
 1 

In silico mouse study identifies tumor growth kinetics as biomarkers for the outcome of 

anti-angiogenic treatment 

 

Qianhui Wua, Alyssa D. Arnheim, and Stacey D. Finleya,c* 

 

aDepartment of Biomedical Engineering, University of Southern California, Los Angeles, 

California, United States of America 

bDepartment of Biomedical Engineering, Boston University, Boston, Massachusetts, United 

States of America 

cDepartment of Chemical Engineering and Materials Science, University of Southern California, 

Los Angeles, California, United States of America 

 

 

 

* Corresponding author 

Stacey D. Finley 

1042 Downey Way, DRB 140 

Los Angeles, CA 90089 

Phone: 213-740-8788 

Email: sfinley@usc.edu  

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2018. ; https://doi.org/10.1101/300566doi: bioRxiv preprint 

https://doi.org/10.1101/300566
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 

Angiogenesis is a crucial step in tumor progression, as this process allows tumors to recruit new 

blood vessels and obtain oxygen and nutrients to sustain growth. Therefore, inhibiting 

angiogenesis remains a viable strategy for cancer therapy. However, anti-angiogenic therapy 

has not proved to be effective in reducing tumor growth across a wide range of tumors, and no 

reliable predictive biomarkers have been found to determine the efficacy of anti-angiogenic 

treatment. Using our previously established computational model of tumor-bearing mice, we 

sought to determine whether tumor growth kinetic parameters could be used to predict the 

outcome of anti-angiogenic treatment. A model trained with datasets from six in vivo mice 

studies was used to generate a randomized in silico tumor-bearing mouse population. We 

analyzed tumor growth in untreated mice (control) and mice treated with an anti-angiogenic 

agent and determined the Kaplan-Meier survival estimates based on simulated tumor volume 

data. We found that the ratio between two kinetic parameters, k0 and k1, which characterize the 

tumor’s exponential and linear growth rates, as well as k1 alone, can be used as prognostic 

biomarkers of population survival outcome. Our work demonstrates a robust, quantitative 

approach for identifying tumor growth kinetic parameters as prognostic biomarkers and serves 

as a template that can be used to identify other biomarkers for anti-angiogenic treatment.  

 

Background:  

Tumor angiogenesis results in the vascularization of a tumor. This process facilitates tumor 

growth by allowing tumor cells to obtain oxygen and nutrients through the newly formed blood 

vessels. As excessive vascularization is often seen in many types of cancer, inhibiting 

angiogenesis is thought to decrease tumor growth. Therefore, anti-angiogenic treatment is 

pursued as an attractive therapeutic strategy in oncology [1, 2].  
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Bevacizumab is a humanized monoclonal antibody against vascular endothelial growth factor A 

(VEGF), a key angiogenic promoter in tumors [1]. This drug has been approved as a 

monotherapy or in combination with chemotherapy for many cancers, including renal cell 

carcinoma, metastatic colorectal cancer, non-small cell lung cancer, and metastatic cervical 

cancer [3]. It also gained accelerated approval for treatment of metastatic breast cancer through 

the US Food and Drug Administration (FDA) in 2008. However, subsequent results showed that 

bevacizumab failed to improve overall survival and that the drug elicited significant adverse side 

effects. Consequently, the FDA revoked its approval for use of bevacizumab for first-line 

metastatic breast cancer in late 2011 [4, 5]. Several Phase II and III clinical stage studies have 

also revealed contradicting results regarding the benefit of add-on bevacizumab in the 

neoadjuvant treatment setting for breast cancer patients [6–11]. Altogether, these studies 

illustrate that angiogenic therapy may not be effective across a wide range of patients. Indeed, 

breast cancer is a genetically and clinically heterogeneous cancer type, which makes identifying 

optimal therapies a challenge [12]. 

 

More broadly, there is a need for biomarkers to predict the response to treatment and identify 

the tumors for which anti-angiogenic treatment will be effective. A number of mechanistic 

biomarkers have been investigated for their ability to predict response to anti-angiogenic 

treatment and to determine an optimal treatment strategy. Promising biomarker candidates 

include the concentration ranges of circulating angiogenic molecules (such as plasma levels of 

VEGF) [13, 14], tissue markers (tumor microvessel density) [15–18], and imaging parameters 

(MRI-measured Ktrans) [15, 19, 20]. However, currently no validated and robust biomarkers are 

available that can guide selection of patients for whom anti-angiogenic therapy is most 

beneficial [5, 15]]. 
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As an alternative, tumor growth kinetics may be used as biomarkers. There is a body of work 

that investigates how tumor growth kinetics can serve as prognostic biomarkers of the response 

to anti-angiogenic treatment [21–25]. Recently, a study showed that volume-based tumor 

growth kinetics may be a reliable indicator of treatment efficacy, and are in good agreement with 

standardized approaches for assessing response treatment [21]. Moreover, we developed a 

computational systems biology model to further investigate the relationship between tumor 

growth kinetics and the response to anti-angiogenic therapy [26]. The model predicts VEGF 

distribution and kinetics in tumor-bearing mice, where the dynamic tumor volume is a function of 

the pro-angiogenic complexes involving VEGF-bound receptors (the “angiogenic signal”). By 

fitting the model to in vivo experimental data, we estimated the kinetic parameters that 

characterize tumor growth. We then used the trained model to predict the effect of anti-VEGF 

treatment on tumor volume, using only the estimated parameter values. The model predictions 

of tumor growth in response to anti-VEGF treatment closely matched experimental data. In this 

study, we concluded that there is a strong correlation between particular intrinsic kinetic 

parameters and the response to anti-VEGF treatment in terms of the end relative tumor volume 

(RTV). 

 

Taking advantage of our established model framework and its strong predictive power, in the 

present study, we use this model to further investigate the utility of tumor growth kinetics to 

serve as a biomarker for anti-angiogenic treatment outcome. We performed an in silico 

randomized mouse study and estimated the survival of tumor-bearing mice in response to anti-

VEGF treatment. Here, we introduced variability in the mouse population by allowing the tumor 

growth kinetic parameter values to vary within defined ranges. By generating these large, 

heterogeneous in silico population of tumor-bearing mice, we can eliminate the likely bias 

caused by animals dropping out in experimental xenograft studies due to limitation of the tumor 

burden. In general, the average tumor size, particularly in the control group, can be 
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underestimated in an experimental study. This can result in an underestimation of the treatment 

effect, because large tumors are excluded from the analysis [27]. In contrast, computational 

modeling avoids these limitations and enables performance metrics (e.g. survival estimates) to 

be calculated [28]. Furthermore, computational systems biology is a powerful tool for studying 

how individual components contribute to the function and behavior of a large system, and has 

been applied to study cancer at multiple scales [29–31]. Such computational models have been 

used to identify predictive biomarkers and to enhance the efficacy of anti-angiogenic therapies 

[13, 32, 33]. 

 

In our previous work, we focused on the end RTV to evaluate the contribution of parameters to 

the treatment outcome. In this study, we use more reliable and appropriate readouts. We 

implemented our tumor growth kinetic model with time-to-event analysis [34]. Specifically, we 

simulated the Kaplan-Meier survival curves of the in silico mice based on the population tumor 

growth data. We then examined tumor growth kinetic parameters as potential prognostic 

biomarkers to distinguish the tumor response to anti-angiogenic treatment amongst the stratified 

groups, by comparing the predicted absolute tumor volume time courses and survival estimates. 

