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Abstract 15 

Natural scenes sparsely activate neurons in the primary visual cortex (V1). However, whether and how 16 

sparsely active neurons sufficiently and robustly represent natural image contents has not been revealed. We 17 

reconstructed the natural images from neuronal activities of mouse V1. Single natural images were linearly 18 

decodable from surprisingly small number (~20) of highly responsive neurons. This was achieved by diverse 19 

receptive fields (RFs) of the small number of responsive neurons. Furthermore, these neurons robustly 20 

represented the image against trial-to-trial response variability. Synchronous neurons with partially 21 

overlapping RFs formed functional clusters and were active at the same trials. Importantly, multiple clusters 22 

represented similar patterns of local images but were active at different trials. Thus, integration of activities 23 

among the clusters led to robust representation against the variability. Our results suggest that the diverse, 24 

partially overlapping RFs ensure the sparse and robust representation, and propose a new representation 25 

scheme in which information is reliably represented, while representing neuronal patterns change across 26 

trials. 27 
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Introduction 29 

Sensory information is thought to be represented by relatively small number of active neurons in the sensory 30 

cortex. This sparse representation has been observed in several cortical areas1-9 and is postulated to reflect an 31 

efficient coding of the statistical features in sensory inputs4, 10. However, it has not been determined whether 32 

and how small numbers of active neurons represent sufficient information about sensory inputs.  33 

 In the primary visual cortex (V1), a type of neuron termed a simple cell has a receptive field (RF) 34 

structure that is spatially localized, oriented, and has a bandpass filter property of specific spatial frequency. 35 

This RF structure is modelled by a two-dimensional (2D) Gabor function11. According to theoretical studies, 36 

single natural images are represented by relatively small numbers of neurons using Gabor-like RFs, whereas 37 

information about multiple natural scenes is distributed across the neuronal population10,12,13. Indeed, V1 38 

neurons respond sparsely to natural scenes at the single cell level2, 3, 5-9 and population level3,5,14. Population 39 

activity with higher sparseness exhibits greater discriminability between natural scenes5.  40 

What types of information from natural scenes are represented in sparsely active neuronal populations in 41 

a brain? The visual contents of natural scenes or movies are reconstructed from populations of single unit 42 

activities in the lateral geniculate nucleus (LGN) collected from several experiments15 and functional magnetic 43 

resonance imaging (fMRI) data from the visual cortices16-19. However, it has not been addressed 44 

experimentally whether the visual contents of natural images are represented by small numbers of sparsely 45 

active neurons and whether V1 RFs in the brain are useful to represent the natural image. Furthermore, do the 46 

sparsely active neurons reliably represent the natural image contents against trial-to-trial response variability? 47 

Although a computational model20 has suggested that sparse and overcomplete representation is 48 

optimal representation for natural images with unreliable neurons, this has not been examined 49 

experimentally.  50 

We also addressed how visual information is distributed among neurons in a local population. It has been 51 

reported that subsets of neurons are ‘unresponsive’ to visual stimuli (e.g., a responsive rate for visual stimuli in 52 

mouse V1 of 26–68%)21-27, indicating subsets of neurons represent sensory information. However, this may 53 
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partly because stimulus properties do not completely cover RF properties of all neurons. Thus, there are two 54 

extreme possibilities; sparsely active neurons distributed among all neurons in a local population, or only a 55 

specific subset of cells processes the natural images. What proportion of neurons are actually involved in 56 

information processing has been debated28, 29. 57 

 Here, we examined whether and how a small number of highly responsive V1 neurons was sufficient for 58 

the representation of natural image contents. Using two-photon Ca2+ imaging, we recorded visual responses to 59 

natural images from local populations of single neurons in V1 of anaesthetized mice. A small number of 60 

neurons (<3%) highly responded to each natural image, which was sparser than that predicted by linear 61 

encoding model. On the other hand, approximately 90% of neurons were activated by at least one of the 62 

natural images, revealing that most neurons in a local population are involved in natural image processing. We 63 

reconstructed the natural images from the activities to estimate the information about the visual contents. 64 

Visual contents of single natural images were linearly decodable from a small number (~20) of highly 65 

responsive neurons. The highly responsive neurons showed diverse RF, which helped small numbers of 66 

neurons represent complex natural images. Furthermore, the highly responsive neurons robustly represent the 67 

image against trial-to-trial response variability. We found that subsets of the neurons whose RFs partially 68 

overlapped formed functional clusters based on correlated activities. Importantly, between the clusters, 69 

represented local images were similar to each other, while across-trial response variabilities were almost 70 

independent. Thus, integration of activities among the clusters led to a robust representation. We also found 71 

that the responsive neurons were only slightly shared between images, and many natural images were 72 

represented by the combinations of responsive neurons in a population. Finally, visual features represented by 73 

a local population were sufficient to represent the features in all the natural images we used. These results 74 

revealed new robust representation of natural images by a small number of neurons in which information is 75 

reliably represented, while representing neuronal patterns change across trials. Preliminary results of this study 76 

have been published in an abstract form30 and on a preprint server31. 77 
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Results 79 

The main purpose of this study is to examine whether and how the natural images are represented in the sparse 80 

representation scheme. We first confirm the sparse response to natural images in our dataset. Next, we 81 

demonstrate that the natural images were reconstructed from a relatively small number of responsive neurons. 82 

Finally, we address how the small number of neurons robustly represent natural images against trial-to-trial 83 

response variability.  84 

 85 

Sparse visual responses to natural images in mouse V1 86 

We presented flashes of natural images as visual stimuli (Fig. 1a, see Methods) and simultaneously recorded 87 

the activities of several hundreds of single neurons from layers 2/3 and 4 of mouse V1 using two-photon 88 

calcium (Ca2+) imaging (560 [284–712] cells/plane, median [25–75th percentiles], n = 24 planes from 14 mice, 89 

260–450 microns in depth, Fig. 1b for representative response traces). Fig. 1c presents plots of significant 90 

visual response events for all images (x-axis) across all neurons (y-axis) in a plane (n = 726 cells, depth: 360 91 

microns from the brain surface). Significant response for each image was defined as an evoked response which 92 

was significantly different from 0 (p < 0.01 using the signed-rank test) and whose normalized response 93 

amplitude (z-score) was greater than 1 (see Methods). Hereafter, we call these significant visual responses 94 

highly responsive. A few to 10% of neurons were highly responsive to a single image (5.1% [3.9–6.7%] 95 

cells/image, Fig. 1c bottom panel), indicating sparse visual responses to natural images. In contrast, nearly all 96 

neurons (98%, 711/726 cells) responded to at least one image (each cell responded 4.5% [2.5–7.5%] images, 97 

Fig. 1c right panel). Across planes, 2.7% cells were activated by a single image ([1.8–3.2%], Fig. 1f), whereas 98 

almost all cells responded to at least one image (90% [86–93%], Fig. 1g). This low responsive rate to each 99 

image was not due to poor recording conditions. The same neurons responded well to moving gratings (27% 100 

[22–34%] for one direction, and 75% [66–79%] for at least one of 8 directions, Fig. 1h and i). 101 

The highly responsive neurons only slightly overlapped between images. Fig. 1d presents representative 102 

activity patterns for three natural images (Fig. 1d, left column). Each image activated different subsets of 103 
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neurons that exhibited small overlaps between images (Fig. 1d, right column). Of the responsive cells, 4.8% 104 

exhibited overlap between two images (25–75th percentiles for 24 planes: 4.0–5.5%, Fig. 1j). We further 105 

computed the distributions of the response amplitudes to single images (Fig. 1e). Only a small number of 106 

neurons exhibited visual responses with greater amplitudes, which is a characteristic property of a sparse 107 

representation (Fig. 1e). Population sparseness2, 3, a measure of sparse representation, was comparable to a 108 

previous report for mouse V15 (0.36 [0.30–0.42], Fig. 1k, see Methods). Thus, each natural image activated a 109 

relatively small number of neurons, whereas most neurons in a local population were activated by at least one 110 

of the images, suggesting the sparsely distributed representation of natural images in V1 that was originally 111 

proposed in a previous study10. The latter result also provides the first report that most neurons in mouse V1 112 

are visually responsive to natural image stimuli28, 29. 113 

 114 

Partially overlapping representations of visual features among local V1 populations 115 

We created encoding models for the visual responses of individual neurons to examine the visual features 116 

represented by each neuron. We used a set of Gabor wavelet filters (1248 filters, Supplementary Fig. 1a and b, 117 

see Methods) to extract the visual features from the natural images. Natural images were applied to each 118 

Gabor filter and transformed into sets of feature values (Gabor feature values). For each neuron, we first 119 

selected the Gabor features that exhibited strong correlations with the visual response. The correlation 120 

threshold for the selected feature was adjusted to maximize the visual response prediction (Supplementary Fig. 121 

1c–e, see Methods). Then, the visual response was represented by a linear regression of the selected feature 122 

values followed by a non-linear scaling (Fig. 2a, see Methods). The visual response prediction of the model 123 

was estimated with a different dataset from the dataset used in the regression (10-fold cross validation, see 124 

