
 1 

Taxa-driven functional shifts associated with stormflow in an urban stream microbial community 1 

 2 

Adit Chaudhary,
a
 Imrose Kauser,

a
 Anirban Ray,

a,b
 Rachel Poretsky

a#
 3 

 4 

a
Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA 5 

 6 

Running Title: Stormflow impacts on urban stream microbiome  7 

 8 

 9 

#Author for correspondence 10 

Mailing address: University of Illinois at Chicago, Department of Biological Sciences, 950 S. 11 

Halsted St., Chicago, IL 60607. Phone: 312-355-5102. Email: microbe@uic.edu. 12 

 13 

Word count for abstract: 239 14 

Word count for text: 4394 15 

 16 

 17 

 18 

 19 

 20 

  21 

                                                        
b Present address: BioScience Research Collaborative, Rice University, Houston, Texas, USA 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300699doi: bioRxiv preprint 

https://doi.org/10.1101/300699
http://creativecommons.org/licenses/by-nc/4.0/


 2 

 Abstract 22 

Urban streams are susceptible to stormwater and sewage inputs that can impact their ecological 23 

health and water quality. Microbial communities in streams play important functional roles and 24 

their composition and metabolic potential can help assess ecological state and water quality. 25 

Although these environments are highly heterogenous, little is known about the influence of  26 

isolated perturbations, such as those resulting from rain events on urban stream microbiota. Here, 27 

we examined the microbial community composition and diversity in an urban stream during dry 28 

and wet weather conditions with both 16S rRNA gene sequencing across multiple years and 29 

shotgun metagenomics to more deeply analyze a single stormflow event. Metagenomics was 30 

used to assess population-level dynamics as well as shifts in the microbial community taxonomic 31 

profile and functional potential before and after a substantial rainfall. Results demonstrated 32 

general trends present in the stream under stormflow vs. baseflow conditions across years and 33 

seasons and also highlighted the significant influence of increased effluent flow following rain in 34 

shifting the stream microbial community from abundant freshwater taxa to those more associated 35 

with urban/anthropogenic settings. Shifts in the taxonomic composition were also linked to 36 

changes in functional gene content, particularly for transmembrane transport and organic 37 

substance biosynthesis. We also observed an increase in relative abundance of genes encoding 38 

degradation of organic pollutants and antibiotic resistance after rain. Overall, this study provided 39 

evidence of stormflow impacts on an urban stream microbiome from an environmental and 40 

public health perspective. 41 

Importance 42 

Urban streams in various parts of the world are facing increased anthropogenic pressure on their 43 

water quality, and stormflow events represent one such source of complex physical, chemical 44 
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and biological perturbations. Microorganisms are important components of these streams from 45 

both ecological and public-health perspectives, and analyzing the effect of such perturbations on 46 

the stream microbial community can help improve current knowledge on the impact such chronic 47 

disturbances can have on these water resources. This study examines microbial community 48 

dynamics during rain-induced stormflow conditions in an urban stream of the Chicago Area 49 

Waterway System. Additionally, using shotgun metagenomics we identified significant shifts in 50 

the microbial community composition and functional gene content following a high rainfall 51 

event, with potential environment and public health implications. Previous work in this area has 52 

been limited to specific genes/organisms or has not assessed immediate stormflow impact. 53 

 54 

Introduction 55 

Streams and rivers are important freshwater resources, used for recreation, agriculture, domestic 56 

water sources and industrial purposes. By storing, processing, and transporting terrestrially 57 

derived nutrients and organic matter, rivers play an important ecological role in linking 58 

biogeochemical cycles between terrestrial and aquatic ecosystems (1). Over the last century, 59 

many streams and rivers have witnessed rapid urbanization and anthropogenic development of 60 

their drainage basins, which has exposed them to frequent external inputs in the form of 61 

wastewater treatment plant (WWTP) effluent, industrial discharge, and sewer/stormwater 62 

overflows. These inputs often impact stream hydrological, physicochemical, and biological 63 

characteristics (2). For streams and rivers that serve as wastewater and/or stormwater outfall 64 

sites, rain-induced stormflow events are especially influential, as they often lead to an increased 65 

influx of WWTP effluent and unregulated waste via combined sewer overflows (CSOs) (3, 4). 66 

These perturbations bring in nutrients, a variety of microorganisms including pathogens, and 67 
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chemical pollutants such as steroid hormones that impact water quality, biodiversity, and 68 

ecosystem health (2, 3, 5, 6). 69 

 Because urban aquatic streams are typically highly variable systems that are regularly 70 

subject to anthropogenic inputs, it is unclear how much isolated perturbations such as rainfall 71 

and associated increases in stormflow might influence the water column microbial community, 72 

even in the short-term. Studies investigating urban river microbiota using genetic markers for 73 

fecal bacteria or 16S rRNA gene-based microbial community surveys have shown the presence 74 

of human fecal contamination, ‘urban signature’ bacteria and changes in community composition 75 

in streams and rivers impacted by WWTP effluent, stormwater, and CSOs (7–11). Moreover, 76 

others have documented the possible influx of antibiotic resistance bacteria and pathogens from 77 