 

Results:  

In silico mouse population tumor growth in the whole-body model 

We performed an in silico randomized mouse study using our whole-body mouse model (Figure 

1). The model was previously fitted to each of six independent experimental datasets of control 

tumor volume in mice bearing MDA-MB-231 xenograft tumors and validated with a separate 

dataset [26]. The values of k0 and k1 (the rates of exponential and linear growth, respectively), 

and Ang0 (the basal angiogenic signal at time, t=0) were estimated. Here, we simulated the 

tumor growth of the six in silico populations of mice (henceforth referred to as “Roland”, 

“Zibara”, “Tan”, “Volk2008”, “Volk2011a”, and “Volk2011b”), with and without anti-VEGF 
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treatment. For each population, the values of parameters k0 and k1 are randomly varied 

simultaneously with a uniform distribution within the ranges of their estimated values from our 

previous model fitting. Previously, a sensitivity analysis showed that the Ang0 parameter was an 

influential parameter to the model output when the model was fitted; however, further analysis 

using partial least squares regression (PLSR) indicated that Ang0 was not a strong predictor of 

response to treatment [26]. Therefore, in each case, Ang0 is set as the median of the range of 

its estimated values. We generated 400 in silico mice for each of the six cases. 

 

Our simulations show that among the six cases, the anti-VEGF treatment has differential effects 

in reducing the tumor growth, as compared to the control group (Figure 2). For all cases, we 

used a single treatment protocol different from protocols used in each of the six experimental 

studies, in order to compare the predicted results without bias (termed “protocol A”). For 

Roland, Tan, Volk2008, and Volk2011b (Figure 2A,C,D,F), the treated tumor volumes are less 

than the untreated tumors. Meanwhile, for Zibara and Volk2011a (Figure 2B,E), there is no 

apparent difference in the tumor volumes for the treated and control groups. Thus, the model 

simulations reveal distinct differences in the effect of anti-VEGF treatment. 

 

We further studied the effect of anti-VEGF treatment on tumor growth using RTV, the ratio 

between the mean tumor volumes of the treated and control groups. We calculated the RTV at 

each time point for all simulated tumors (Figure S1). We also determined the RTV at the end of 

treatment (Figure S2). The RTV values in all cases are smaller than one, indicating that the 

anti-VEGF treatment limits tumor growth, similar to what has been observed experimentally [35–

39].  For Zibara and Volk2011a, the endpoint RTV values are just slightly less than one (Figure 

S2B,E), which is an expected result based on the similar tumor growth curves between the 

control and treated groups (Figure 2B,E). Comparing the endpoint RTV among all six cases, 

the effect of anti-VEGF treatment in limiting tumor growth is the strongest for Volk2011b (RTV = 
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0.459 ± 0.054), followed by Roland (0.454 ± 0.096), Volk2008 (0.615 ± 0.066), and Tan (0.638 ± 

0.049). This treatment effect is the least significant in Zibara (0.979 ± 0.009) and Volk2011a 

(0.987 ± 0.013). 

 

Kinetic parameters as potential predictor for stratified population response 

We investigated the relationship between the parameters that characterize tumor growth 

kinetics and the effect of the anti-VEGF treatment. Previously, our PLSR analysis indicated that 

for nearly all pairwise comparisons, if the RTV values for two datasets were significantly 

different, their k0/k1 ratios were also significantly different. This implies that the k0/k1 is a large 

contributor in predicting the endpoint RTV [26]. Additionally, plotting the RTV versus k0, k1, and 

k0/k1 shows some relationship between the endpoint RTV and the tumor growth parameters 

(Figure S2). Therefore, we investigated whether these tumor growth parameters could stratify 

the simulated mouse populations, and distinguish their tumor growth and survival estimates. To 

address this question, we used our simulated tumor growth data for each case, noting the 

number of in silico mice at each time point. We record the time at which a mouse is “sacrificed”, 

which happens when the tumor volume reaches 2 cm3, as typically done in experimental studies 

[40]. This approach for modeling population survival allows us to closely mimic the practice in 

preclinical animal studies, and provides easily interpretable insights for researchers and 

clinicians. 

 

We used the simulated population survival data to determine if k0, k1, or k0/k1 can be used to 

discriminate between tumors for which anti-VEGF treatment is effective or not. We found that in 

each case, a range of k0/k1 ratios, as well as k1, can be used to distinguish the population 

response to the anti-VEGF treatment (Figure 3B,C). We term these “ratiothresh” and “k1,thresh”, the 

values of the growth kinetic parameters that separate the simulated mouse population into 

groups with significantly different survival estimates. In contrast, we did not find any values of k0 
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alone that could be used to separate the simulated mouse population into groups whose 

survival estimates are statistically different for Roland, Zibara, and Volk2011b cases. For Tan 

and Volk2008, we only found one such k0 value in each case (Figure 3A). 

 

Interestingly, although the ranges of generated k0/k1 ratios and k1 were different for each of the 

six sets of tumor growth data, we found that there is an overlap among the potential ratiothresh or 

k1,thresh values found in each of the six cases. The common range of ratiothresh is 9.757 to 17.982, 

and that of k1,thresh is 1.391×10-6 to 1.931×10-6. This means that separating the treatment group 

by any k1,thresh or ratiothresh value within its respective range will produce two groups of treated 

mice that have statistically different survival estimates. Specifically, the treated group with k0/k1 

ratios larger than the ratiothresh value has a better survival estimate than the treated group with 

smaller ratios. The treated group with k1 smaller than the k1,thresh value has a better survival 

estimate than the treated group with larger k1.  

 

We used the median ratiothresh value to illustrate this distinction. We compare the survival 

estimates for a total of six groups: 1) all mice in the control group; 2) all mice in the treatment 

group; 3) control group with k0/k1 < ratiothresh; 4) control group with k0/k1 > ratiothresh; 5) treatment 

group with k0/k1 < ratiothresh; and 6) treatment group with k0/k1 > ratiothresh. We generated the 

Kaplan-Meier survival curves for these groups for each of the six cases investigated (Figure 4). 

We also estimated the median survival of the six groups in each case (Table 1), the Mantel-

Haenszel hazard ratio (HR), with 95% confidence interval (CI), and the p-values from the 

Mantel-Cox log rank test for the survival curve comparison (Table 2). When comparing two 

groups, if the HR is less than one, the first group has a lower death rate (see Methods). 

Together these analyses emphasize that mice with larger k0/k1 ratios survive for longer, with p-

value < 0.05. Interestingly, for Zibara and Volk2011a, although the anti-VEGF treatment does 

not significantly reduce tumor growth and therefore does not yield a better survival estimate for 
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the treated groups compared to their control groups (Figures 2B,E and 4B,E), the stratified 

groups yield significantly different survival estimates. That is, the control and treated groups with 

k0/k1 ratios larger than ratiothresh have better survival estimates than those with smaller k0/k1 

ratios. 