Methods).  125 

 Visual response of an individual neuron was represented by a small number of Gabor features. In the 126 

example cells (Fig. 2b and c), the correlation coefficients between the observed responses and the responses 127 

predicted by the model were 0.76 and 0.89. These neurons were represented by 19 and 13 Gabor features, 128 
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respectively (Fig. 2b and c, right panels), and their encoding filters (weighted sums of the Gabor filters) were 129 

spatially localized (Fig. 2b and c, insets in the right panels). In the representative plane presented in Fig. 1, the 130 

median of the prediction performance of the encoding model (i.e., the correlation coefficient between the 131 

observed and predicted responses) was 0.34 (25–75th percentiles: 0.16–0.52, n = 726 cells, Supplementary Fig. 132 

1f), and the median performance of all cells across planes was 0.24 (25–75th percentiles: 0.07–0.45, n = 12755 133 

cells across 24 planes, Supplementary Fig. 1i). An examination of the non-linear scaling function revealed that 134 

this step suppressed weak predicted responses and enhanced strong predicted responses (see Fig. 2d and e for a 135 

representative cell and average across planes, respectively), suggesting that this non-linear step enhanced the 136 

sparseness of the predicted response obtained from the linear step (i.e., linear regression by feature values). On 137 

average, 2.0% of the features (25/1248 features, 25–75th percentiles: 2.0–2.1%) were represented in each cell 138 

of the example plane (upper panels in Fig. 2f and Supplementary Fig. 1g), and 2.1% were represented in each 139 

cell of all recorded cells across all planes (~26/1248 features, 25–75th percentiles: 0.9–4.9%, n = 12755 cells, 140 

Fig. 2h and Supplementary Fig. 1k). These features were related to the RF structure of each cell 141 

(Supplementary Fig. 2). The RF structure of each cell was estimated using the regularized inverse method32-34 142 

(see Methods). The regression weights of the Gabor features in the encoding model were positively correlated 143 

with the similarity between the corresponding Gabor filter and the RF structure (Supplementary Fig.2a–d). 144 

The Gabor features encoded in one cell partially overlapped with those of other cells in a local population 145 

(Fig. 2i). Among 19 and 13 Gabor features represented by the two example cells (Fig. 2b and c), only two 146 

features overlapped. For all cell pairs across all planes, the median overlap was 3.4% (25–75th percentile: 147 

0.0–9.6% relative to features represented by each cell, Fig. 2i and Supplementary Fig. 1h and 1l). The feature 148 

overlap between neurons was positively correlated with the similarity of RF structure (Supplementary Fig. 149 

2e–j). Based on these findings, the Gabor features encoded by individual neurons in a local population were 150 

highly diverse and partially overlapped. 151 

The analysis of the encoding model also revealed how the individual Gabor features were encoded across 152 

neurons (upper left and bottom panels in Fig. 2f and g). As the spatial frequency (SF) of the Gabor filter 153 
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increased (i.e. the scale decreased), the corresponding feature contributed to the visual responses of fewer 154 

neurons (Fig. 2g). This pattern likely reflected the fact that Gabor filters with a low SF (i.e., a large scale) 155 

covered more of the neuron’s RF, whereas Gabor filters with a high SF (i.e. a small scale) affected the 156 

responses of fewer neurons. Furthermore, almost all features contributed to the responses of at least one cell 157 

(100% in the plane presented in Fig. 2f and 100% [99.4–100%] across all planes, median [25–75th percentiles], 158 

Fig. 2j). 159 

 160 

Image reconstruction from the activities of the neuronal population 161 

The encoding model revealed the Gabor features represented by each neuron. We next examined whether the 162 

features encoded in a local population of neurons were sufficient to represent the visual contents of the natural 163 

images. We reconstructed stimulus images from the neuronal activities to evaluate information about visual 164 

contents in the population activity15-19. Using the same Gabor features as in the encoding model, each Gabor 165 

feature value was subjected to a linear regression of the neuronal activities of multiple neurons (Fig. 3a and 166 

Supplementary Fig. 3a). Each Gabor feature value was independently reconstructed. Then, the sets of 167 

reconstructed feature values were transformed into images (Fig. 3a, see Methods). The reconstruction 168 

performance was estimated with a different dataset from the dataset used in the regression (10-fold cross 169 

validation, see Methods). 170 

We first used all simultaneously recorded neurons to reconstruct the image. In the examples of the plane 171 

(n = 726 neurons, presented in Figs. 1 and 2), the rough structures of the stimulus images were reconstructed 172 

from the population activities (“All-cells” in Fig. 3b). The reconstruction performances (pixel-to-pixel 173 

correlations between stimulus images and reconstructed images) were 0.45 [0.36–0.56] (median [25–75th 174 

percentiles] of 200 images) in the representative plane (n = 726 cells, Fig. 3c upper panel) and 0.36 175 

[0.31–0.38] across all planes (n = 24 planes, “All cells” in Fig. 3d). Thus, the visual contents of natural images 176 

were extracted linearly from the neuronal activities of the local population in V1 177 

 The encoding model used in the previous section revealed how each neuron encodes the Gabor features 178 
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(Fig. 2f). We next examined whether these encoded features were sufficient for the representation of visual 179 

contents. In this analysis, each Gabor feature value was reconstructed with a subset of neurons selected using 180 

the encoding model (cell-selection model, Supplementary Fig. 3a, and see Methods). In this model, different 181 

subsets of neurons were used to reconstruct different features (Fig. 2f). Across all features, almost all neurons 182 

were used to reconstruct at least one feature (Fig. 2j). The examples of the reconstructed images from the 183 

cell-selection model are presented in Fig. 3b (Cell-selection). The reconstruction performance of the 184 

cell-selection model was comparable to or even slightly higher than the model using all cells (R = 0.49 185 

[0.37–0.59] for the representative plane, Fig 3c lower panel, and 0.36 [0.32–0.39] for all planes, median 186 

[25–75th percentiles], p = 4.0×10−4 using the signed-rank test, Fig. 3d). Thus, the Gabor features encoded in 187 

individual cells in a population captured sufficient information about the visual contents of the natural image. 188 

When the neurons were selected to maximize the reconstruction of each feature, the image reconstruction 189 

performance was only slightly improved (Supplementary Fig. 3b–h). Thus, main information about the visual 190 

contents was captured by the cell-selection model. 191 

 192 

Visual contents of natural images are linearly decodable from small numbers of responsive neurons 193 

Single natural images activated small numbers of neurons in a local population (Fig. 1). We next examined 194 

whether these small number of highly responsive neurons were sufficient to reconstruct a single image. For 195 

this purpose, we changed the number of neurons used in the reconstruction of each image and examined how 196 

many responsive neurons were sufficient for each image reconstruction. Parameters (weights and biases) of the 197 

cell-selection model were used in the reconstruction, and only the number of neurons used in the 198 

reconstruction was changed in this analysis. 199 

Representative results are presented in Fig. 4a–c. In each image, neurons were sorted by visual response 200 

amplitude (descending order) first among the highly responsive neurons (red dots in Fig. 4a–c) and then 201 

among the remaining neurons (black dots in Fig. 4a–c). The image was reconstructed by top N neurons (N = 202 

1–726 cells), and the reconstruction performances were plotted against the numbers of neurons used (Fig. 203 
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4a–d). All highly responsive neurons or even fewer neurons were sufficient to reconstruct the image to a level 204 

that was fairly comparable to the image created with all neurons (Fig. 4a–d). In summary, the performance of 205 

the highly responsive neurons was slightly better than the performance of all neurons (Representative plane: R 206 

= 0.52 [0.40–0.64] for the responsive neurons and 0.49 [0.37–0.59] for all neurons, Fig. 4f. Across planes: R = 207 

0.38 [0.34–0.44] for the responsive neurons and 0.35 [0.31–0.40] for all neurons, median [25-75th percentiles], 208 

p = 3.2×10−4 using the signed-rank test, n = 24 planes, Fig. 4g). On average, only approximately 20 neurons 209 

were sufficient to achieve 95% of the peak performance (vertical line in Fig. 4d). Thus, the visual contents of 210 

the single natural images were linearly decodable from small numbers of highly responsive neurons. 211 

 The features represented by individual neurons should be diverse to represent features in a natural image 212 

using a small number of neurons. Fig. 4e illustrates how individual responsive neurons contributed to the 213 

image reconstruction in the case presented in Fig 4a. Each neuron had a specific pattern of contributions 214 

(reverse filter: sum of Gabor filters × weights, see Methods), and the patterns varied across neurons (Fig. 4e 215 

top panels), while partially overlapping in the visual field. In neuron pairs that were highly responsive to the 216 

same image, the number of overlapping Gabor features were slightly increased compared to all pairs, but the 217 

percentage was still less than 10% (7.1% [1.0–16%] of features for the all pairs and 8.1% [6.3–10%] of 218 

features for 24 planes, Fig. 4h–j, cf. Fig. 2g). These small overlaps and diversity in the represented features 219 

among neurons should be useful for the representation of natural images by the relatively small number of 220 

highly responsive neurons.  221 

 222 

Robust image representation by neurons with spatially overlapping representation 223 