WWTP effluent (12, 13) and stormwater events (6, 14) into urban environments, further 78 

signifying the importance of evaluating the persistence of these organisms and their impact on 79 

the riverine microbiome from a public health perspective. While these studies provide valuable 80 

information about the effects of stormflow events on urban stream microbial content they are 81 

limited to specific taxonomic and pollutant marker genes. Recent whole genome shotgun (WGS) 82 

metagenomics-based approaches have explored community composition and functional 83 

dynamics in urban impacted streams (15, 16), although a direct effect of stormflow on microbial 84 

dynamics remains less explored. A robust evaluation of the impacts of such isolated and short-85 

term perturbations is critical for making predictions about the public health and possible longer-86 

term ecological implications. 87 

 In this study, we used both 16S rRNA gene amplicon and shotgun metagenomics to 88 

deeply analyze the water column microbial community during baseflow and stormflow 89 

conditions in the North Shore Channel (NSC) stream, a section of the highly urbanized Chicago 90 
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Area Waterway System (CAWS) (Fig. S1). We focused on a site downstream of a WWTP and 91 

numerous CSO outflow points using 16S rRNA gene amplicon sequencing of samples from both 92 

baseflow and stormflow over the course of multiple seasons and years. Additionally, samples 93 

obtained immediately before and shortly (<24 hr) after a single rain event at the same site 94 

provided an opportunity for a deep analysis of short-term variability in the taxonomic and 95 

functional composition of the water-column microbiome using WGS metagenomics. Coupled 96 

with the 16S rRNA data from multiple samples, we were able to link some of these changes to 97 

stormflow conditions. We identified notable rainfall-induced changes in the stream microbial 98 

taxonomic and functional profiles, driven by shifts in the relative abundance of a few abundant 99 

microbial groups such as Actinobacteria and Legionella that could be functionally linked to the 100 

processes of transmembrane transport and organic substance biosynthesis. We also observed an 101 

increase in genes associated with antibiotic resistance and biodegradation of known wastewater 102 

pollutants following rain. Although our deep metagenomics-based analysis is centered around a 103 

single event, our findings provides a window into the variability and short-term changes in an 104 

urban freshwater system and sets the groundwork for making predictions about possible 105 

ecosystem level and public health related impacts of rainfall events on these systems. Overall, 106 

our results show that rain-associated WWTP effluent flow and perhaps CSOs impact the stream 107 

microbiome composition and functional potential, with the introduction of exogenous organisms 108 

to the system being a significant driver of the observed change. 109 

  110 

Results and Discussion 111 

Impact of rainfall on North Shore Channel (NSC) microbial community composition 112 
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Rainfall can impact urban waterways by increasing effluent flow from WWTPs or causing 113 

combined sewer overflow events (CSOs) at outflow points along streams (4). The NSC site that 114 

we investigated has a WWTP (O’Brien Water Reclamation Plant) and several CSO outfall sites 115 

within a few km upstream (Fig. S1) and often experiences increased flow from both following 116 

rainfall, including the two rain events reported in this study 117 

(http://www.mwrd.org/irj/portal/anonymous/overview)(Fig. S2). Sequences from 16S rRNA 118 

gene amplicons at five distinct times between 2013-2015 representing both summer and fall and 119 

stream baseflow (dry weather; three samples) and stormflow (<24 hours after rain; two samples) 120 

(additional details are in Table S1) revealed both a seasonal/temporal and rainfall-associated 121 

clustering of the samples at the OTU level (PCoA, Bray-Curtis metric) (Fig. 1A). In particular, 122 

the separate clustering of stormflow and baseflow samples along the Prinicipal Axis 2 highlights 123 

the strong influence of rain on the microbial community composition across different seasons. 124 

Such changes might result from either a direct influx of allochthonous microbes or a shift in the 125 

resident microbial community in response to altered chemical conditions following rain, 126 

although none of the measured physicochemical parameters showed a statistically significant 127 

difference between stormflow and baseflow conditions (p > 0.05, Welch’s t-test; Table S1). In 128 

addition to shifts in community composition, microbial diversity based on OTU richness and 129 

Good’s coverage was slightly higher in the stormflow samples than the baseflow samples (Table 130 

S2), although the differences were not significant (p > 0.05, Welch’s t-test). 131 

 To analyze shifts in the microbial community across all stormflow vs. baseflow samples, 132 

OTUs were clustered at various hierarchical taxonomic levels. There was a difference in genus-133 

based community composition between the stormflow and baseflow samples as per ANOSIM 134 

(Bray-Curtis metric, R
2 
= 0.5, p = 0.1). Genus-level comparisons of microbial community 135 
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composition revealed a significantly lower abundance of unknown genera within groups 136 

Pelagibacteraceae, ACK-M1 and Actinomycetales and a significantly higher abundance of 137 

Arcobacter and unknown genera within the family Rhodocyclaceae during stormflow as 138 

compared to baseflow (p < 0.05, Welch’s t-test) (Fig.  1B). The ACK-M1 family of 139 

Actinobacteria and Pelagibacteraceae are common freshwater organisms that do not favor 140 

nutrient rich conditions (17, 18) while genera within Rhodocycleae are Betaproteobacteria 141 

known to take advantage of nutrient/substrate-rich conditions, likely due to higher growth rates 142 

(17). Rhodocycleae has previously been associated with urban streams and was reported to be 143 

abundant in impacted Milwaukee waterways (19). Similarly, Arcobacter has often been 144 

associated with sewage and WWTP effluent (8, 9, 20). The increase in the relative abundance of 145 

these organisms in the NSC following rainfall could be due to point source inputs from the 146 

increased effluent flow and/or CSOs and was analyzed in more detail with shotgun 147 

metagenomics (see below). 148 

 Overall, the rain-associated changes in the microbial community composition appeared to 149 

be directly related to increased effluent; the after rain community OTUs were more similar to 150 

those in the WWTP effluent than to the before rain community (Fig. 1A). This could be linked to 151 

a few taxa, such as unknown genera within families Procabacteriaceae and Legionellacaea as 152 

well as the genus Arcobacter, which were abundant in the effluent and increased in the stream 153 

post-rain (Fig. 1B).  154 

 155 

Metagenomics-based microbial community composition before and after rain in North Shore 156 