 

We performed a similar analysis using the median k1,thresh value to show the distinction between 

the survival estimates (Figure S3). The control and treated groups with k1 smaller than k1,thresh 

have better survival estimates than those with larger k1 values. We also estimated the median 

survival of the six groups separated using the median k1,thresh (Table 3), the Mantel-Haenszel 

HR, and the p-values from the Mantel-Cox log rank test for the survival curve comparison 

(Table 4). From these analyses, mice with smaller k1 survive longer than those with larger k1, 

and the HR is smaller than one (p<0.05). 

 

Alternative treatment strategies to improve survival estimates 

We next sought to understand whether alternative treatment protocols can effectively reduce 

tumor volume for the Zibara and Volk2011a cases, since the baseline protocol we used did not 

significantly affect tumor volume. For the Zibara case, we simulated the original treatment 

protocol used in the experimental study (termed “protocol Z”). This protocol starts the 10 mg/kg 

biweekly treatment upon tumor engraftment (assuming the initial tumor volume to be 0.004 cm3) 

[36]. The predicted tumor volumes are smaller in the treated group (Figure S4A), recapitulating 

the findings from the published experimental study. The predictions may suggest that in this 

case, starting the treatment earlier is more effective in limiting the tumor growth. For mice with 

k0/k1 ratios larger than the median ratiothresh value (13.689), or with k1 smaller than the median 

k1,thresh value (1.661×10-6), the HR between the treated and control groups is smaller than one, 

and the survival curves are significantly different (p<0.0001) (Tables 2 and 4).  
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For Volk2011a, we simulated treatment termed “protocol V11a”, which starts the 10 mg/kg 

biweekly treatment when the tumor volume reaches 0.5 cm3, a start time extracted from the 

published preclinical study [39]. After 12 weeks, the simulated mean tumor volumes in the 

treated group are significantly smaller than the control tumors (Figure S4B). However, the 

survival estimates were not significantly different (p>0.05). Again, the treated group with k0/k1 

ratios larger than the median ratiothresh, or with k1 smaller than the median k1,thresh, has a 

significantly better survival estimate than the opposite group (p<0.0001) (Tables 2 and 4). This 

phenomenon is similar to that observed in the Volk2011a case using protocol A, where the two 

groups separated according to the k0/k1 ratio or k1 have distinct survival estimates, but there is 

no significant difference between the treated and control groups. 

 

Finally, we explored whether another treatment protocol could significantly improve the survival 

estimates for the treated group compared to the control. We simulated protocol V11a-D, where 

biweekly treatment starts when the tumor volume reaches 0.5 cm3, and the drug dosage is 

doubled to 20 mg/kg. This treatment protocol significantly limits the tumor growth (Figure S4C), 

and the survival curves are significantly better for the treated group compared to the control 

(p<0.0001). Overall, the treated and control groups have an HR of 0.2016 (95% CI: 0.1343-

0.3027) (Table 2).  

 

Validation of thresholds using an independent dataset 

To validate the use of the range of ratiothresh and k1,thresh values that we found, we used a recently 

published independent set of data that measures tumor growth in mice with MDA-MB-231 

xenografts, with or without bevacizumab treatment [41]. First, we fit the model to the measured 

tumor volumes without treatment. We obtained 12 sets of estimated parameter values for k0, k1, 

and Ang0 that allow the model to best fit to the control data. We then validated the fitted model 
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by simulating anti-VEGF treatment and comparing to the experimental measurements. The 

predicted tumor growth with treatment matches closely to the experimental data (Figure 5A).  

 

Using the same approach as described above, we generated 400 sets of tumor volumes for an 

in silico mouse population with and without treatment (referred to as “Mollard”). To do so, we 

randomly varied k0 and k1 from the ranges of the 12 sets of estimated parameter values from 

model fitting to the Mollard dataset, with Ang0 held constant at the median of its estimated 

values. The simulated tumor volumes for the control and treated groups are shown in Figure 

5B.  

 

We generated the population survival data based on the simulated tumor growth profiles. We 

tested whether the common range of ratiothresh and k1,thresh values identified using the six 

datasets described above are able to separate the population survival data for this validation 

case (Mollard). For all ratiothesh values within the range, the survival estimate of the treated mice 

with k0/k1 ratios larger than the threshold is better than those with smaller k0/k1 ratios. Examples 

using the median ratiothresh and the median k1,thresh are shown in Figure 5C-D. We calculated the 

HR values, as well as the p-value from the Mantel-Cox log rank test among the treated and 

control groups, separated using the median of the common ratiothresh range (Table 2) or the 

common k1,thresh range (Table 4). Thus, we were able to validate the threshold values. 

 

Tumor growth dynamics among stratified populations 

We explored the dynamics of the tumor growth for the groups separated by the threshold values 

to better understand why the anti-VEGF treatment has differential effects in the simulated 

mouse populations. As researchers have pointed out, log-transformation of tumor growth data 

provides information on the tumor growth rates (given by the slope of the curve) and is more 

suitable for detecting a transient biological or therapeutic effect [40, 42, 43]. Therefore, we 
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compared the mean RTV time courses (Figure S1) and the log-transformed mean tumor 

volume data (Figure S5) of the groups stratified by the median ratiothresh (13.869) in each case. 

 

For Roland, Tan, and Volk2008, the mean RTV of the group with larger k0/k1 ratios (Figure 

S1A,C,D) is initially larger, and then becomes smaller relative to the opposite group. This switch 

occurs because in the group with larger k0/k1 ratios, the difference between the treated and 

control tumor volumes is smaller at early times, and then becomes larger (Figure S5). 

Meanwhile, the actual tumor volumes for this group are both relatively low. As a result, this 

group survives longer (Figure 4). For the Mollard case used for validation, the differences 

between the treated and control tumor volumes in the group with larger k0/k1 ratios are larger 

(Figure 6B, dotted curves), giving rise to the larger mean RTV (Figure 6A). However, the group 

with larger k0/k1 ratios still survives longer because the actual tumor volumes are relatively low 

(Figure 5C). 

 

The log-transformed tumor volume data also reveal that the tumor growth rates of control and 

treated groups diverge at different time points. For Roland, the gap between the linear tumor 

volume data of control and treated groups continually increases (Figure 7A). However, the log-

transformed tumor volume data show that their growth rates mostly differentiate during days 14-

40. The growth rates become similar during the later stage (after 40 days), as evidenced by the 

parallel curves of the log-transformed data (Figure 7B). Therefore, the increasingly large gap 

between the tumor volumes is a result of early differences in the tumor growth rates. A similar 

phenomenon is observed for Volk2011b, where the tumor growth rate of the treated group is 

suppressed transiently at early times but not in the later stage (Figure S5). In Zibara, Tan and 

Volk2008, the growth rates start to differentiate between day 30 and day 45, and only gradually 

become similar towards the end of the simulated time. Overall, analysis of the log-transformed 

growth curves reveal that the anti-VEGF treatment has differential effects in limiting tumor 
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growth, and the effects occur at different stages for the simulated cases. The treatment effect 

appears to be stronger for the group with k0/k1 ratios larger than the median ratiothresh. 