We next examined whether a single image was robustly represented by the small number of responsive 224 

neurons. We computed reconstruction performance after dropping single cells (Fig. 5a and b. Cell # on the 225 

x-axis is the same as in Fig. 4d). Single cell-drop had only a small effect on the reconstructed image (middle 226 

panels in Fig. 5a). On average, at most 5% reduction of reconstruction performance was observed for the 227 

best-responding neurons, and there were almost no effects in most neurons (Fig. 5b). This indicates that an 228 
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image was robustly represented by highly responsive neurons against cell drop. 229 

We found that this robustness was due to spatial overlap of representation patterns (i.e., reverse filters) 230 

among responsive neurons (Fig. 5c). We selected nine neurons which represented the upper part of the image 231 

and whose representation patterns spatially overlapped but variable in structure (overlapping cells, top panels 232 

in Fig. 5c and Supplementary Fig. 4). Although single-cell drop had almost no effect on the reconstructed local 233 

image (bottom panels in Fig. 5c), sequential drop of these cells gradually degraded the upper part of the 234 

reconstructed image (Fig. 5d). Pixel values in the overlapping area of the reconstructed image gradually 235 

decreased as the number of dropped cells increased (Fig. 5e and f). These results indicate that the robust image 236 

representation was due to neurons with spatially overlapping representation. 237 

 238 

Independent activities among subsets of neurons provide robust image representation against 239 

trial-to-trial variability 240 

We further analyzed whether this overlapping representation is useful to reduce trial-to-trial variability of 241 

image representation. Cortical neurons often show trial-to-trial variability in response to repetitions of the 242 

same stimulus. If neurons with spatially overlapping representations showed independent or negatively 243 

correlated activities, integration of activities among these neurons should reduce the variability of image 244 

representations35, 36. 245 

 Across-trial variability of the reconstructed images of the example case (shown in Fig. 5) is exhibited in 246 

Figure 6. Single-trial reconstructed images from all responsive neurons (57 cells) were mostly stable across 247 

trials and were distorted only in a few trials (e.g., trial 10, Fig. 6a). By contrast, reconstructed images from 248 

individual neurons were variable across trials (Fig. 6c). Importantly, some neuron pairs showed positively 249 

correlated representation across trials, other pairs showed almost independent representation across trials. Thus, 250 

integration of activities among the neurons with overlapping representation resulted in reliable representation 251 

across trials, even though the activity patterns of individual neurons were variable across trials (Fig. 6d). 252 

Based on this observation, we hypothesized that some neurons which show positively correlated activities 253 
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form a functional cluster and work together, while neurons between different clusters show independent or 254 

negatively correlated activities to reduce variability of image representations. In the case shown in Fig. 6, the 255 

nine neurons formed three clusters based on their noise correlations (Fig. 7a and Supplementary Fig. 5a, see 256 

Methods). Neurons with overlapping representations usually formed two clusters (Fig. 7b). Importantly, the 257 

neuron pairs between different clusters exhibited almost zero or slightly negative correlations (between-cluster 258 

pair: -0.05 [-0.22–0.12], and within-cluster pair: 0.26 [0.09–0.42], median and 25-75th percentile, Fig. 7c, blue). 259 

This tendency was independent of the number of clusters (Supplementary Fig. 5i). Similarity of reverse filters 260 

for the within-cluster pair was almost comparable with that for the between-cluster pair (Supplementary Fig. 261 

5b), indicating that reverse filter structures did not simply explain the structure of noise correlation. Further, 262 

cortical positions of neurons did not explain the structure of noise correlation, because neurons in different 263 

clusters were spatially intermingled in FOVs (Supplementary Fig. 6). 264 

We next compared reconstructed images obtained from different clusters (Supplementary Fig. 5c, d, h). 265 

Importantly, the images were similar between clusters (pixel-to-pixel correlation of reconstructed image: 0.33 266 

[0.11–0.52], median [25-75th percentile], Supplementary Fig. 5d), indicating that the clusters represented 267 

similar information. At single-trial, the reconstructed images from individual clusters were still variable across 268 

trials (Fig. 7d), due to the relatively high noise correlation within clusters. We further compared trial-to-trial 269 

variability of reconstructed images between clusters. As predicted from almost zero noise correlation between 270 

clusters, the trial-to-trial variability of reconstructed image was almost independent between the clusters (Fig. 271 

7d for the representative case and Supplementary Fig. 5e, i for summary data. Across-trial correlation 272 

coefficients of reconstructed images between clusters were: -0.08 [-0.25–0.09], median [25–75th percentile]). 273 

Integration of the multiple clusters resulted in more reliable image representation compared to individual 274 

clusters (Supplementary Fig. 5f). These results indicate that integration of activities among the clusters 275 

provides robust representation against trial-to-trial response variability. 276 

 277 

Representation of multiple natural images in a local population  278 
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Finally, we examined how multiple natural images were represented in a population of responsive neurons 279 

(Fig. 8a–c). Figs. 8a and b provide an example of the representative plane shown in the previous figures (n = 280 

726 cells). Natural images were sorted by reconstruction performance (y-axis in Fig. 8a), and the cells 281 

responding to each image are plotted in each row. First, as the number of images increased, new responsive 282 

cells are added, and the total number of responsive cells used for the reconstructions quickly increased (right 283 

end of the plot on each row, Fig. 8a). At approximately 50 images, the number of newly added responsive cells 284 

quickly decreased, and the increase in the total number of responsive cells slowed, indicating that the newly 285 

added image was represented by a combination of the already plotted responsive cells (i.e., the neurons that 286 

responded to other images), which was due to the small overlap in responsive cells between images (Fig. 1j). 287 

These findings are summarized in Figures 8b and c in which the number of newly added cells quickly 288 

decreased to zero as the number of images increased (red lines in Fig. 8b and c for the representative case and 289 

for all planes, respectively). Therefore, although only 4.8% responsive neurons overlapped between images 290 

(Fig. 1j), this small overlap is useful for the representation of many natural images by a limited number of 291 

responsive neurons. 292 

 We also analyzed whether the features represented by the local populations of the responsive neurons 293 

were sufficient to represent all features of the natural images. If the features in a local population are sufficient 294 

to represent all natural images, all features of the natural images should be accurately represented by the 295 

combination of features in the individual cells in a population. We represented a set of features in each image 296 

by linear regression of weights (i.e., features) of all responsive cells from the reconstruction model 297 

(cell-selection model) and computed the fitting errors (see Methods, Fig. 8d). The median error was less than 298 

10% for all images and all planes (8.2% [4.5–15.2%] for all image cases and 5.7% [4.9–16%], n = 24 for the 299 

planes, Fig. 8e and f). Based on this result, features that sufficiently represent the visual contents of natural 300 

images are encoded in neurons in a local population. 301 

 302 

Discussion 303 
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In the mouse V1, single natural images activated a small number of neurons (2.7%) which was sparser than 304 

that predicted by the linear model. The Gabor features represented in the individual neurons only slightly 305 

overlapped between neurons, indicating diverse representations. Visual contents of natural images were 306 

linearly decodable from the small number of active neurons (about 20 neurons), which was achieved by the 307 

diverse representations. A local part of the image was robustly represented by neurons whose representation 308 

patterns partially overlapped. These neurons with overlapping representation formed a small number of 309 

functional clusters which represented similar local image but were active independently across trials. Thus, 310 

integration of activities across the clusters led to robust representation against across-trial response variability. 311 

Further, small share of responsive neurons between the images helped a limited number of the responsive 312 

neurons to represent multiple natural images. Finally, the visual features represented by all the responsive 313 

neurons provided a good representation of the original visual features in the natural images. 314 

Visual responses to natural images or movies in V1 are sparse at the single cell level (high lifetime 315 

sparseness)2, 3, 5-9 and at the level of populations (population sparseness)3, 5, 6, 14. Recently, recordings of local 316 

population activity using two-photon Ca2+ imaging have enabled us to precisely evaluate the population 317 

sparseness5, 14, 37. We confirmed that a single natural image activated only a small number of neurons. 318 