Channel 157 
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The overall trends from the 16S rRNA gene-based analysis across seasons and years warranted a 158 

whole community metagenomic analysis of more temporally resolved samples clustered around 159 

a large rainfall event. Metagenomes with 4.06-16.21 million reads per library were obtained 160 

(Table S3) from the same NSC site discussed above (Fig. S1) before and <24 h after a heavy 161 

rainfall that followed a dry period in October 2013 (Fig. S2). These were used to 162 

comprehensively identify short-term changes in the microbial taxonomic profile after the rain. 163 

The rain resulted in increased WWTP effluent flow into the stream for ~24 h following 164 

precipitation, from <200 MGD to >300 MGD, and several CSO events at at-least three outfall 165 

locations upstream of sampled site within 10 h of rain 166 

(http://www.mwrd.org/irj/portal/anonymous/overview)(Fig. S2). Community coverage estimates 167 

using read redundancy (21) showed that the before rain metagenomes captured between 50-60% 168 

of the community and the after rain libraries captured approximately 40% (Fig. S3), indicating 169 

only a nominal increase in diversity after rainfall; a small increase in community OTU richness 170 

after rain was also observed with the 16S rRNA gene amplicon data (Table S2). Furthermore, the 171 

concentration of microbial cells in the before and after rain samples were similar: 1.39x10
6
 and 172 

1.25x10
6
 cells/ml, respectively. Previous studies have reported conflicting responses of microbial 173 

community diversity to urban inputs, with some showing an increase (20) and others a decrease 174 

(15, 23) relative to less impacted conditions/systems. This may be due to differing base 175 

conditions; the NSC is characterized by significant urban effluent flow even in the absence of 176 

rain. While Lake Michigan provides the primary freshwater input, about 70% of the annual flow 177 

through the CAWS is contributed by the treated effluent discharge from WWTPs in the city (24) 178 

during both baseflow and stormflow conditions. Our results do not show a strong pattern of 179 

change in microbial community diversity/richness during stormflow in NSC, perhaps because of 180 
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the variable nature of urban stream microbial communities or due to the small size of the this 181 

study. However, we hypothesize based on our results that individual rain events might not 182 

significantly impact microbial diversity in this system.  183 

 Despite overall similarities in microbial diversity and cell counts, numerous taxonomic 184 

differences were seen following rain, indicating that these changes likely reflect actual changes 185 

in microbial populations. The microbial communities pre- and post-rainfall determined both from 186 

16S rRNA genes and by assigning taxa to assembled metagenomic contigs showed overall 187 

concordance, however we focused on the assembled contigs for a high-resolution, population-188 

level characterization of the community and to evaluate possible links between taxonomic and 189 

functional changes in the microbiome (24). About ~67% of the large (>500bp) contigs used by 190 

MyTaxa were classifiable at phylum level, ~35% at genus level, and 24% at species level. At the 191 

phylum level (Proteobacteria subdivided into classes), several individual taxa showed 192 

significantly different relative abundances after rain with large effect sizes (Fig. 2A). 193 

Actinobacteria and Bacteroidetes significantly decreased in relative abundance after rain whereas 194 

Gammaproteobacteria, Betaproteobacteria and Chlamydiae significantly increased (p <0.05, t-195 

test, false discovery rate corrected) (Fig. 2A). Similarity Percentage analysis (SIMPER, 26) 196 

revealed that Actinobacteria, Gammaproteobacteria and unclassified Proteobacteria contributed 197 

the most (35%, 14% and 21%, respectively) to the differences in community composition 198 

between the before and after rain samples at the phylum level. At the genus level, the decrease in 199 

relative abundance of Innominate (unclassified at genus level) Actinobacteria, Candidatus 200 

Pelagibacter and Streptomyces as well as the increase in relative abundance of Legionella and 201 

Rickettsia-affiliated sequences after rain contributed to the major change (>50%) in community 202 

composition (Fig. 2B). Francisella, Nitrospira, Chlamydia and Pseudomonas were other major 203 
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genera that increased significantly (p <0.05, t-test, FDR corrected) in relative abundance in the 204 

after rain microbiome. As was observed with 16S rRNA amplicons in all samples (above), the 205 

urban signature bacteria Arcobacter increased by >50% in relative abundance following rain, 206 

though the increase was not statistically significant (Fig. 2B). Legionella, Pseudomonas and 207 

Arcobacter have all been previously associated with effluent contamination of urban waterways 208 

(20), supporting the significant role of increased effluent flow on the NSC microbiome. Increases 209 

in the relative abundance of other taxa such as Francisella, Rickettsia and Chlamydia that 210 

comprise pathogenic species (27, 28) and are usually not abundant in aquatic environments could 211 

be either a result of microbial influx from the effluent and/or the CSOs upstream. The decrease 212 

in the freshwater groups of Actinobacteria and Pelagibacteria after rain likely reflects a dilution 213 

effect on baseflow NSC waters from the increased effluent and CSOs flow. Several species, 214 

including Francisella tularensis, Candidatus Nitrospira defluvii, Legionella longbeachae and 215 

Enterococcus faecalis, were rare (<0.1% of the total sequences characterized by MyTaxa) in the 216 

before-rain microbiome but increased in relative abundance after rain to > 0.1% (Table S3). Most 217 

of these species are not common freshwater bacteria and are indicative of contamination.  218 