 

Discussion 

In this study, we focus on identifying potential tumor growth kinetic parameters as biomarkers 

for the outcome of anti-VEGF treatment. We developed a computational approach to perform 

biomarker identification that incorporates model training, simulation of tumor growth within a 

heterogeneous population, and estimation and analysis of population response.  

 

We applied the model to simulate anti-VEGF treatment and compared the effect of treatment 

across tumor-bearing mice generated from our previous fitting to six independent preclinical 

studies. For most simulated tumors, the anti-VEGF agent significantly reduces tumor volume 

compared to control. However, our simulations for Zibara and Volk2011a show that these 

populations do not respond to the treatment (Figure 2B,E), which is different than the effect 

seen experimentally. This difference occurs for two reasons. First, our simulated treatment 

protocol A is universal across the six cases, and is different from what was used in each of the 

original six experimental studies. Second, in our simulations, k0 and k1 are varied 

simultaneously and independently of each other, possibly resulting in more variability than what 

occurs in the experimental tumor growth.   

 

Our study demonstrates that the k0/k1 ratio or k1 alone can be utilized to stratify the population 

response with or without anti-VEGF treatment. This finding agrees with our previous finding 

through PLSR analysis that the ratio is a key predictor of the tumor response to anti-VEGF 

treatment [26]. Building on that framework, we found that the survival estimate of mice with 

larger k0/k1 ratios or smaller k1 is better compared to those with smaller ratios or higher k1. 

Interestingly, the result for the ratio is the opposite of the conclusion we drew previously (that a 
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larger ratio correlates with a poorer response to treatment). However, in that work, we focused 

only on whether the final RTV value was low. This highlights the fact that only evaluating the 

endpoint RTV of the treated and control group and neglecting the actual tumor volume data over 

time can lead to misinterpretation of the treatment effect. Indeed, researchers have recognized 

that while most preclinical studies focus on the end points of tumor growth, monitoring tumor 

growth kinetically may oftentimes be more insightful [42, 43].  

 

We found that in two cases (Volk2011a simulated with protocol A and protocol V11a), no 

significant difference is observed in the survival estimates between the pairs of treated and 

control groups. However, even for these cases, two populations with significantly different 

survival estimates can be identified based on their k0/k1 ratios (Figure 4B,E) or k1 value (Figure 

S3B,E). This indicates that even when the treatment is not effective in reducing tumor volume, 

there is still a difference in tumor growth dynamics between the two populations stratified based 

on the tumor’s growth kinetic parameters. Thus, we believe that the k0/k1 ratio or k1 may be 

prognostic biomarkers to stratify populations for their survival estimate without the anti-

angiogenic treatment. Interestingly, the parameters provide mechanistic insight into tumor 

growth. In particular, they highlight that slower linear growth (larger ratio or smaller k1) results in 

less aggressive overall tumor growth (Figure S5) and therefore, better survival outcome.  

 

Another interesting aspect is the utility of k1 to serve as a prognostic biomarker. Although k1 was 

not revealed as a strong predictor of the final RTV previously in the PLSR analysis, it is 

inversely correlated with the k0/k1 ratio, and therefore in our study, it also can be used to stratify 

the population survival outcome. The use of survival analysis in this study addresses one of the 

limitations in our previous work. That is, with the PLSR analysis, we were able to identify which 

parameters were related to treatment efficacy, but could not identify the specific relationship 

between the kinetic parameter values and effectiveness of the treatment. 
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Compared to the mean RTV data, the tumor volume data provide more useful insight into the 

tumor growth characteristics of the stratified population. In particular, the log-transformed tumor 

volume more clearly illustrates the source of the differences in the population survival estimates. 

Specifically, we found that larger k0/k1 ratios often yield slower tumor growth in a population, and 

therefore, lead to a better survival estimate of the population. This conclusion could not be 

made if we were to only analyze the RTV data. In addition, the log-transformed tumor volume 

data reveal that the effect of anti-VEGF treatment in tumor growth can be relatively transient (as 

observed in Roland and Volk2011b) or gradual (as seen in Zibara, Tan, and Volk2008).  

 

Our study makes use of a predictive and useful computational model of tumor growth with and 

without anti-VEGF treatment. This is a pharmacokinetics-pharmacodynamics model with 

mechanistic detail that goes beyond what is found in other models. However, in the future, this 

model can be expanded to address limitations that are not currently accounted for. For example, 

we do not account for changes in tumor vascularity relative to tumor volume. In addition, 

vascular normalization is an important process that has been shown to affect tumor growth and 

can be regulated by anti-VEGF agents [32]; however, this process is not included in our model. 

These aspects can be implemented into the model as more quantitative data become available 

and enable us to characterize the dynamics of vessel normalization. The model can then be 

further extended to account for other characteristics of tumor progression, including tumor 

perfusion and metastatic potential. Furthermore, the range of threshold values for tumor 

stratification is constrained to be within the overlap of estimated parameter values from model 

training to each experimental dataset. It is possible that artifacts coming from experimental data 

quantification led to bias in the range of the fitted parameter values. This can also be improved 

when more quantitative data from experimental studies become available to allow for additional 

model training, which enables improved model predictions. We note that the biomarker 
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candidates identified in this study are best used to stratify populations for their survival outcome, 

whether the mice receive treatment or not, rather than to predict treatment efficacy.  This utility 

of the growth parameters for stratification is primarily because the datasets used to train the 

model were the control time courses of tumor growth over several weeks. Our results would be 

of broader applicability if only pre-treatment data were adequate to train the model. We have 

attempted such approach in our previous study [26]; however, the fitting results were not 

satisfactory (predicted volumes varied widely, preventing us from making conclusive 

predictions). Despite this perceived limitation, our modeling approach generates hypotheses 

about potential biomarkers, and further experimental validation is needed to ensure the utility of 

the biomarkers identified here. 

 

Our study demonstrates a time- and cost-effective way to generate large in silico mouse 

populations, predict anti-VEGF treatment outcome, and stratify the populations. This approach 

provides useful information that could facilitate efficient experimental design, such as predicting 

the effect of different treatment protocols (varying the dosage and the timing of the injections). 

Additionally, our modeling approach can be adapted for analysis of patient treatment outcome in 

clinical studies. With data from a small patient population, we can develop a model that is 

trained to patient-specific data and generate a larger in silico patient population. Analysis of the 

simulated tumor growth and survival data can be used to identify biomarkers that predict 

responders versus non-responders to anti-VEGF treatment, stratify the predicted population 

survival, and test the response to various treatment schedules.  

 

Conclusion 

We examined tumor growth kinetic parameters as potential biomarkers of anti-angiogenic 

treatment outcome. Using a computational model that simulates VEGF-dependent tumor growth 

in tumor-bearing mice, we generated an in silico mouse population and related the kinetic 
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parameters that characterize tumor growth to the response to anti-VEGF treatment. We found 

that the ratio between two tumor growth kinetic parameters, k0 and k1, as well as k1 alone, can 

be prognostic biomarkers and that the simulated treatment protocol may have a better outcome 

for mice whose tumors have smaller linear growth rates. In fact, we found ranges of threshold 

values for the k0/k1 ratio and k1 that distinguish tumors’ response to the anti-VEGF treatment. 