Encoding model analysis indicated that visual responses in individual neurons were sparser than that predicted 319 

from a linear model (Fig. 2d, e). Here, this sparse activity was shown to contain sufficient and even robust 320 

information to represent the natural image contents. Image reconstruction is useful for evaluating the 321 

information contents represented by the neuronal activity and is widely used to analyze populations of single 322 

unit activities in response to natural scenes or movies in LGN15 and fMRI data from several visual cortical 323 

areas16-19. The former15 study used “pseudo-population” data collected from several experiments, and the latter 324 

studies16-19 used blood oxygen level-dependent (BOLD) signals that indirectly reflect the average of local 325 

neuronal activity. Thus, it has not been examined whether and how the visual contents of natural images are 326 

represented in simultaneously recorded populations of single neurons in the cortex. We revealed that visual 327 

contents of single natural images were linearly decodable from relatively small number of responsive neurons 328 
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in a local population. It has been proposed that information is easy to be read out from the sparse 329 

representation4. Indeed, the sparse population activity increases the discriminability of two natural scenes by 330 

rendering the representations of the two scenes separable5. Our results extend this in that information about 331 

visual contents encoded in sparsely active neurons is linearly accessible, suggesting that downstream areas are 332 

easy to read out images from the sparse representation in V1. 333 

The visual features encoded by individual neurons should be diverse so that a small number of active 334 

neurons represent the complex visual features of the image. Although RF structures in the local population of 335 

mouse V1 have already been reported21, 22, 33, 34, their diversity has not been analyzed with respect to natural 336 

image representation. In the present study, the visual features represented by sparsely active neurons were 337 

sufficiently diverse to represent visual contents of natural images. Computational models for natural image 338 

representation have suggested that sparse activity and number of available neurons affect diversity of RF 339 

structures20, 38-40. 340 

We also demonstrated that sparsely active neurons robustly represented an image against trial-to-trial 341 

response variability. Although a computational model proposed sparse and overcomplete representation as 342 

optimal representation for natural images with unreliable neurons20, this has never been addressed 343 

experimentally. We demonstrated that the robust representation was mainly achieved by the diverse, partially 344 

overlapping representations, consistent with the overcomplete representation. It has been reported that 345 

subregions of receptive fields of some V1 neurons partially overlap21. Our results suggest that such overlap 346 

may be useful for the robust image representation. We further revealed that neurons with overlapping reverse 347 

filters formed functional clusters and integration across the clusters reduced the trial-to-trial variability, 348 

suggesting a new representation scheme in which information is reliably represented, while representing 349 

neuronal patterns change across trials. This seems to be similar to “drop-out” in deep learning41 and may be 350 

useful to avoid overfitting and local minimum problems in learning.  351 

Our analysis also revealed how multiple natural images were represented in a local population of 352 

responsive neurons. A single natural image activated specific subsets of neurons, whereas most neurons in a 353 
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local population responded to at least one of the images, supporting sparse, distributed code proposed in a 354 

previous study. The overlap of responsive neurons between images involved only 4.8% of the responsive cells 355 

(Fig. 1i). However, due to this small overlap, many natural images were represented by a limited number of 356 

responsive neurons (Fig. 5a–c). Furthermore, the features of all responsive neurons in a local population were 357 

sufficient to represent all the natural images used in the present study (Fig. 5d–f). Based on these findings, 358 

any natural image could be represented by a combination of responsive neurons in a local population.  359 

In summary, this work highlighted how the visual contents of natural images are sufficiently and even 360 

robustly represented in sparsely active V1 neurons. The diverse, but partially overlapping representation helps 361 

the small number of neurons to represent a complex image robustly against across-trial variability. We propose 362 

a new representation scheme in which information is reliably represented with variable neuronal patterns 363 

across trials and which may be effective to avoid over-fitting in learning. 364 

 365 

Acknowledgements 366 

We thank Ms. Y. Sono, A. Hayashi, T. Inoue, A. Ohmori, A. Honda, M. Nakamichi for animal care, and all 367 

members of Ohki laboratory for support and discussions. This work was supported by grants from Core 368 

Research for Evolutionary Science and Technology (CREST)—Japan Agency for Medical Research and 369 

Development (AMED) (to K.O.), Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant 370 

number 25221001 and 25117004 to K.O. and 15K16573, 17K13276 to T.Y.), International Research Center for 371 

Neurointelligence (WPI-IRCN), JSPS (to K.O.), Brain Mapping by Integrated Neurotechnologies for Disease 372 

Studies (Brain/MINDS)—AMED (to K.O.), Strategic International Research Cooperative Program 373 

(SICP)—AMED (to K.O.), grants from the Ichiro Kanehara Foundation for the Promotion of Medical Sciences 374 

and Medical Care, and the Uehara Memorial Foundation (to T.Y.). 375 

 376 

Author contributions 377 

T.Y. and K.O. designed the research. T.Y. performed experiments. T.Y. and K.O. analyzed data and wrote the 378 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/300863doi: bioRxiv preprint 

https://doi.org/10.1101/300863


17 
 

manuscript. K.O. supervised the research. 379 

 380 

Competing financial interests. 381 

We declare no competing financial interests. 382 

 383 

References 384 

1. Rolls, E.T. & Tovee, M.J. Sparseness of the neuronal representation of stimuli in the primate 385 

temporal visual cortex. J Neurophysiol 73, 713-726 (1995). 386 

2. Vinje, W.E. & Gallant, J.L. Sparse Coding and Decorrelation in Primary Visual Cortex During 387 

Natural Vision. Science 287, 1273-1276 (2000). 388 

3. Weliky, M., Fiser, J., Hunt, R.H. & Wagner, D.N. Coding of natural scenes in primary visual 389 

cortex. Neuron 37, 703-718 (2003). 390 

4. Olshausen, B.A. & Field, D.J. Sparse coding of sensory inputs. Curr Opin Neurobiol 14, 481-487 391 

(2004). 392 

5. Froudarakis, E., et al. Population code in mouse V1 facilitates readout of natural scenes 393 

through increased sparseness. Nat Neurosci 17, 851-857 (2014). 394 

6. Yen, S.C., Baker, J. & Gray, C.M. Heterogeneity in the responses of adjacent neurons to natural 395 

stimuli in cat striate cortex. J Neurophysiol 97, 1326-1341 (2007). 396 

7. Yao, H., Shi, L., Han, F., Gao, H. & Dan, Y. Rapid learning in cortical coding of visual scenes. 397 

Nat Neurosci 10, 772-778 (2007). 398 

8. Tolhurst, D.J., Smyth, D. & Thompson, I.D. The sparseness of neuronal responses in ferret 399 

primary visual cortex. J Neurosci 29, 2355-2370 (2009). 400 

9. Willmore, B.D., Mazer, J.A. & Gallant, J.L. Sparse coding in striate and extrastriate visual 401 

cortex. J Neurophysiol 105, 2907-2919 (2011). 402 

10. Field, D.J. What Is the Goal of Sensory Coding. Neural Comput 6, 559-601 (1994). 403 

11. Jones, J.P. & Palmer, L.A. An evaluation of the two-dimensional Gabor filter model of simple 404 

receptive fields in cat striate cortex. J Neurophysiol 58, 1233-1258 (1987). 405 

12. Olshausen, B.A. & Field, D.J. Emergence of simple-cell receptive field properties by learning a 406 

sparse code for natural images. Nature 381, 607-609 (1996). 407 

13. Bell, A.J. & Sejnowski, T.J. The ''independent components'' of natural scenes are edge filters. 408 

Vision Research 37, 3327-3338 (1997). 409 

14. Tang, S., et al. Large-scale two-photon imaging revealed super-sparse population codes in the 410 

V1 superficial layer of awake monkeys. Elife 7 (2018). 411 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/300863doi: bioRxiv preprint 

https://doi.org/10.1101/300863


18 
 

15. Stanley, G.B., Li, F.F. & Dan, Y. Reconstruction of natural scenes from ensemble responses in 412 

the lateral geniculate nucleus. J Neurosci 19, 8036-8042 (1999). 413 

16. Miyawaki, Y., et al. Visual Image Reconstruction from Human Brain Activity using a 414 

Combination of Multiscale Local Image Decoders. Neuron 60, 915-929 (2008). 415 

17. Naselaris, T., Prenger, R.J., Kay, K.N., Oliver, M. & Gallant, J.L. Bayesian reconstruction of 416 

natural images from human brain activity. Neuron 63, 902-915 (2009). 417 

18. Nishimoto, S., et al. Reconstructing visual experiences from brain activity evoked by natural 418 

movies. Curr Biol 21, 1641-1646 (2011). 419 

19. Horikawa, T., Tamaki, M., Miyawaki, Y. & Kamitani, Y. Neural decoding of visual imagery 420 

during sleep. Science 340, 639-642 (2013). 421 

20. Doi, E. & Lewicki, M.S. Sparse Coding of Natural Images Using an Overcomplete Set of Limited 422 

Capacity Units. In: Advances in Neural Information Processing Systems (NIPS 2004) 17, 377-384 423 

(2005). 424 

21. Smith, S.L. & Hausser, M. Parallel processing of visual space by neighboring neurons in mouse 425 

visual cortex. Nat Neurosci 13, 1144-1149 (2010). 426 

22. Bonin, V., Histed, M.H., Yurgenson, S. & Reid, R.C. Local diversity and fine-scale organization 427 

of receptive fields in mouse visual cortex. J Neurosci 31, 18506-18521 (2011). 428 

23. Kampa, B.M., Roth, M.M., Gobel, W. & Helmchen, F. Representation of visual scenes by local 429 

neuronal populations in layer 2/3 of mouse visual cortex. Front Neural Circuits 5, 18 (2011). 430 

24. Ko, H., et al. Functional specificity of local synaptic connections in neocortical networks. Nature 431 

473, 87-91 (2011). 432 

25. Marshel, J.H., Garrett, M.E., Nauhaus, I. & Callaway, E.M. Functional specialization of seven 433 

mouse visual cortical areas. Neuron 72, 1040-1054 (2011). 434 

26. Miller, J.e.K., Ayzenshtat, I., Carrillo-Reid, L. & Yuste, R. Visual stimuli recruit intrinsically 435 

generated cortical ensembles. Proceedings of the National Academy of Sciences 111, E4053-E4061 436 