 219 

Population-level changes in response to rainfall in the North Shore Channel 220 

We followed population-level trends for abundant organisms that exhibited large changes in their 221 

relative abundance after rain. Organisms most similar to Legionella pneumophila increased 10-222 

fold in relative abundance after rain and also comprised the largest fraction of characterized 223 

species (11%) in the after-rain microbiome. Reads were recruited to the longest contig assigned 224 

to L. pneumophila in the rain-associated samples with roughly equal similarity (about 90-100% 225 

nucleotide identity) from each sample, suggesting the presence of the same population both 226 
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before and after rain that increased substantially after rain (Fig. S4). This was supported by 227 

similarities in the average amino acid identity (AAI) of predicted protein coding genes from L. 228 

pneumophila before and after rainfall contigs (60% and 63%, respectively) to the genome 229 

sequences of the environmental isolate L. pneumophila strain LPE509 and the clinical isolate L. 230 

pneumophila subsp. pneumophila str. Philadelphia 1. The AAI between genes attributed to L. 231 

pneumophila in the before and after rain metagenomes was 83%. Although genome pairs for the 232 

same species typically exhibit higher AAIs (~90%) (29, 30), 83% still signifies close genetic 233 

relatedness and not necessarily distinct populations. Overall, these results indicate that the before 234 

and after rain Legionella are members of the same species, but different from any currently 235 

known, sequenced members of Legionella. The discordance between our Legionella-like 236 

organisms and well-characterized L. pneumophila strains also makes it unclear if the 237 

corresponding populations are pathogenic, although a few predicted genes (1 and 3 for the before 238 

and after rain metagenomes, respectively) had high identity matches (>90%) to known L. 239 

pneumophila virulence genes in the virulence factor database (http://www.mgc.ac.cn/VFs/). 240 

Organisms within Legionella have been associated with artificial aquatic environments such as 241 

water distribution systems and cooling towers in buildings (31, 32) as well as WWTP effluent 242 

(20), thus their dramatic post-rain surge is not surprising. 243 

 Another notable increase in relative abundance after rain (~16-fold) was attributed to 244 

Francisella tularensis, an organism with known soil- and water-borne pathogenic subspecies 245 

(26, 32). Using a similar approach as above, AAIs between genes attributed to F. tularensis in 246 

before and after rain samples and a reference genome of pathogenic subspecies F. tularensis 247 

subsp. tularensis SCHU S4 were 47% and 54%, respectively. Similar AAI values were observed 248 

between the metagenomic sequences and genomes of low virulent subspecies of this organism. 249 
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The AAI between the before and after rain F. tularensis genes was 68%. Thus, sequences 250 

classified as F. tularensis in our samples likely share the same taxonomic order Thiotrichales, 251 

but are different species from the known F. tularensis and might represent different populations 252 

within the same genus in the before and after rain samples, although the low number of 253 

sequences in the before rain dataset could bias in AAI calculation.  254 

 We also evaluated the population dynamics for species that dramatically dropped in 255 

relative abundance after the rain. Actinobacterium SCGC AAA027-L06 is a member of the 256 

ubiquitous freshwater Actinobacteria lineage acI-B (33), and the relative abundance of contigs 257 

affiliated with this organism decreased dramatically (43-fold) after rain. Read recruitment 258 

indicated similarity between the before and after rain populations, with reads from each sample 259 

sharing ~90-100% nucleotide identity to the largest contig of this organism, although fewer reads 260 

mapped to the contig from the after rain samples (Fig. S5). As with the L. pneumophila 261 

population, the 84% AAI between the before and after rain sequences indicates close genetic 262 

relatedness between the two populations. Furthermore, the AAIs with respect to the 263 

Actinobacterium SCGC AAA027-L06 draft genome were similar for the sequences from the 264 

before and after rain microbial communities (81% and 83%, respectively), indicating close 265 

genetic relatedness to this organism. Members of the acI-B lineage have been detected in diverse 266 

freshwater habitats (20, 35, 36, 38) and tend to prefer oligotrophic environments due to their 267 

small cell-size and oligotrophic life strategies (19, 36). Their decrease in relative abundance after 268 

rain likely reflects the reduced influence of freshwater flow from Lake Michigan due to 269 

increased wastewater flow.  270 

 271 

Overall functional gene content in before and after rain microbial communities 272 
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Functional gene profiles revealed taxa-driven shifts in the microbial community functional 273 

potential after rain. Although many abundant Gene Ontology (GO) terms related to 274 

housekeeping functions, such as nucleic acid and small molecule binding, did not significantly 275 

change in relative abundance after rain (data not shown), we observed an increase of >50% of 276 

functions within the broad terms of transporter activity and carbohydrate metabolism after rain. 277 

These were primarily related to transmembrane and substrate-specific transporter activity and 278 

carbohydrate biosynthetic and metabolic processes, respectively (Fig. 3A). Genes related to 279 

multi-organism processes such as pathogenesis and conjugation were >50% more abundant after 280 

rain while the before-rain microbiome had >50% more functions related to catabolic process, 281 

amine metabolic process and phosphate containing compound metabolic process (Fig. 3A). 282 

Within the broad GOs, genes related to photosynthesis, biosynthesis of organic compounds such 283 

as amines, vitamins and pigments as well as the activity of enzyme groups oxidoreductase 284 

(acting on the CH-NH2 group of donors) and ligase (forming phosphoric ester bonds) were twice 285 

as abundant in the before-rain microbiome (Fig. S6).  286 

 Within the broad GO term of transporter activity, genes related to substrate-specific 287 

transmembrane transporter activity, specifically organic acid and ion transmembrane transporter 288 

activity, doubled in relative abundance after rain from an average of 0.06% to an average of 289 

0.12% (Fig. S6). Genes encoding all transmembrane transporters were primarily attributed to 290 

Actinobacteria (31% of the identified sequences at phylum level) and unclassified Proteobacteria 291 

(22%) before rain, whereas unclassified Proteobacteria (39%) and Gammaproteobacteria (16%) 292 

were the major groups encoding transporters after rain (Fig. 3B). Gammaproteobacteria 293 

harboring transporter genes increased by 51% after rain while Actinobacteria encoding these 294 

genes exhibited more than 9-fold decrease, mirroring the shifts observed for the overall 295 
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taxonomic profiles for these groups (Fig. 2, 3B). Genera contributing to the increase in 296 