This study demonstrates an approach for identifying tumor growth kinetic parameters as 

potential biomarkers, and this model framework can be adapted to predict the efficacy of other 

anti-angiogenic strategies. 

 

Methods 

Computational model 

This work directly uses our previously calibrated and validated three-compartment model of a 

tumor-bearing mouse [26]. In this previous work, we fit the model to six independent control 

datasets, and the model-predicted tumor growth curves match closely to the experimental data 

(fitting error range: 0.0405 – 0.1833). We provide a full description of this model in 

Supplemental File S1.  

 

Numerical implementation  

All model equations were implemented in MATLAB using the SimBiology toolbox. The model is 

provided as the SimBiology project file, as SBML, and as a MATLAB m-file (Supplemental File 

S2). Parameter fitting was performed using the lsqnonlin function in MATLAB. Kaplan-Meier 

survival estimation was performed using the kmplot function in MATLAB, and GraphPad Prism 

was used for statistical survival analyses. 

 

Simulation of in silico mouse population 
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In our previous work, we fit the three-compartment model of a tumor-bearing mouse to six 

datasets. Here, we generated 400 sets of values for growth parameters k0 and k1, randomly 

selected from a uniform distribution within the range of the best-fit parameter sets from our 

previous study (Table S1). The Ang0 value is set to be the median of the best fits in each case 

(Table S1). These sets were used to calculate tumor growth with or without anti-VEGF 

treatment, simulating a population of mice for each of the six datasets. In order to keep tumor 

growth profiles realistic, tumors that do not reach 0.1 cm3 within 10 days upon tumor 

engraftment (assuming tumor volume to be 0.004 cm3) were excluded from the analyses. 

 

For each dataset, we simulated anti-VEGF treatment as intravenous injections lasting for one 

minute. We implement this injection by adding a net rate of secretion of the drug (bevacizumab, 

which binds to human VEGF isoforms) directly into the blood compartment (Figure 1). We 

simulated different anti-VEGF treatment protocols. Treatment protocol A is simulated universally 

across the six cases. In this protocol, weekly treatment starts when the tumor volume reached 

0.1 cm3, as the switch where angiogenesis is more strongly promoted occurs when the tumor 

reaches 1-2 mm in diameter. The treatment dosage is 10 mg/kg. The model was simulated for 

12 weeks after treatment started. We also simulated alternate treatment protocols: Z, denotes 

biweekly treatment at dosage of 10 mg/kg starting when tumor volume is 0.004 cm3; V11a, 

denotes biweekly treatment (twice a week) at a dosage of 10 mg/kg, starting when the tumor 

volume is 0.5 cm3; and V11a-D, denotes biweekly treatment at a dosage of 20 mg/kg, starting 

when tumor volume is 0.5 cm3. Information for all treatment protocols is shown in Table S3.  

 

Relative tumor volume (RTV) 

Based on the model-generated tumor growth data, the relative tumor volume (RTV), the ratio 

between the treated and control tumor volumes, is calculated at any simulated time point: 

RTV =
𝑉!"#$!%#&!
𝑉!"#$%"&

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2018. ; https://doi.org/10.1101/300566doi: bioRxiv preprint 

https://doi.org/10.1101/300566
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

An RTV value less than one indicates that the treated tumor volume is smaller than the control.  

 

Kaplan-Meier survival estimation 

We applied time-to-event analysis to determine the survival of each mouse population [34]. An 

in silico mouse is recorded as “sacrificed” when its tumor reaches 2 cm3 within the simulated 

time. Alternatively, a mouse is recorded as “censored” at a particular time point, t, if its tumor 

volume simulation remains below 2 cm3 but ended before that time t. All other mice are retained 

in the study and recorded as “alive”. Survival curves were estimated by the Kaplan-Meier 

method using the kmplot function in MATLAB [44], and compared using the Mantel-Cox log rank 

test and Mantel-Haenszel hazard ratio in GraphPad Prism. 

 

The hazard ratio (HR) compares the rate of death in two groups, with the assumption that the 

population hazard ratio is consistent over time. It is calculated using the Mantel-Haneszel 

approach, which is more accurate than the log rank approach [45]. As an example, an HR of 0.5 

between two groups means that the death rate of the first group is half of that of the second 

group. 

 

Determination of threshold values 

In order to determine threshold values for the k0/k1 ratio, we ordered the simulated mouse tumor 

volume data for each of the six populations according to the k0/k1 ratio. Then, we systematically 

tested each k0/k1 ratio (called “ratiothresh”) value to see if there is a significant difference between 

the survival estimates for the mice with k0/k1 ratio above and below “ratiothresh” in the log rank 

test (p<0.05). We performed a similar analysis for k0 and k1 individually to determine any k0,thresh 

and k1,thresh values. 

 

Validation of the predicted biomarker 
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Upon identifying a potential predictive biomarker for the efficacy of anti-VEGF treatment, we 

validated our findings using an independent set of data that was not used to determine the 

range of the threshold value. To do so, we fit the control tumor growth for the independent data 

set and generated an in silico mouse population based on the fitted parameters. 

 

Data extraction. For threshold validation, data from the published in vivo experimental study of 

MDA-MB-231 xenograft tumor growth in mice by Mollard et al. were used for parameter 

estimation [41]. The dataset for tumor growth in untreated tumors (control) was used for fitting 

the model, and the dataset for tumors treated with bevacizumab twice weekly was used for 

validation. Experimental data was extracted using the WebPlotDigitizer program [46]. The 

numerical values are provided in Table S1. 

 

Parameter estimation. We trained the model to fit the control tumor growth dataset from [41] 

using the same approach as described in our previous work [26]. The values of tumor growth 

parameters k0, k1, and Ang0 were estimated. In their study, Mollard and coworkers only reported 

the tumor volumes relative to day eight. However, the absolute tumor volumes are needed to 

determine how the tumor interstitial volume varies as a function of the total tumor volume. 

Therefore, we compared the relative tumor volume at each time point in the work by Mollard and 

coworkers to that of all the available control datasets (Figure S6). We then chose to use the 

interstitial volume equation from the Zibara data, given that the relative tumor volume closely 

matches that of the data in Mollard. Finally, we fit our tumor growth model to the Mollard control 

dataset using the lsqnonlin function in MATLAB to minimize the sum of squared residuals: 

min 𝑆𝑆𝑅 Θ = 𝑚𝑖𝑛 𝑉!"#,! − 𝑉!"#,!(Θ)
!

!

!!!

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2018. ; https://doi.org/10.1101/300566doi: bioRxiv preprint 

https://doi.org/10.1101/300566
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

where Vexp,I is the ith experimental data point of tumor volume, Vsim,I is the ith simulated volume 

at the corresponding time point, and n is the total number of experimental data points. The 

minimization is subject to Θ, the set of upper and lower bounds on each of the free parameters.  

 

The bounds for each parameter spanned at least one order of magnitude: 10-8 to 10-2 for k0 and 

k1 and 10-16 to 10-14 for Ang0. After fitting to the control data, we validated the estimated 

parameters with measured tumor volumes not used in the fitting for model validation: the 

experimentally measured volumes of tumors treated with the anti-angiogenic drug bevacizumab. 