(2014). 437 

27. Rikhye, R.V. & Sur, M. Spatial Correlations in Natural Scenes Modulate Response Reliability in 438 

Mouse Visual Cortex. J Neurosci 35, 14661-14680 (2015). 439 

28. Olshausen, B.A. & Field, D.J. How Close Are We to Understanding V1? Neural Comput 17, 440 

1665-1699 (2005). 441 

29. Shoham, S., O'Connor, D.H. & Segev, R. How silent is the brain: is there a "dark matter" 442 

problem in neuroscience? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192, 777-784 443 

(2006). 444 

30. Yoshida, T. & Ohki, K. Visual image reconstruction from neuronal activities in the mouse 445 

primary visual cortex. Program No. 415.17. 2015 Neuroscience Meeting Planner. Chicago, IL: 446 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/300863doi: bioRxiv preprint 

https://doi.org/10.1101/300863


19 
 

Society for Neuroscience, 2015. Online.  (2015). 447 

31. Yoshida, T. & Ohki, K. Representation of natural image contents by sparsely active neurons in 448 

visual cortex. bioRxiv  (2018). 449 

32. Smyth, D., Willmore, B., Baker, G.E., Thompson, I.D. & Tolhurst, D.J. The Receptive-Field 450 

Organization of Simple Cells in Primary Visual Cortex of Ferrets under Natural Scene Stimulation. 451 

The Journal of Neuroscience 23, 4746-4759 (2003). 452 

33. Ko, H., et al. The emergence of functional microcircuits in visual cortex. Nature 496, 96-100 453 

(2013). 454 

34. Cossell, L., et al. Functional organization of excitatory synaptic strength in primary visual 455 

cortex. Nature 518, 399-403 (2015). 456 

35. Shadlen, M.N. & Newsome, W.T. Noise, neural codes and cortical organization. Current Opinion 457 

in Neurobiology 4, 569-579 (1994). 458 

36. Zohary, E., Shadlen, M.N. & Newsome, W.T. Correlated neuronal discharge rate and its 459 

implications for psychophysical performance. Nature 370, 140 (1994). 460 

37. Greenberg, D.S., Houweling, A.R. & Kerr, J.N. Population imaging of ongoing neuronal activity 461 

in the visual cortex of awake rats. Nat Neurosci 11, 749-751 (2008). 462 

38. Rehn, M. & Sommer, F.T. A network that uses few active neurones to code visual input predicts 463 

the diverse shapes of cortical receptive fields. J Comput Neurosci 22, 135-146 (2007). 464 

39. Olshausen, B.A., Cadieu, C.F. & Warland, D.K. Learning real and complex overcomplete 465 

representations from the statistics of natural images. SPIE Optical Engineering + Applications 7446, 466 

11 (2009). 467 

40. Olshausen, B.A. Highly overcomplete sparse coding. 8651, 86510S (2013). 468 

41. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple 469 

way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929-1958 (2014). 470 

42. Nimmerjahn, A., Kirchhoff, F., Kerr, J.N. & Helmchen, F. Sulforhodamine 101 as a specific 471 

marker of astroglia in the neocortex in vivo. Nat Methods 1, 31-37 (2004). 472 

43. Ohki, K., Chung, S., Ch'ng, Y.H., Kara, P. & Reid, R.C. Functional imaging with cellular 473 

resolution reveals precise micro-architecture in visual cortex. Nature 433, 597-603 (2005). 474 

44. Hagihara, K.M., Murakami, T., Yoshida, T., Tagawa, Y. & Ohki, K. Neuronal activity is not 475 

required for the initial formation and maturation of visual selectivity. Nat Neurosci 18, 1780-1788 476 

(2015). 477 

45. Mank, M., et al. A genetically encoded calcium indicator for chronic in vivo two-photon imaging. 478 

Nat Methods 5, 805-811 (2008). 479 

46. van Hateren, J.H. & van der Schaaf, A. Independent component filters of natural images 480 

compared with simple cells in primary visual cortex. Proc Biol Sci 265, 359-366 (1998). 481 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/300863doi: bioRxiv preprint 

https://doi.org/10.1101/300863


20 
 

47. Olmos, A. & Kingdom, F.A. A biologically inspired algorithm for the recovery of shading and 482 

reflectance images. Perception 33, 1463-1473 (2004). 483 

48. Peirce, J.W. Generating Stimuli for Neuroscience Using PsychoPy. Front Neuroinform 2, 10 484 

(2008). 485 

49. Kerlin, A.M., Andermann, M.L., Berezovskii, V.K. & Reid, R.C. Broadly tuned response 486 

properties of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron 67, 858-871 (2010). 487 

50. Treves, A. & Rolls, E.T. What determines the capacity of autoassociative memories in the brain? 488 

Network: Computation in Neural Systems 2, 371-397 (1991). 489 

51. Lee, T.S. Image Representation Using 2D Gabor Wavelets. IEEE Trans. Pattern Anal. Mach. 490 

Intell. 18, 959-971 (1996). 491 

52. Kay, K.N., Naselaris, T., Prenger, R.J. & Gallant, J.L. Identifying natural images from human 492 

brain activity. Nature 452, 352-355 (2008). 493 

53. Bishop, C.M. Pattern Recognition and Machine Learning (Information Science and Statistics) 494 

(Springer-Verlag New York, Inc., 2006). 495 

 496 

Methods 497 

All experimental procedures were approved by the local Animal Use and Care Committee of Kyushu 498 

University. 499 

 500 

Animal preparation for two-photon imaging 501 

C57BL/6 mice (male and female) were used (Japan SLC Inc., Shizuoka, Japan). Mice were anaesthetized with 502 

isoflurane (5 % for induction, 1.5 % for maintenance during surgery, ~0.5% during imaging with a sedation of 503 

< 0.5mg/kg chlorprothixene, Sigma-Aldrich, St. Louis, MO, USA). The head skin was removed from the head, 504 

and the skull over the cortex was exposed. A custom-made metal plate for head fixation was attached with 505 

dental cement (Super Bond, Sun Medical, Shiga, Japan), and a craniotomy (~3mm in diameters) was 506 

performed over the primary visual cortex (center position: 0–1 mm anterior to lambda, +2.5–3mm lateral to 507 

the midline). A mixture of 0.8 mM Oregon Green BAPTA1-AM (OGB1, Life Technologies, Grand Island, NY, 508 

USA) dissolved with 10% Pluronic (Life Technologies) and 0.025 mM sulforhodamine 10142 (SR101, 509 

Sigma-Aldrich) was pressure-injected with a Picospritzer III (Parker Hannifin, Cleveland, OH, USA) at the 510 
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depth of 300–500 µm from the brain surface. The cranial window was sealed with a coverslip and dental 511 

cement. The imaging experiment began at least one hour after the OGB1 injection. 512 

 513 

Two-photon Ca2+ imaging.  514 

Imaging was performed with a two-photon microscope (A1R MP, Nikon, Tokyo, Japan) equipped with a 25× 515 

objective (NA 1.10, PlanApo, Nikon) and Ti:sapphire mode-locked laser (MaiTai Deep See, Spectra Physics, 516 

Santa Clara, CA, USA)43, 44. OGB1 and SR101 were excited at a wavelength of 920 nm. Emission filters of 517 

525/50nm and 629/56nm were used for the OGB1 and SR101 signals, respectively. The fields of view (FOVs) 518 

were 338 × 338 µm (10 planes from 7 mice) and 507 × 507 µm (14 planes from 7 mice) at 512 × 512 pixels. 519 

The sampling frame rate was at 30Hz using a resonant scanner. 520 

 521 

Visual stimulation.  522 

Before beginning the recording session, the retinotopic position of the recorded FOV was determined using 523 

moving grating patches (lateral or upper directions, 99.9% contrast, 0.04 cycle/degrees, 2 Hz temporal 524 

frequency, 20 and 50 degrees in diameter) while monitoring the changes in signals over the entire FOV. The 525 

lateral or upper motion directions of the grating were used to activate many cells because the preferred 526 

directions of mouse V1 neurons are slightly biased towards the cardinal directions44, 45. First, the grating patch 527 

of 50 degrees in diameter was presented in one of 15 (5 × 3) positions that covered the entire monitor to 528 

roughly determine the retinotopic position. Then, the patch of 20 degrees in diameter was presented on the 16 529 

(4 × 4) positions covering an 80 × 80-degree space to finely identify the retinotopic position. The stimulus 530 

position that induced the maximum visual response of the entire FOV was set as the centre of the retinotopic 531 

position of the FOV. 532 

A set of circular patches of grey-scaled, contrast-enhanced natural images (200 image types) was used as 533 

the visual stimuli for response prediction and natural image reconstruction (60 degrees in diameter, 512 × 512 534 

pixels, with a circular edge (5 degrees) that was gradually mixed to grey background). Each natural image was 535 
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adjusted to almost full contrast (99.9%). The mean intensity across pixels in each image was adjusted to an 536 

approximately 50% intensity. Original natural images were obtained from the van Hateren’s Natural Image 537 