Gammaproteobacterial sequences included Legionella, Francisella and Pseudomonas, exhibiting 297 

a pattern similar to the shifts in their relative abundance in the overall microbial community. 298 

Furthermore, as with the overall microbial community, Actinobacterium SCGC AAA027-L06 299 

(unclassified at genus level) contributed the largest fraction of sequences encoding 300 

transmembrane transporter activity genes within Actinobacteria in the before rain community. 301 

Interestingly, based on the functional gene content of organisms with dominant shifts in their 302 

relative abundance, those organisms that increased after rain had a higher proportion of their 303 

genes affiliated to transporter functions compared to those that dropped in abundance after rain. 304 

For instance, 3.7% and 6.8% of the L. pneumophila and F. tularensis genes, respectively, were 305 

associated with transmembrane transport,whereas Actinobacterium SCGC AAA027-L06 and the 306 

genus Pelagibacter had ≤ 2%. Thus, the increase in transporter functions following the rain 307 

appears to be directly associated with an increase in the relative proportion of a subset of the 308 

organisms that harbor these functions rather than an increase in the distribution of these genes 309 

across the community. Organisms with transmembrane transporter genes, especially for organic 310 

substrates like organic acids, may be more suited to take advantage of the heterogeneous 311 

environment resulting from stormflow conditions.  312 

Further evidence that changes in community composition drove the overall changes in the 313 

metabolic capacity came from genes that decreased in relative abundance after rain, such as 314 

those encoding biosynthesis of organic substances, which mirrored the overall shifts in taxa (Fig. 315 

2); Actinobacteria (39% of the identified sequences at phylum level) and unclassified 316 

Proteobacteria (31%) were the major taxa encoding organic substance biosynthesis before rain 317 

and unclassified Proteobacteria (45%) and Gammaproteobacteria (13%) after rain. The short-318 
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term nature and lack of gene expression data makes it difficult to know about the viability and 319 

activity of these organisms, but taxa-driven shifts in community functional potential were 320 

recently observed in another river in response to sewage and terrestrial-derived organisms (15).  321 

 322 

Biodegradation and antibiotic resistance gene abundance before and after rain 323 

In addition to the GO-based functional analysis, we examined how rainfall impacted 324 

biodegradation and antibiotic resistance gene content. Predicted ORFs from both the before and 325 

after rain metagenomes were searched against a compiled database of protein sequences of 326 

microbial enzymes involved in the degradation of 12 different compounds associated with 327 

wastewater contamination, stormwater runoff, and WWTP effluent input (Fig. 4A). We detected 328 

biodegradation genes (BDGs) in both the before and after rain samples for 8 out of the 12 329 

contaminants tested, but observed a significant increase (p < 0.05, t-test) in the relative 330 

abundance of genes involved in the degradation of nicotine, phenol, 1,4-dichlorobenzene and 331 

pentachlorophenol and a decrease (p < 0.05) in cholesterol degrading genes after rain (Fig. 4A). 332 

Additionally, the total relative abundance of all BDGs was significantly higher in the after rain 333 

sample (p < 0.05, t-test). BDGs before rain were primarily affiliated with unclassified 334 

Proteobacteria and Actinobacteria (35% and 30% of the identified sequences at phylum level, 335 

respectively), with the profile shifting to unclassified Proteobacteria and Betaproteobacteria 336 

(49% and 19%, respectively) as the dominant members of the community after rain, similar to 337 

the overall taxonomic shifts described above. These results reflect the increase in effluent flow 338 

from the WWTP as well as the suspected presence of these compounds in untreated wastewater 339 

and CSOs (3,38,40,42) (Fig. 4A).  340 
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 Changes in the relative abundance of antibiotic resistance genes (ARGs) after rain were 341 

evaluated using the Comprehensive Antibiotic Resistance gene Database (CARD). As only a few 342 

ORFs (~10 per library) could be classified as ARGs from both the time points, we queried the 343 

unassembled paired-end reads against CARD. This resulted in several hits for various ARG 344 

categories in both time points (0.04% and 0.07% of the total number of reads for before and after 345 

rain samples, respectively) and revealed notable increases in the relative abundance of several 346 

ARG classes after rain (Fig. 4B), including significant increases in aminocoumarin and 347 

polymyxin resistance genes (p < 0.05, t-test). As with the BDGs, the total relative abundance for 348 

all ARGs pooled together for each time point was significantly higher in the after rain sample (p 349 

< 0.05, t-test). Increases in ARGs with urban-impacted stormflow was recently observed 350 

elsewhere as well (14), indicating that this could be a significant and underexplored effect of 351 

stormflow. Reads with high matches to ARGs were queried against metagenomic contigs, 352 

revealing that unclassified Proteobacteria and Firmicutes were the abundant ARG-carrying phyla 353 

(40% and 23% of the identified sequences at phylum level, respectively) in the before rain 354 

microbiome whereas unclassified Proteobacteria (50%) and Gammaproteobacteria (24%) were 355 

the dominant groups after the rain. This further supports the importance of taxa driven changes 356 

on gene content.  357 

 The results for both community composition and functional gene analysis provide 358 

evidence for the significant influence of WWTP effluent input on the microbial community, 359 

particularly from increased effluent flow-rates associated with heavy rain. Overall, this study 360 

revealed a shift in microbial community composition following rain from organisms frequently 361 

associated with freshwater systems towards organisms associated with urban impacted waters (9, 362 