We simulated the dosing regimen used in the experiment performed by Mollard et al. using the 

estimated parameters obtained from fitting to the control data. This protocol involved three 

cycles of weekly intravenous injections lasting for one minute starting from day five. We used 

the combined SSR for the relative tumor volume between model prediction and the 

experimental data (both control and treatment) to identify the optimal parameters. Twelve 

parameter sets with the smallest errors were taken to be the “best” sets (Table S1) and the 

ranges of the estimated parameter values were used for subsequent model simulations (Table 

S2). 

 

We extracted the absolute tumor volume at day 8 from previously reported data from Mollard 

and coworkers [47] to determine the survival estimates for a mouse population simulated based 

on the fitted growth kinetics parameter values.  
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Tables: 

Table 1. Summary of median survival of population separated by median ratiothresh 

Median survival 
(days) Roland† Zibara† Tan† 

Volk 
2008† 

Volk 
2011a† 

Volk 
2011b† Zibara§ 

Volk 
2011a¶ 

Volk 
2011a¶¶ Mollard† 

Control (All) 53 55 58 64 69 68 55 69 69 85 

Control 
(k0/k1 <  ratiothresh) 

44 44.5 45 40 44 42.5 44.5 42.5 44 77 

Control 
(k0/k1 > ratiothresh) 

86.5 84 Un* 89.5 87 88 84 80 87 96 

Treatment 
(All) Un* 63 77.5 Un* 69 Un* 63 71 Un* Un* 

Treatment 
(k0/k1 < ratiothresh) 

74 46 50 50 44 79 46 42.5 78.5 Un* 

Treatment 
(k0/k1 > ratiothresh) 

Un* Un* Un* Un* 87 Un* Un* 87 Un* Un* 

*Un: Undefined. The median survival cannot be estimated if the survival estimation does not 

reach below 50%; 

†protocol A: biweekly treatment at a dosage of 10 mg/kg, starting when tumor volume reaches 

0.1 cm3; 

§protocol Z: biweekly treatment at a dosage of 10 mg/kg, starting when tumor volume is 0.004 

cm3 (upon engraftment of tumor); 

¶protocol V11a: biweekly treatment at a dosage of 10 mg/kg, starting when tumor volume 

reaches 0.5 cm3; 

¶¶protocol V11a-D: biweekly treatment at a dosage of 20 mg/kg, starting when tumor volume 

reaches 0.5 cm3. 
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Table 2. Statistics comparing the Kaplan-Meier survival curves of population separated by 1 

median ratiothresh:  hazard ratio (95%CI) and log rank test p-values 2 

HR  
(95% CI)                              
p-value 

Roland† Zibara† Tan† Volk2008† Volk2011a† 

Treatment 
(k0/k1 > ratiothresh) vs. 
Treatment 
(k0/k1 < ratiothresh) 

0.2073  
(0.1059-0.4057)                      

p<0.0001 

0.2005  
(0.0991-0.4055)    

p<0.0001 

0.1623  
(0.0872-0.3021)    

p<0.0001 

0.0576  
(0.0237-0.1399)    

p<0.0001 

0.0216  
(0.0098-0.0476)    

p<0.0001 

Control 
(k0/k1 > ratiothresh) vs. 
Control 
(k0/k1 < ratiothresh) 

0.1214  
(0.06974-0.2144)     

p<0.0001 

0.1627  
(0.0866-0.3056)      

p<0.0001 

0.1445  
(0.0808-0.2582)    

 p<0.0001 

0.0422  
(0.0173-0.1035)    

p<0.0001 

0.0296  
(0.0098-0.0476)    

p<0.0001 

Treatment 
(k0/k1 > ratiothresh) vs. 
Control 
(k0/k1 > ratiothresh) 

0.0675  
(0.0234-0.1949)               

p<0.0001 

0.1191  
(0.01194-1.188)    

p=0.0697 

0.101 
(0.0249-0.4103)    

p=0.0013 

0.5683 
(0.33490.9643)   

 p=0.0362 

0.9921  
(0.6117-1.609)    

p=0.9742 

Treatment 
(k0/k1 > ratiothresh) vs. 
Treatment (All) 

0.2562  
(0.1239-0.5299)                      

p=0.0002 

0.2538  
(0.1191-0.5408)   

 p=0.0004 

0.239  
(0.1236-0.4621)      

p<0.0001 

0.6138 
(0.3732-1.01)     

p=0.0546 

0.576  
(0.3863-0.8588)    

 p=0.0068 

Treatment (All) vs. 
Control (All) 

0.2307  
(0.1548-0.3438)   

p<0.0001 

0.6742  
(0.4384-1.037)    

p=0.0726 

0.5845  
(0.3934-0.8684)       

p=0.0079 

0.6481  
(0.4331-0.9699)     

p=0.0350 

0.9959  
(0.7038-1.409)    

 p=0.9815 

Treatment 
(k0/k1 < ratiothresh) vs. 
Treatment (All) 

1.569  
(0.9721-2.41)           

p=0.0549 

1.558  
(0.9714-2.5)      

p=0.0658 

1.794  
(1.158-2.778)       

p=0.0089 

6.405  
(2.971-13.81)     

p<0.0001 

7.657  
(4.065-14.42)       

p<0.0001 

Treatment 
(k0/k1 > ratiothresh) vs. 
Treatment 
(k0/k1 < ratiothresh) 

0.0673  
(0.0288-0.157)     

p<0.0001  

0.2332  
(0.1191-0.4566)    

p<0.0001 

0.01104  
(0.0039-0.0315)     

p<0.0001 

0.358  
(0.0157-0.0815)    

p<0.0001 

0.1862  
(0.1043-0.3327)    

p<0.0001 

Control 
(k0/k1 > ratiothresh) vs. 
Control 
(k0/k1 < ratiothresh) 

0.0368  
(0.01750-0.0778)     

p<0.0001 

0.1655  
(0.0925-0.2962)    

p<0.0001 

0.0110  
(0.0039-0.0315)     

p<0.0001 

0.0418  
(0.0204-0.0857)     

p<0.0001 

0.6573  
(0.5219-0.8029)    

p<0.0001 

Treatment 
(k0/k1 > ratiothresh) vs. 
Control 
(k0/k1 > ratiothresh) 

0.1592  
(0.0817-0.3102)    

p<0.0001 

0.1707  
(0.0557-0.5226)    

p=0.002 

0.7027  
(0.4718-1.047)    

p=0.0825 

0.0842  
(0.0452-0.1568)    

p<0.0001 

0.0782  
(0.0561-0.1089)    

p<0.0001 

Treatment 
(k0/k1 > ratiothresh) vs. 
Treatment (All) 

0.3364  
(0.1662-0.6806)      

p=0.0024 

0.2513  
(0.1294-0.4881)    

p<0.0001 

0.7306  
(0.5008-1.066)    

p=0.1033 

0.2524  
(0.126-0.5058)     

p=0.0001 

0.317  
(0.176-0.571)   

p=0.0001 

Treatment (All) vs. 
Control (All) 