Dataset (http://pirsquared.org/research/#van-hateren-database)46 and the McGill Calibrated Color Image 538 

Database (http://tabby.vision.mcgill.ca/html/welcome.html)47. During image presentation, one image type was 539 

consecutively flashed three times (three 200-ms presentations interleaved with 200 ms of grey screen), and the 540 

presentation of the next image was initiated after the presentation of the grey screen for 200 ms. Images were 541 

presented in a pseudo-random sequence in which each image was presented once every 200 image types. Each 542 

image was presented at least 12 times (i.e., 12 trials) in a total recording session. We did not set a long interval 543 

between image flashes to reduce the total recording time and increase the number of repetitions. In this design, 544 

the tail of the Ca2+ response to one image invaded the time window of the next image presentation (Fig. 1b). 545 

Although this overlap may have affected the visual responses between two adjacent images, many trial 546 

repetitions (> 11 times for each image) in the pseudo-random order and the sparse responses to natural images 547 

(Fig. 1) minimized the effects of response contamination between two consecutive images.  548 

Moving, square gratings (8 directions, 0.04 cycle/degrees, 2 Hz temporal frequency, 60-degree patch 549 

diameter) were presented at the same position as the natural image on the screen. Each direction was presented 550 

for 4 secs interleaved by 4 secs of the grey screen. The sequence of directions was pseudo-randomized, and 551 

each direction was presented 10 times in a recording session.  552 

All stimuli were presented with PsychoPy48 on a 32-inch LCD monitor (Samsung, Hwaseong, South 553 

Korea) with a 60-Hz refresh rate, and the timing of the stimulus presentation was synchronized with the timing 554 

of image acquisition using a TTL pulse counter (USB-6501, National Instruments, Austin, TX, USA).  555 

The entire recording session for one plane was divided into several recording sessions (4–6 556 

trials/sub-session and 15–25 min for each session). Each recording session was interleaved by approximately 557 

5–10 minutes of rest time during which the slight drift of the FOV was manually corrected. Every two or three 558 

sessions, the retinotopic position of the FOV was checked with the grating patch stimuli during the resting 559 

period. The recording was terminated, and then data were discarded if the retinotopic position was shifted 560 
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(probably due to eye movement). The recordings were performed in one to three planes of different depths 561 

and/or positions in each animal (1.7 ± 0.8 planes, mean ± standard deviation). 562 

 563 

Data analysis.  564 

All data analysis procedures were performed using MATLAB (Mathworks, Natick, MA, USA). Recorded 565 

images were phase-corrected and aligned between frames. The averaged image across frames was used to 566 

determine the region of interests (ROIs) of individual cells. After removing slow SF component (obtained with 567 

a Gaussian filter with a sigma of approximately five times the soma diameter), the frame-averaged image was 568 

subjected to a template matching method in which two-dimensional difference of Gaussian (sigma1: 0.26 × 569 

soma diameter that was adjusted for zero-crossing at the soma radius, sigma2: soma diameter) was used as a 570 

template for the cell body. Highly correlated areas between the frame-averaged image and the template were 571 

detected as ROIs for individual cells. ROIs were manually corrected via visual inspection. SR101-positive 572 

cells (putative astrocytes42) were removed from the ROI. Time course of calcium signal in each cell was 573 

computed as an average of all pixel’s intensities within an ROI. Signal contamination from out of focus plane 574 

was removed by a previously reported method44, 49. Briefly, a signal from ring-shaped area surrounding each 575 

ROI was multiplied by a factor (contamination ratio) and subtracted from the signal of each cell. The 576 

contamination ratio was determined to minimize the difference between the signal from a blood vessel and the 577 

surrounding ring shape region multiplied by the contamination ratio. The contamination ratios were computed 578 

for several blood vessels in the FOV, and the mean value for several blood vessels was used for all cells in the 579 

FOV. 580 

The average response of 200-ms grey screen period just before each image was subtracted from the 581 

average response of the time course during the last 200 ms of the stimulus period (during 3rd flash of each 582 

image at approximately time of the peak Ca2+ transient) to compute visually evoked responses. The evoked 583 

response was normalized for each cell by dividing by the standard deviation across all visual responses (200 584 

images × trials, z-scored response). If the z-scored response to one image was significantly different from 0 (p 585 
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< 0.01 using signed-rank test across trials) and the across-trial average of the z-scored response was greater 586 

than 1, the response was considered significant for the image. The population sparseness (s) was computed 587 

using the equation described in previous studies2, 3, 50 as follows: s = [1−(∑ Ri)2/(N∑ Ri2)]/(1−1/N), where Ri 588 

is the evoked response of ith cell, and N is the number of cells (i = 1–N). 589 

Natural images were scaled so that maximum intensity and minimum intensities were 1 and -1, 590 

respectively, and gray intensity was 0. A square position (50 × 50 degrees) of the centre of natural image patch 591 

was extracted and down-sampled to 32 × 32-pixel image. The down-sampled image was used to analyze the 592 

Gabor features, response prediction and image reconstruction. 593 

 594 

Gabor features.  595 

A set of spatially overlapping Gabor filter wavelets was prepared to extract the visual features of the natural 596 

images10, 51, 52. The down-sampled images were first subjected to the set of Gabor filters to obtain Gabor 597 

feature values. Single feature value corresponds to a single wavelet filter. 598 

Gabor filters have four orientations (0, 45, 90, and 135 degrees), two phases, and 4 sizes (8 × 8, 16 × 16, 599 

32 × 32, and 64 × 64pixels) located on 11 × 11, 5 × 5, 3 × 3, and 1 × 1 grids (Supplementary Fig. 1a and b). 600 

Therefore, the three smaller scale filters were spatially overlapped with each other. The spatial frequencies of 601 

the four scale sizes of the Gabor wavelets were 0.13, 0.067, 0.033, and 0.016 cycle/degrees (cpd). This filter 602 

set was almost self-inverting, i.e., the feature values obtained by applying an image to the wavelet set were 603 

transformed back to the image by summing the filters after multiplying by the feature values51. The Gabor 604 

filters and the transformations were based on an open source program (originally written by Drs. Daisuke Kato 605 

and Izumi Ohzawa, Osaka University, Japan, 606 

https://visiome.neuroinf.jp/modules/xoonips/detail.php?item_id=6894).  607 

 608 

Encoding model.  609 

In the encoding model for response prediction, single-cell responses were predicted using a linear regression 610 
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analysis of selected Gabor feature values (Fig. 2a and Supplementary Fig. 1a–e). The encoding model was 611 

created independently for each cell. First, Pearson’s correlation coefficients between the response and each 612 

feature value were computed. Then, using one of the preset values for the correlation coefficient as a threshold 613 

(12 points ranging from 0.05 to 0.35, Supplementary Fig.1c–e), only the more strongly correlated features 614 

were selected (feature selection) and used in the regression analysis. The weight and bias parameters of the 615 

regression were estimated by Bayesian linear regression with an expectation-maximization algorithm which is 616 

almost equivalent to linear regression with L2 regularization53. After the regression analysis, the non-linearity 617 

of predicted response was adjusted via a rectification step using the following equation34, predicted response = 618 

A/[1 + exp(αx + β)], where x is the output of the regression and A, α, and β are parameters to be estimated. 619 

This step only scaled the regression output without changing the regression parameters (i.e., weights and 620 

biases). The response prediction of the model was estimated by 10-fold cross validations (CVs) in which the 621 

response data for 180 images were used to estimate the parameters, and the remaining data for 20 images were 622 

used to evaluate the prediction. In the 10-fold CVs, all images were used once as test data. The prediction 623 

performances were estimated using Pearson’s correlation coefficients between the observed (trial-average) and 624 

predicted responses. Encoding models were created for all preset threshold values for feature selection, and the 625 

model that exhibited the best prediction performance was selected as the final model. In the analysis of 626 

weights (i.e., feature) overlap between the two cells, the percentage of overlapping weights relative to the 627 

number of non-zero weights was computed for each cell and averaged between the two cells in the pair. 628 

Using the same dataset as used in the encoding model, The RF structure was estimated for each cell using 629 

a regularized inverse method32-34. The regularized inverse method uses one hyper-parameter (regularized 630 

parameter). In the 10-fold CVs, the RF structure was estimated with the training dataset using one of preset 631 

regularized parameters (13 logarithmically spaced points between 10-3 and 103). The visual response was 632 

predicted using the estimated RF and test dataset. The Prediction performance of visual response was 633 

estimated by determining Pearson’s correlation coefficients between the observed and the predicted responses. 634 

RFs were estimated for all values of the pre-set regularized parameters, and the value that resulted in the best 635 
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response prediction was selected for the final RF model. 636 