20, 21) as well as a shift in functional gene content. The increased relative abundance (and 363 
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possibly actual abundance) of BDGs and ARGs along with the increase in genes associated with 364 

conjugation and pathogenesis in the after rain microbiome highlight the environmental and 365 

public health implications of stormflow in urban waterways. The extent to which these changes 366 

in gene content are expressed metabolically and persist is unknown. Although the WGS 367 

metagenomic analysis of a single rainfall event limits the scope of interpretations that can be 368 

drawn, our results provide substantial insights into microbial community dynamics in an urban 369 

stream during stormflow conditions, highlighting the need to investigate the urban stream 370 

microbiome with longer temporal scales and systematic sampling design to better predict the 371 

impact of rain associated stormflow events. 372 

 373 

Materials and Methods 374 

Site description and sample collection 375 

The North Shore Channel (NSC) is a 12.3 km long man-made stream of the Chicago Area 376 

Waterway System that receives input from the O’Brien Water Reclamation Plant, a WWTP that 377 

serves over 1.3 million people residing in a 365 km
2
 area and releases effluent into the NSC 378 

(http://www.mwrd.org/irj/portal/anonymous/waterreclamation). Our study site is approximately 379 

1 km downstream of the WWTP outfall (Fig. S1). The NSC also has 48 CSOs along its course, 380 

six of which are located within about 1 km upstream of WWTP, and two are located within 1 km 381 

downstream of the WWTP. These release excess stormwater mixed with untreated sewage into 382 

the river when the transport and storage capacity of the city’s sewage network is exceeded 383 

following high rainfall (http://www.mwrd.org/irj/portal/anonymous/overview)(Fig. S1). Water 384 

from the selected NSC site was sampled five times between 2013-2015 (0-1 m depth): three 385 

represent stream water during base flow (dry weather) conditions, and the other two represent 386 
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stormflow (<24 hours after rainfall) conditions. We also sampled the WWTP effluent in October 387 

2013 during baseflow conditions. Additional sample metadata and water chemistry are in Table 388 

S1. 389 

 Water was collected using a horizontal sampler (Wildco, Yulee, FL, USA) and passed 390 

on-site in succession through ~1.6 μm pore size glass fiber filters to remove larger particles 391 

(Whatman, Pittsburgh, PA, USA) and collected on a 0.22 μm pore size polycarbonate membrane 392 

filters (EMD Millipore, Billerica, MA, USA). WWTP effluent was collected from the WWTP 393 

outlet where the released effluent mixes with stream water. About 10L of water was filtered in 394 

duplicate for each sample and ~20 ml of the filtrate was transported back to lab for chemical 395 

analysis. Water Temperature, pH, conductivity and total dissolved solids were measured on-site 396 

using a portable water quality meter (Hanna Instruments, Woonsocket, RI, USA). Additional 397 

water chemistry analysis is described in Table S1. 398 

DNA extraction and sequencing 399 

DNA was extracted from filters as described in (46). Briefly, filters were incubated in lysis 400 

buffer (50 mM Tris-HCl, 40 mM EDTA, and 0.75 M sucrose) containing 1 mg/ml lysozyme and 401 

200 μg/ml RNase at 37 °C for 30 min. Subsequently, the samples were incubated with 1% SDS, 402 

10 mg/ml proteinase K at 55 °C and rotated overnight. From the lysate, DNA was extracted 403 

using phenol:chloroform, followed by ethanol precipitation and elution in TE buffer.  404 

Whole genome shotgun (WGS) metagenomic sequencing was done on the Illumina 405 

HiSeq (v1) with paired end format and read length of 150 bp at the Michigan State University 406 

Research Technology Support Facility. We obtained 2.82 and 3.18 Gbp of paired-end read data 407 

for the before and after rain samples, respectively. Replicate filters were sequenced at the 408 

University of Illinois at Chicago DNA Services Facility (DNAS) on a single lane of the Illumina 409 
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HiSeq platform with paired end format and read length of 100 bp, yielding 4.04 and 1.31 Gbp of 410 

paired-end read data for the before and after rain libraries, respectively.  411 

For 16S rRNA gene amplicon sequencing, 10-30 ng of DNA from each biological 412 

replicate (filter) were amplified with the V1-V3 primers 27F and 534R (47, 48). Amplicons were 413 

sequenced at the DNAS on the Illumina MiSeq platform with paired end format and read length 414 

of 300 bp. Between 28,933- 160,811 sequences per sample were obtained, with an average of 415 

61,337 sequences per sample. All these sequence data have been submitted to the Sequence Read 416 

Archive at NCBI under accession number SRP080963. 417 

16S rRNA gene based analysis of microbial community diversity 418 

Paired-end barcoded reads of 16S rRNA gene amplicons were obtained for all the time points 419 

sampled and quality filtered using Trimmomatic (49) with a minimum average quality score of 420 

20 across a 4-base sliding window and a minimum read length of 100 bp (including primer) post 421 

trimming. Trimmed, paired-end reads were merged using Pear (50), but owing to low yield of the 422 

merged reads, likely due to issues related to the MiSeq V2 kit chemistry, further analysis was 423 

only performed on the trimmed forward reads. Reads were analyzed using QIIME version 1.8.0 424 

(51). Library statistics are summarized in Table S2. Chimeric sequences were removed using 425 

identify_chimeric_seqs.py with usearch61 denovo method and filter_fasta.py.  Filtered sequences 426 

were clustered into operational taxonomic units (OTUs) at a 97% identity level using scripts 427 

pick_otus.py and pick_rep_set.py based on usearch61 denovo OTU picking. Representative 428 

OTUs were assigned taxonomy based on the Greengenes reference database (May 2013 version) 429 

using assign_taxonomy.py with uclust. OTUs occurring as singletons or with sequences from just 430 

one library were excluded from analyses. Community taxonomic composition and alpha 431 

diversity was performed using summarize_taxa.py and alpha_diversity.py, respectively, with a 432 
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random subsample of 17,384 sequences per sample to avoid bias arising from variation in 433 

sequencing depth. Good’s coverage for each library was estimated using alpha_diversity.py and 434 