0.266  
(0.1733-0.4083)     

p<0.0001 

0.6742  
(0.4384-1.037)     

p=0.0726 

0.7766  
(0.5543-1.088)     

p=0.1416 

0.2016  
(0.1343-0.3027)    

p<0.0001 

0.0940  
(0.0762-0.1159)    

p<0.0001 

Treatment 
(k0/k1 < ratiothresh) vs. 
Treatment (All) 

3.938  
(1.985-7.811)      

p<0.0001 

2.119  
(1.294-3.47)        

p=0.0005 

15.64  
(6.536-37.41)    

p<0.0001 

5.074  
(2.653-9.705)    

p<0.0001 

0.5152  
(0.3481-0.8458)    

p=0.0035 

 †protocol A, §protocol Z, ¶protocol V11a, ¶¶protocol V11a-D 3 
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Table 3. Summary of median survival of population separated by median k1,thresh 5 

Median survival 
(days) Roland† Zibara† Tan† 

Volk 
2008† 

Volk 
2011a† 

Volk 
2011b† Zibara§ 

Volk 
2011a¶ 

Volk 
2011a¶¶ Mollard† 

Control (All) 53 55 58 64 69 68 55 69 69 87 

Control 
(k1 <  k1,thresh) 

59.5 84 86 Un* 87 Un* 84 87 87 92 

Control 
(k1 > k1,thresh) 

35 45 43 41 44 45 45 44 44 72 

Treatment 
(All) Un* 63 77.5 Un* 69 Un* 63 71 Un* Un* 

Treatment 
(k1 < k1,thresh) 

Un* Un* Un* Un* 88 Un* 108 108 Un* Un* 

Treatment 
(k1 > k1,thresh) 

55 46 46 47.5 44 82 44 44 78.5 Un* 

 †protocol A, §protocol Z, ¶protocol V11a, ¶¶protocol V11a-D 6 

 7 
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Table 4. Statistics comparing the Kaplan-Meier survival curves of population separated by 9 

median k1,thresh:  hazard ratio (95%CI) and log rank test p-values 10 

HR (95% CI)                              
p-value Roland† Zibara† Tan† Volk2008† Volk2011a† 

Treatment 
(k1 < k1,thresh) vs. 
Treatment 
(k1 > k1,thresh) 

0.0012  
(0.0004-0.0041)                

p<0.0001 

0.0904  
(0.0456-0.1793)   

p<0.0001 

0.0794  
(0.0422-0.1491)    

p<0.0001    

0.0241  
(0.0118-0.0493)    

p<0.0001 

0.0138  
(0.0063-0.0301)    

p<0.0001 

Control 
(k1 < k1,thresh) vs. 
Control 
(k1 > k1,thresh) 

0.5882  
(0.3549-0.9751)  

p<0.0001 

0.0832  
(0.0421-0.1643)     

p<0.0001 

0.0809  
(0.0430-0.152)     

p<0.0001 

0.0241  
(0.0118-0.0492)    

p<0.0001 

0.01376  
(0.0063-0.0301)    

p<0.0001 

Treatment 
(k1 < k1,thresh) vs. 
Control 
(k1 < k1,thresh) 

0.134  
(0.0805-0.2231)              

p<0.0001 

0.0927  
(0.0258-0.3324)   

p=0.0003 

0.0843  
(0.0287-0.2471)    

p<0.0001 

0.1775  
(0.0682-0.462)    

p=0.0004 

0.9909  
(0.5909-1.662)   

p=0.9724 

Treatment 
(k1 < k1,thresh) vs. 
Treatment (All) 

0.5033  
(0.2978-0.8505)                     

p=0.0103 

0.2096  
(0.1054-0.4169)   

p<0.0001 

0.2076  
(0.1112-0.3874)      

p<0.0001 

0.2094  
(0.1143-0.3839)     

p<0.0001 

0.515  
(0.3422-0.7749)    

p=0.0015 

Treatment (All) vs. 
Control (All) 

0.2307  
(0.1548-0.3438)   

p<0.0001 

0.6742  
(0.4384-1.037)   

p=0.0726 

0.5845  
(0.3934-0.8684)       

p=0.0079 

0.6481  
(0.4331-0.9699)     

p=0.0350 

0.9959  
(0.7038-1.409)     

p=0.9815 

Treatment 
(k1 > k1,thresh) vs. 
Treatment (All) 

30.33  
(12.08-76.16)          

p<0.0001 

2.553  
(1.538-4.239)     

p=0.0003 

2.759  
(1.728-4.405)       

p<0.0001 

5.824  
(3.356-10.1)    

p<0.0001 

8.024  
(4.379-14.7)       

p<0.0001 

Treatment 
(k1 < k1,thresh) vs. 
Treatment 
(k1 > k1,thresh) 

0.0662  
(0.0301-0.1456)     

p<0.0001 

0.0904  
(0.0456-0.1793)     

p<0.0001 

0.0138  
(0.0063-0.0301)    

p<0.0001 

0.0265  
(0.0118-0.0595)     

p<0.0001 

0.1265  
(0.0619-0.2588)     

p<0.0001 

Control 
(k1 < k1,thresh) vs. 
Control 
(k1 > k1,thresh) 

0.0254  
(0.0126-0.0513)     

p<0.0001 

0.0832  
(0.0421-0.1643)      

p<0.0001 

0.0138  
(0.0063-0.0301)    

p<0.0001 

0.0138  
(0.0063-0.0301)    

p<0.0001 

0.6814  
(0.5175-0.8971)     

p=0.0063 

Treatment 
(k1 < k1,thresh) vs. 
Control 
(k1 < k1,thresh) 

0.0960  
(0.0410-0.2244)     

p<0.0001 

0.0927  
(0.0258-0.3324)      

p=0.0003 

0.5917  
(0.3641-0.9618)     

p=0.0342 

0.0636  
(0.0329-0.1233)     

p<0.0001 

0.0781  
(0.0611-0.0999)     

p<0.0001 

Treatment 
(k1 < k1,thresh) vs. 
Treatment (All) 

0.1959 
(0.0899-0.4268)     

p<0.0001 

0.2096  
(0.1054-0.4169)    

p<0.0001 

0.5129  
(0.3404-0.7728)    

p=0.0014 

0.1783  
(0.0858-0.3702)     

p<0.0001 

0.5779  
(0.3567-0.9361)     

p=0.0259 

Treatment (All) vs. 
Control (All) 

0.266  
(0.1733-0.4083)     

p<0.0001 

0.6742  
(0.4384-1.037)     

p=0.0726 

0.7766  
(0.5543-1.088)     

p=0.1416 

0.2016  
(0.1343-0.3027)    

p<0.0001 

0.0940  
(0.0762-0.1159)    

p<0.0001 

Treatment 
(k1 > k1,thresh) vs. 
Treatment (All) 

3.248  
(1.77-5.959)     

p=0.0001 

2.168  
(1.336-3.516)     

p=0.0003 

8.024  
(4.379-14.7)      

p<0.0001 

3.518  
(1.913-6.472)   

p<0.0001 

3.444  
(1.863-6.365)      

p<0.0001 

 †protocol A, §protocol Z, ¶protocol V11a, ¶¶protocol V11a-D  11 
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Figures: 13 