  637 

Image reconstruction.  638 

In the image reconstruction, each Gabor feature value was linearly regressed by the single-trial activities of 639 

multiple cells. In the 10 CVs, the weights and a bias parameter were estimated using the same algorithm as in 640 

the encoding model with the training dataset (see above), and each Gabor feature value was reconstructed from 641 

the visual response in the test dataset. After each Gabor feature was independently reconstructed, sets of 642 

reconstructed feature values were transformed into images as described above (Gabor features section, also 643 

see Fig. 3a). Reconstruction performance was evaluated by determining pixel-to-pixel Pearson’s correlation 644 

coefficient between the stimulus and reconstructed images. In the cell-selection model (Fig. 3), each feature 645 

value was reconstructed with the subset of cells that were selected using the encoding model (Fig. 2f and 646 

Supplementary fig. 3a), and almost all cells were used across features (Fig. 2j). In the encoding model, each 647 

cell was represented by a subset of features that affected the cell’s response. Thus, in the cell-selection model, 648 

each feature was only reconstructed by the cells that encoded information about the reconstructed feature 649 

(Supplementary Fig. 3a).  650 

 In the analysis of the weights (i.e., feature) overlap between cells, the percentage of overlapping weights 651 

relative to the number of non-zero weights was computed for each cell and averaged between the two cells in 652 

the pair.  653 

In the analyses shown in Fig. 4a–d and Fig. 5a–b, cells were separated into responsive and 654 

non-responsive cells in each image and sorted by their response amplitude in descending order (i.e., from 655 

highest to lowest response amplitude). Then the cells were added (in Fig. 4) or dropped (in Fig. 5) one by one 656 

first from the responsive cells and then from non-responsive cells. 657 

In the analysis of robustness (Fig. 5c–f), first, z-scored reverse filter was computed in each neuron. A 658 

cluster of pixels whose absolute z-scores were more than 1.5 were defined as a representation area after 659 

smoothing their contours (e.g., red contours in Fig. 5c and Supplementary Fig. 4). If multiple areas were 660 
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obtained, the largest one was used. In each stimulus image, one responsive neuron was selected as a reference 661 

cell, and correlation coefficients of binarized representation areas were computed between the reference cell 662 

and other responsive cells to an image. Cells whose correlation coefficients were more than 0.4 were selected. 663 

A set of neurons including both the reference and the selected cells were called “overlapping cells”. To 664 

evaluate the effects of cell drop, cells were randomly removed from the overlapping cells, and reconstructed 665 

image was computed after each cell-drop. The reference cell was removed at first, and then other remaining 666 

overlapping cells were removed in each cell-drop sequence. The changes of reconstructed images were 667 

estimated by quantifying pixel values of a local part of the image. The local part of the image was determined 668 

as the reference cell’s representation area overlapped by at least one remaining overlapping cell (overlapping 669 

area in Fig. 5d and supplementary fig. 4). Absolute pixel values were averaged inside the local part of the 670 

image (Note that stimulus images were scaled from -1 to 1. See the section of Data analysis) and used for the 671 

evaluation of the local part of reconstructed image. Random drops of overlapping cells were repeated for 120 672 

times, and the results were averaged across the random orders in each reference cell. All responsive cells were 673 

used once as the reference cell in each stimulus image. Data including at least 10 responsive cells and 5 674 

overlapping cells were only used in this analysis.  675 

In the cluster analysis (Fig. 7), the overlapping cells selected as described above were clustered by k 676 

means analysis with noise correlation of responses to an image for distance measure (predetermined number of 677 

clusters, k = 2, 3, 4, and 5 were used). We used the number of cluster (k) which showed the minimal 678 

between-cluster noise correlation in each overlapping neuron set (Supplementary Fig. 5a). In the analysis of 679 

correlation of trial-to-trial variability of reconstructed image between clusters (Fig. 7d and Supplementary Fig. 680 

5e, i), trial-to-trial variability of the reconstructed image was evaluated by pixel values of the local part of the 681 

image as the analysis in Fig. 5e and f, and correlation coefficient of the pixel value change was computed 682 

between clusters. The local part of the reconstructed image was determined as described above. In the analysis 683 

of reliability of reconstructed image across trials (Supplementary Fig. 5f), correlations between single-trial 684 

reconstructed image and trial-averaged reconstructed image were computed and averaged across trials. The 685 
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main results were independent of the choice of cluster number (Supplementary Fig. 5g–i). Data including at 686 

least 10 responsive neurons and 5 overlapping neurons were only used in this analysis. 687 

The feature values of each image were linearly regressed with the weights of image reconstruction model 688 

(cell-selection model) in all responsive cells in a local population to examine whether all the features of natural 689 

images were represented by the features of the responsive cells (Fig. 8d–f). The fitting error rate (% error) was 690 

computed in each image using a following equation, % error = ∑(Ffitted−Fimage)
2/∑(Fimage−Fmean)

2×100, where 691 

Ffitted is the set of fitted features, Fimage is the set of features of the natural image, and Fmean is the mean of 692 

Fimage.  693 

 694 

Statistical analyses.  695 

All data are presented as the median and 25–75Th percentiles unless indicated otherwise. The significant level 696 

was set to 0.05, with the exception of the criteria of significant visual response (0.01). When more than two 697 

groups were compared, the significant level was adjusted with the Bonferroni correction. Two-sided test was 698 

used in all analyses. The experiments were not performed in a blind manner. The sample sizes were not 699 

predetermined by any statistical methods, but are comparable to the sample size of other reports in the field. 700 

 701 

Data availability. 702 

The datasets of the current study and the code used to analyze them are available from the corresponding 703 

authors on reasonable request. 704 

 705 

 706 

Legends 707 

Figure 1. Sparse visual response to a natural image in mouse V1 708 

a. Experimental schema. Natural image flashes were presented as visual stimuli, and the neuronal activities of 709 

single cells in the mouse V1 were recorded using two-photon Ca2+ imaging. 710 
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b. Trial-averaged time courses of visual responses to 10 natural images (image# 21–30 in a row) in 10 711 

representative cells (cells# 1–10 in a column). Three lines for each response indicate the mean and the mean ± 712 

the standard error across trials. Black: significant responses, grey: non-significant response, red line: stimulus 713 

periods during which each image type was flashed for three times. 714 

c. Plots of significant responses of all cells in a representative plane (n = 726 cells, upper left panel). 715 

Responses shaded by the red line in the upper left panel correspond to responses presented in (b). Percentage 716 

of responsive cells for each image (bottom) and percentage of images to which each cell responded (right) are 717 

shown as line graphs. Red lines (bottom and right) indicate median values. Cell numbers (cell #) were sorted 718 

by the percentage of images to which they responded, and image numbers (image #) were sorted by the 719 

percentages of cells that responded to each image in descending order. Single images activated relatively fewer 720 

neurons (bottom). 721 

d. Examples of population response patterns to three images. (Left) Natural image stimuli and the spatial 722 

distributions of responsive cells in an imaging area (side length: 507 microns). The red filled and grey open 723 

circles indicate the highly responsive and remaining cells, respectively. (Right) Histograms of the visual 724 

responses of neurons in a local population. In the top panel, cells are divided into responsive (red bars) and the 725 

remaining groups (black bars) and are sorted by the response amplitude of each group to the natural image 726 

presented in the upper left panel (descending order). Visual responses to other images are plotted in the middle 727 

and bottom panels. The cell # order was fixed among the three histograms. Only small numbers of responsive 728 

neurons are duplicated among the three images. 729 

e. Distribution of the amplitude of responses to single images. The cell # is sorted by the amplitude of the 730 

response to each image and averaged across images in a plane. After normalizing cell# (x-axis), data were 731 

collected across planes (n = 24 planes). The median (thick line) and 25–75th percentiles (thin lines) are shown. 732 

Small percentages of neurons exhibited higher response amplitudes.  733 

f and g. Response rate to natural images. The percentages of cells responding to a single natural image (f) and 734 

to at least one image (g). Small percentage of cells responded to single natural image, whereas almost all cells 735 
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responded to at least one of images.  736 

h and i. Response rate to moving gratings. Percentages of cells that responded to one direction (h) and to at 737 

least one direction (i) of moving grating.  738 

j. Percentages of overlapping responsive cells between the natural images. Only a small percentage of cells 739 

exhibited overlapping significant responses between images, indicating that the cells responding to each image 740 

were distributed in a population. 741 

k. Population sparseness.  742 

f–k. Each dot indicates data from one plane, and the medians of 24 planes are shown as bars  743 