OTUs that included singletons, subsampled to an even depth of 18,289 sequences per library, the 435 

smallest library size. 436 

Metagenomic sequence assembly and phylogenetic classification 437 

Raw metagenomic sequences were quality filtered using a Phred average per sliding window 438 

with quality threshold Q ≥ 20 and not allowing any N’s. Quality filtered coupled reads for each 439 

metagenomic library were assembled as described in (46). Coupled reads were first assembled 440 

into contigs with Velvet (52) and SOAPdenovo2 (53) separately, and input to Newbler 2.0 to 441 

obtain longer contigs with better N50 values (54). Additional metagenomic library statistics are 442 

provided in Table S3. Gene calling was done with MetaGeneMark (55). Due to uneven data 443 

yields from sequencing, we used assemblies from the first sequencing run for each sample as the 444 

representative sequences for annotations, and mapped the coupled reads from both the replicate 445 

libraries to these contigs for each sample to calculate the contig coverage in each library. The 446 

predicted protein coding genes for each dataset were used for phylogenetic classification of the 447 

corresponding contigs using MyTaxa (28) with a database of all sequenced bacterial and archaeal 448 

genomes (http://enve-omics.ce.gatech.edu/data/mytaxa) using DIAMOND blastp in the sensitive 449 

mode (56). Reads were mapped to contigs using blastn with cutoffs ≥ 50% alignment length, 450 

identity ≥ 97% and e-value ≤ 10
-10

. Contig coverage (sum of lengths of reads mapping to 451 

contig/contig length) was used as a proxy for in situ abundance in each library and calculated 452 

using the BlastTab.seqdepth_nomedian.pl script from the Enveomics bioinformatics toolbox 453 

(57). The script aai.rb from the same toolbox was used to calculate average amino acid identity 454 

(AAI) between any two sets of protein coding genes. 455 
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Analysis of functional gene content and antibiotic resistance genes 456 

Predicted metagenomic genes were searched against the SwissProt database (58) using blastp 457 

and cutoffs of at least 40% sequence identity, 70% coverage of the query sequence and e-value ≤ 458 

10
-10

. The SwissProt match for the best hit for each query sequence was mapped to its 459 

corresponding Gene Ontology (GO) term (59), followed by binning the characterized genes at 460 

various depths (distance of a GO term from the parent node) of the GO database using in-house 461 

scripts. To evaluate the functional profile at a specific depth, in situ abundance for these GO 462 

terms was calculated using gene coverage (described above), and relative abundance for each 463 

GO term was obtained as a fraction of the total abundance of genes with identified functions in 464 

that library. The taxonomic affiliation of genes classified within a specific GO term was 465 

evaluated using MyTaxa, as described above. 466 

 To specifically evaluate the presence and abundance of genes involved in biodegradation 467 

of select wastewater contaminants in the rain-associated metagenomes, we created a database of 468 

protein sequences of enzymes related to degradation of select contaminants that are commonly 469 

found in WWTP effluent and sewage: testosterone; ibuprofen; caffeine; nicotine; cholesterol; 470 

1,4-dichlorobenzene; methyl-naphthalene; pentachlorophenol; phenol; N,N, diethyl-3-toluamide; 471 

tetrachloroethylene and phthalate (3, 38–43). The enzymes were selected based on their role in 472 

the degradation pathways for these compounds (60), as well as the sequence availability in 473 

NCBI. This database is available from the corresponding author upon request. The predicted 474 

ORFs were searched against this database using blastp and the best hits were filtered at same 475 

thresholds used for SwissProt (above). Coverage estimates were used for calculating the in situ 476 

abundance for each BDG class, and normalized for each library by dividing the abundance of 477 
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each BDG class by the total coverage of all predicted genes in that library and multiplying the 478 

result by 1 million to obtain gene count per million genes per library.  479 

Antibiotic resistance genes in the rain-associated samples were identified by searching 480 

the predicted ORFs as well as paired-end metagenomic reads against the Comprehensive 481 

Antibiotic Resistance gene Database (CARD) (61) using blastp and blastx and a threshold of at 482 

least 80% sequence identity and 80% coverage of the query sequence (62, 63). Filtered reads for 483 

each library were binned into broad antibiotic resistance categories using the Resistance Gene 484 

Categories index file provided on CARD website (http://arpcard.mcmaster.ca/), and the read 485 

counts for each category were normalized for the library size as read count for ARG category per 486 

million reads per library. 487 

Microbial abundance estimation using fluorescence microscopy 488 

October 2013 NSC samples were fixed with paraformaldehyde (1% final concentration) in 489 

triplicate and stored in 4°C. Samples were then vortexed and collected on 25 mm black 490 

polycarbonate filters (0.2 μm pore size) and stained with 5 μl of a 10 mg/ml DAPI (4’,6-491 

diamidino-2-phenylindole) working solution diluted in 10X phosphate buffered saline (PBS). 492 

Microbial cells were enumerated (three slides from three replicate samples per time point) with 493 

an epifluorescence microscope (Zeiss Axio Scope.A1). 494 

Statistical analyses  495 

Analysis of Similarity (ANOSIM) and Similarity Percentage (SIMPER) analysis on 16S and 496 

metagenomic community composition datasets, respectively, was performed using the R vegan 497 

package (64). The Statistical Analysis of Metagenomic Profiles (STAMP) software package was 498 

used for t-tests to evaluate differentially abundant taxonomic groups among the 16S rRNA gene 499 

and metagenomic datasets (65), and with R to evaluate differentially abundant physicochemical 500 
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parameters, ARGs and BDGs. Principal Coordinate Analysis (PCoA, Bray Curtis metric) of 501 