Figure 1. Schematic and overview of computational model of tumor-bearing mice. The three-14 

compartment mouse model was previously trained and validated. The pro-angiogenic signal 15 

(Ang(t)) is calculated as the summation of the concentrations of VEGF-bound receptor 16 

complexes in the tumor endothelium. The dynamic tumor volume is a function of the angiogenic 17 

signal. In this study, we randomly varied tumor growth parameters within specified ranges to 18 

simulated tumor growth of several heterogeneous mouse populations. 19 

 20 

Figure 2. Model-simulated tumor growth data of in silico mouse populations. The whole-body 21 

mouse model previously fit to each of the six datasets individually was used to simulate tumor 22 

volume over time. To generate the simulated tumors, the tumor growth kinetic parameters k0 23 

and k1 were randomly varied within the range of the estimated values. A total of 400 simulations 24 

were run for each case. The mean and 95% confidence interval at each time point are shown. 25 

A, Roland. B, Zibara. C, Tan. D, Volk2008. E, Volk2011a. F, Volk2011b. Asterisks indicate that 26 

the difference between the control and treatment group tumor volumes is statistically significant 27 

(p<0.05). 28 

 29 

Figure 3. Range of parameter and threshold values. In each of the six cases, values of k1,thresh 30 

and ratiothresh were found among all of the randomly generated values of k1 or k0/k1 ratio used in 31 

the simulations. A, k0. B, k1. C, k0/k1 ratio. Bars: the ranges of all generated parameter values in 32 

each case. Boxes: the ranges of possible threshold values in each case. Shading: the common 33 

range of threshold values among the six cases.  34 

 35 

Figure 4. Kaplan-Meier curves for the six simulated groups of tumor-bearing mice. Here, the 36 

ratiothresh value is taken as the median from the common range found among the six cases 37 

(13.8693). A, Roland. B, Zibara. C, Tan. D, Volk2008. E, Volk2011a. F, Volk2011b. The 38 
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estimated survival curves of in silico mice subgroups within each group are shown in each plot: 39 

all mice, mice with ratio above or below the median ratiothresh in the control setting or with 40 

treatment. 41 

 42 

Figure 5. Validation of ratiothresh and k1,thresh values with an independent set of data from [41]. A, 43 

Model fit to control data and validation with treatment data from [41]. The model was fit to 44 

normalized tumor volume, and the tumor growth kinetic parameters were estimated. The model 45 

is able to reproduce experimental data in the control group and predict the treatment data. Line: 46 

mean of best fits. Shading: range of standard deviation. Squares: experimental data. Error 47 

values: SSR for mean of the best fits. B, Model-simulated tumor growth of an in silico mouse 48 

population, with tumor growth kinetic parameters k0 and k1 for each simulation randomly varied 49 

within the range of their estimated values. The mean and 95% confidence interval at each time 50 

point are shown. Asterisks indicate that the difference between the control and treatment group 51 

tumor volumes is statistically significant (p<0.05). C and D, Estimated Kaplan-Meier survival 52 

curves of the simulated mouse population obtained using the model that was fitted to Mollard 53 

data. The population is separated using the median of the range of C, ratiothresh values 54 

(13.8693), or D, k1,thresh values (1.661×10-6).  55 

 56 

Figure 6. Dynamics of tumor volume. A, Time course of relative tumor volume (RTV) for the 57 

Mollard case. The mean RTV for all in silico mice and mice with tumors whose k0/k1 ratio is 58 

smaller and larger than the median ratiothresh (13.8693) are shown.  B, Log-transformed tumor 59 

volume data for all in silico mice and mice separated according to the tumor’s k0/k1 ratio. 60 

 61 

Figure 7. Mean tumor growth. We plot the mean tumor volume for all in silico mice in control 62 

and treatment groups using the model fitted to Roland data. A, Linear scale and B, Log scale. 63 

 64 
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Supplemental Figures: 65 

Figure S1. Time course of relative tumor volume (RTV). The mean RTV levels of all in silico 66 

mice and the groups with k0/k1 smaller or larger than the median ratiothresh (13.8693) are shown. 67 

A, Roland. B, Zibara. C, Tan. D, Volk2008. E, Volk2011a. F, Volk2011b. 68 

 69 

Figure S2. Scatter plot of RTV at the end of simulations versus tumor growth kinetic 70 

parameters. Left to right columns: k0, k1, and k0/k1 ratio. A, Roland. B, Zibara. C, Tan. D, 71 

Volk2008. E, Volk2011a. F, Volk2011b. Color gradient represents the range of RTV values 72 

(from 0 to 1). 73 

 74 

Figure S3. Kaplan-Meier curves for the six simulated groups of tumor-bearing mice. Here, the 75 

k1,thresh value is taken as the median from the common range found among the six cases 76 

(1.661×10-6). A, Roland. B, Zibara. C, Tan. D, Volk2008. E, Volk2011a. F, Volk2011b. The 77 

estimated survival curves of in silico mice subgroups within each group are shown in each plot: 78 

all mice, mice with k1 smaller or larger than the median k1,thresh, in the control setting or with 79 

treatment. 80 

 81 

Figure S4. Model-simulated tumor growth data with alternative treatment protocols. The mean 82 

and 95% confidence interval at each time point are shown. A, Zibara case with treatment 83 

protocol Z. B, Volk2011a case with treatment protocol V11a. C, Volk2011a case with treatment 84 

protocol V11a-D (see Methods). Asterisks indicate that the difference between the control group 85 

and the treatment group tumor volumes is statistically significant (p<0.05). 86 

 87 

Figure S5. Log-transformed tumor volume data of all in silico mice and populations separated 88 

by ratiothresh value of 13.8693. A, Roland. B, Zibara. C, Tan. D, Volk2008. E, Volk2011a. F, 89 

Volk2011b. 90 
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 91 

Figure S6. Comparison of normalized experimental data. Control tumor volume on day eight is 92 

extrapolated from an exponential fit to the experimental data [35–39], and used to calculate the 93 

relative tumor volumes for the models fit to the control tumor volume from each of the six 94 

datasets. The resulting normalized control tumor volume datasets are compared to that from the 95 

Mollard study. 96 

 97 

Supplementary Material  98 

Supplemental Tables: 99 

Table S1: Experimental measurements and estimated parameter values from fitting to Mollard 100 

dataset   101 

Table S2: Parameter bounds and values used in simulations  102 

Table S3: Description of treatment protocols 103 

 104 

Supplemental Figures: 105 

Figure S1. Time course for the relative tumor volume (RTV) vs. time  106 

Figure S2. Relationship between RTV and tumor growth kinetic parameters 107 

Figure S3. Kaplan-Meier curves for tumor-bearing mouse population separated using k1,thresh 108 

Figure S4. Tumor volume time course for Z and V11a, V11a-D protocols  109 

Figure S5. Time course for log-transformed tumor volume  110 

Figure S6. Experimental data for normalized control tumor volume extracted from published 111 

datasets 112 

 113 

Supplemental Files: 114 

File S1. Description of three-compartment model 115 
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File S2. Zipped file containing the computational model, as a MATLAB SimBiology file, SBML, 116 

and a MATLAB .m file 117 

File S3. Supplemental Tables 118 

File S4. Supplemental Figures 119 
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