% optimal HIS3, URA3] This study

yJC2422 MATa, ura3, leu2, his3, met15, [N-terminally FLAG tagged 30% optimal HIS3, URA3] This study

yJC2423 MATa, ura3, leu2, his3, met15, [N-terminally FLAG tagged 40% optimal HIS3, URA3] This study

yJC2424 MATa, ura3, leu2, his3, met15, [N-terminally FLAG tagged 50% optimal HIS3, URA3] This study

yJC2425 MATa, ura3, leu2, his3, met15, [N-terminally FLAG tagged 60% optimal HIS3, URA3] This study

yJC2426 MATa, ura3, leu2, his3, met15, [N-terminally FLAG tagged 70% optimal HIS3, URA3] This study

yJC2427 MATa, ura3, leu2, his3, met15, [N-terminally FLAG tagged 80% optimal HIS3, URA3] This study

yJC2428 MATa, ura3, leu2, his3, met15, [N-terminally FLAG tagged 90% optimal HIS3, URA3] This study

yJC2429
MATa, ura3, leu2, his3, met15, [N-terminally FLAG tagged 100% optimal HIS3, 
URA3] This study

yJC2488 MATα, ura3, leu2, his3, lys2, [N-terminally FLAG tagged 100% optimal HIS3, URA3] This study

yJC2489 MATα, ura3, leu2, his3, lys2, [N-terminally FLAG tagged 40% optimal HIS3, URA3] This study

yJC2490 MATα, ura3, leu2, his3, lys2, [N-terminally FLAG tagged 0% optimal HIS3, URA3] This study
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yJC2491 MATα, ura3, leu2, his3, lys2, [N-terminally FLAG tagged 10% optimal HIS3, URA3] This study

yJC2492 MATα, ura3, leu2, his3, lys2, [N-terminally FLAG tagged 20% optimal HIS3, URA3] This study

yJC2493 MATα, ura3, leu2, his3, lys2, [N-terminally FLAG tagged 30% optimal HIS3, URA3] This study

yJC2494 MATα, ura3, leu2, his3, lys2, [N-terminally FLAG tagged 50% optimal HIS3, URA3] This study

yJC2495 MATα, ura3, leu2, his3, lys2, [N-terminally FLAG tagged 60% optimal HIS3, URA3] This study

yJC2496 MATα, ura3, leu2, his3, lys2, [N-terminally FLAG tagged 70% optimal HIS3, URA3] This study

yJC2497 MATα, ura3, leu2, his3, lys2, [N-terminally FLAG tagged 80% optimal HIS3, URA3] This study

yJC2498 MATα, ura3, leu2, his3, lys2, [N-terminally FLAG tagged 90% optimal HIS3, URA3] This study
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