OTUs (singletons removed and table subsampled to an even depth per sample) was performed 502 

with the Phyloseq package in R (66). 503 
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 706 

Supplemental Table and Figure Legends 707 

Table S1: Water chemistry and environmental characteristics for North Shore Channel sampled 708 

time points. 709 

Table S2: Sequencing statistics and diversity estimates for the 16S rRNA gene amplicon 710 

libraries used in the study. 711 

Table S3: Sequencing statistics for the metagenomes used in the study. 712 

Table S4: Rare species in before rain microbiome that were in the abundant fraction after rain. 713 

Fig. S1: Map of the Chicago Area Waterway System (left panel) and the North Shore Channel 714 

(NSC) (right panel). Our study site at NSC is highlighted with an arrow. The point designated as 715 

WWTP on the right panel represents the O’Brien Water Reclamation Plant. Black dots along the 716 

stream represent locations for monitored CSO outfalls. CSO outfalls marked with red stars 717 

(locations A, B and C) recorded CSO events in the evening of Oct 5, 2013 with durations of 56, 718 

50 and 5 minutes, respectively (http://www.mwrd.org/irj/portal/anonymous/overview). 719 

Fig. S2: O’Brien Water Reclamation Plant effluent flow rate [million gallons per day (MGD)] 720 

and rain gauge data for the months of September and October 2013 721 

(http://www.mwrd.org/irj/portal/anonymous/overview).The circled region of the plot 722 

corresponds to data around the rain event (10/5/2013), which is the focus of this study. No data 723 

was available for 9/17/2013 as the rain gauge was out of service. 724 
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Fig. S3: Community coverage estimates based on metagenomic reads generated using Nonpareil 725 

for the before and after rain metagenomes. Sample numbers 1 and 2 for each time point represent 726 

biological replicate libraries. 727 

Fig. S4: Reads from before rain (top) and after rain (bottom) datasets were mapped to the longest 728 

contig attributed to Legionella pneumophila from the after rain metagenome. Reads for 729 

biological replicate libraries (n= 2) were pooled for both the before and after rain time points. 730 

Fig. S5: Reads from before rain (top) and after rain (bottom) datasets were mapped to the longest 731 

contig attributed to Actinobacterium SCGC AAA027-L06 from the before rain metagenome. 732 

Reads for biological replicate libraries (n= 2) were pooled for both the before and after rain time 733 

points. 734 

Fig. S6: Heat map showing the relative abundance (percentage of total predicted genes) at level 735 

4 depth of Gene Ontology (GO) terms for the before and after rain microbiomes. GO terms that 736 

had a higher relative abundance (> 100%) in one of the two groups (before/after rain) as 737 

compared to the other are shown, and terms that had less than a total of 75 gene counts across all 738 

the samples have been excluded from the plot. Samples numbered 1 and 2 for each time point 739 

represent biological replicates. 740 

 741 
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Figure 1: (A) Principal coordinate analysis (PCoA) (Bray-Curtis metric) of OTU-based 

microbial community diversity for North Shore Channel (NSC) water and WWTP effluent. 

Samples were obtained during either baseflow or stormflow conditions between 2013-2015 in 

summer (July) and fall (October) seasons. Each NSC time point is represented on the PCoA by 

biological duplicates, except for Oct-2013 stormflow and baseflow samples that also have 

sequencing duplicates for one of their bio-samples. (B) Heat map representing the relative 

abundance (percent of total 16S rRNA gene sequences) of dominant bacterial taxa classified till 

the lowest possible level (up-to genus) for the NSC and effluent samples. Taxa highlighted with 

a star symbol represent bacterial groups with significantly different relative abundance (p < 0.05, 

Welch’s t-test) between the stormflow and baseflow samples of NSC. Two biological replicates 

marked as A and B represent each NSC time point, and the average value of these replicates per 

time point was used in Welch’s t-test between the two groups (stormflow and baseflow). 
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Figure 2: Rank-abundance plots for (A) phylum (Proteobacteria subdivided into classes) and (B) 

genus level classifications of metagenomic contigs from October 2013 before and after rain 

samples. The relative abundances of different taxa are averages of biological replicates for each 

sample (n=2). Based on taxon mean relative abundance across the samples, only the top 15 phyla 

and top 25 genera are shown. Phyla and genera highlighted with star symbol represent taxa with 

significant difference in relative abundance between the before and after rain microbiota (p < 

0.05, t-test, false discovery rate corrected). ‘Innominate organism’ comprises contigs classified 

as organisms that either belonged to no known phylum/genus or a candidate phylum/genus. 
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Figure 3: (A) Heatmap showing relative abundance (percentage of total predicted genes) at level 

3 of Gene Ontology (GO) terms for the before and after rain microbiomes. GOs that had a higher 

relative abundance (> 50%) in one of the two groups (before/after rain) as compared to the other 

are shown. GOs that had less than 100 gene counts (in situ abundance) across all the samples 

have been excluded from the plot. Samples numbered 1 and 2 for each time point represent 

biological replicates. (B) Taxonomic composition at phylum level of genes from the rain-event 

microbial communities classified within the GO term ‘transmembrane transporter activity’. 

Relative abundances are a fraction of total sequences identified at phylum level. 
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Figure 4: Relative abundance of (A) biodegradation genes (BDGs) and (B) antibiotic resistance 

genes (ARGs) in the before and after rain microbial communities. Relative abundance of BDGs 

refers to gene count (in situ abundance) per million genes per library averaged for each sample 

for their replicates (n=2) (see Methods section). For ARGs, relative abundance refers to read 

count per million reads per library averaged for each sample for their replicates. BDGs and 

ARGs with significant difference in relative abundances between the two time points (p < 0.05, 

t-test) are highlighted with stars. 
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