 744 

Figure 2. Small overlap in the encoded visual features among cells in a local population 745 

a. Scheme of encoding model for a single cell’s visual response. The visual response is represented by 746 

weighted sum of the selected Gabor feature values obtained from a set of Gabor filters. The predicted visual 747 

response to ith image (Ri) is represented by the following equation, Ri = f(∑Wj×Fji), where f is non-linear 748 

scaling function, Wj is the weight for jth Gabor feature, and Fji is the feature value for the jth Gabor filter (Gj) 749 

obtained from ith image (Si). Gabor feature was selected based on the correlation between its feature values 750 

and visual response (Feature selection, see Methods). 751 

b. and c. Examples of response predictions for two neurons. (Left panels) Blue and red lines indicate the 752 

observed and predicted responses, respectively. (Right panels) Weight parameters of the example neurons 753 

presented in the left panels. The weights of one of 10 models (each model corresponds to one of the 10-fold 754 

cross validations) are shown. The number of non-zero weights (i.e., number of used feature) is shown above 755 

the panels. Encoding filters (weighted sums of Gabor filters) are shown in the insets (red and blue indicate 756 

positive and negative values, respectively).  757 

d. Comparison of response predicted by only the linear step (regression of Gabor feature values without 758 

non-linear (NL) scaling) and the observed response in the example neuron shown in Fig. 2c. Each dot indicates 759 

a response to one image. The red curve indicates NL scaling function curve (see Methods). The NL step 760 
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resulted in an enhancement of the sparse visual responses. The black line indicates y = x line.  761 

e. NL scaling function curves across planes. Each grey curve was obtained by averaging the NL scaling curves 762 

across cells in each plane. Red curve indicates the averaged curve across planes (n = 24 planes). The black line 763 

indicates y = x line. 764 

f. Upper left panel: raster plot of the weights in the plane illustrated in Fig. 1c (red: positive weight, blue: 765 

negative weight). The median values for the models of the 10-fold CVs are shown. Right panel: Percentage of 766 

features used for each cell. Bottom panel: Percentage of cells in which each feature was involved in the 767 

response prediction. The coloured bar under the x-axis indicates spatial frequency of the Gabor filter 768 

corresponding to each feature. Red lines in the bottom and right panels indicate median values. Only half of 769 

the Gabor features (624/1248 which have one of two phase sets) are shown for visibility, but the remaining 770 

features were included in the data shown in the right panel.  771 

g. Participation rate of each feature in the response predictions for a population. Features were divided in terms 772 

of spatial frequency (SF) and averaged in each SF. Mean ± standard errors across all planes (n = 24 planes) are 773 

shown.  774 

h. Distribution of percentages of features used in each cell (n = 12755 cells across 24 planes).  775 

i. Distribution of percentages of features that overlapped between cells (n = 3993653 cell pairs across 24 776 

planes).  777 

j. Percentage of features used in at least one cell’s response prediction. 778 

 779 

Figure 3. Image reconstruction based on population activity 780 

a. Scheme of image reconstruction model. Each Gabor feature value (Fji, i: image #, j: Gabor feature #) was 781 

independently linearly regressed (weights: Hjn, n: cell #) by multiple cell responses (Rni) to ith image (Si) (Fji = 782 

∑(Hjn × Rni)). Then, a set of reconstructed features (F1i, F2i, …., Fji) are transformed into an image (S’i). In the 783 

all-cells model, each feature value was reconstructed with all cells. In the cell-selection model, only cells that 784 

were selected by the encoding model were used to reconstruct each feature value (Cell selection, see Methods). 785 
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Thus, each feature value was reconstructed from different subsets of cells. The flow of the reconstruction 786 

model is represented by black arrows from the bottom to top.  787 

b. Representative reconstructed images. Stimulus images (Stim. Image), images that were reconstructed using 788 

the all-cells (All-cells) and using the cell-selection model (Cell-selection) are shown. Each reconstructed 789 

image is trial-averaged. The reconstruction performance (pixel-to-pixel Pearson’s correlation coefficients 790 

between the stimulus and reconstructed images, R) was computed in each trial and then averaged. The 791 

trial-averaged R is presented above each reconstructed image.  792 

c. Distributions of Rs of the all-cell model (upper panel) and cell-selection model (bottom panel) in the 793 

representative plane shown in Figs. 1 and 2 (n = 200 images reconstructed using 726 cells from a plane). 794 

d. R across planes. *: p = 4.0×10−4 using the signed-rank test (n = 24 planes). Reconstruction performance of 795 

the cell-selection model was comparable with that of the all-cells model.  796 

 797 

Figure 4. Sparse responsive neurons sufficiently represent visual contents of single natural images.  798 

a–c. Examples of images reconstructed from only the highly responsive cells (top panels), and reconstruction 799 

performances (R) plotted against the number of cells used for the reconstructions (bottom panels). In this 800 

analysis, using the parameters of cell-selection model, the number of cells used to reconstruct each image 801 

increased one by one. The cells were first collected from the responsive cells and then from the remaining cells. 802 

(Top panels), Stimulus image (1st panel) and reconstructed images (trial-average) from a subset of cells 803 

(2nd–4th panels). R and the number of cells used for the reconstruction are shown under the panel. (Bottom 804 

panels), Responsive cells (red dots) and the remaining cells (black dots) were separately sorted by response 805 

amplitude (descending order), and cells were added one by one from responsive cells with higher response 806 

amplitude to the remaining cells with lower response amplitude. The horizontal lines indicate 95% peak 807 

performances, and the numbers of cells for which the performance curves crossed the 95% level are indicated 808 

by the vertical lines. In each case, the responsive cells alone were sufficient to reconstruct the image nearly as 809 

well as all cells. 810 
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d. Averaged performance curve (n = 24 planes) plotted against cell number. The thick black line and grey lines 811 

indicate the means and the means ± standard errors, respectively. The horizontal line indicates the 95 % peak 812 

performance, and the vertical line indicates the first crossing point of the performance curve on the 95% line.  813 

e. Contributions of the top 18 responsive cells to the image reconstruction shown in (a). (Top panels) Reverse 814 

filters (weighted sum of Gabor filters) multiplied by the visual responses reveal the spatial patterns of 815 

individual cell’s contributions to the reconstructed image. The patterns vary among cells. (Bottom panels) 816 

Reconstructed image gradually changes by consecutively adding single cells.  817 

f. Distributions of R for all cells (top, same as bottom of Fig. 3c) and the highly responsive cells (bottom) in 818 

the representative plane (726 cells). N = 200 images. Red vertical lines indicate medians. 819 

g, R for all cells and only the responsive cells. *: P = 4.0×10−4 by signed- rank test (n = 24 planes). Each dot 820 

indicates data for each plane, and bars indicate median. The Rs were comparable between the two models. 821 

h–j. Overlapping weights (i.e., features) between the cells highly responding to the same image.  822 

h, Schema of the analysis.  823 

i, Distribution of percentage of overlapping features in all cell pairs responding to the same image collected 824 

across planes. 825 

j. The median of the percentages of overlapping features in the cell pairs responding to the same image. Each 826 

dot indicates the median in each plane (n = 24 planes) and the bar indicates median across planes. The 827 

percentages of overlapping features were still low even in the cell pairs responding to the same image. 828 

 829 

Figure 5. Robust image representation by small numbers of responsive neurons 830 

a. Examples of reconstructed images after single cell drop. Top: Stimulus and reconstructed image from all 831 

responsive neurons (57 cells). Middle: Reconstructed images after the single cell drop. Bottom: Reconstructed 832 

images from the dropped cells. Cell # is the same as in Fig. 4e.  833 

b. Reduction of reconstruction performance after removing a single cell. Cell # on X axis were ordered from 834 

largest to smallest response amplitudes. Cell # was the same order as Fig. 4d. The median (horizontal line 835 
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inside a box), 25–75th percentiles (box), and 5–95th percentiles (whiskers) were obtained across planes (n = 24 836 

planes). 837 

c. Top: Reverse filters of overlapping cells (top panels). Representation area of each neuron was contoured by 838 

red line. Middle: Reconstructed images by the nine cells. Bottoms: Reconstructed images by single cells 839 

(upper panels) and reconstructed images after single cell drop (lower panels). Single cell drop had only small 840 

effect on the reconstructed images. 841 

d. Examples of reconstructed images during sequential drop of the nine overlapping neurons. Red contours 842 

indicate overlapping area of the nine cells. Image around the overlapping areas gradually degraded after each 843 

cell drop. 844 

e and f. Pixel value in a local part of reconstructed image (overlapping area) against number (or percentage) of 845 

dropped cells for the representative case shown in Fig. 5c (e) and for summary of all data (f). The intensity 846 

was obtained by averaging absolute pixel values within a local part of the image after each cell drop and 847 

compared to that from all overlapping cells. In each case, the reference cell was dropped at first, then cells 848 

were randomly selected and dropped from the remaining overlapping cells sequentially. In each stimulus, all 849 

responsive cells were used once as the reference cell. Data were collected and averaged across cells and across 850 

stimulus in each plane, and then collected across planes. Middle, lower and upper lines of a box, and whiskers 851 

indicate median, 25–75th and 5–95th percentiles across repetitions of random drop (n = 120 repetitions, e) or 852 

across planes (n = 24 planes, f), respectively. 853 

 854 

Figure 6. Representation by multiple neurons is more reliable than that by single neuron 855 

a. Trial-to-trial variability of the representative reconstructed image. Images were reconstructed by single-trial 856 

responses of all responsive neurons (57 cells) to the image (Stim. upper left).  857 

b. Trial-to-trial variability of visual responses to the representative stimulus image. The nine neurons are the 858 

same as in Fig. 5c.  859 

c. Trial-to-trial variability of reconstructed images by single neurons. Cell 1 is a reference cell in these 860 
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overlapping cells. Each image was reconstructed by a single trial response of a single cell. The images were 861 

variable across trials in many cells. 862 

d. Trial-to-trial variability of reconstructed images by the nine cells (top) and their activity patterns in FOV 863 

(bottom). The reconstructed images were relatively reliable while activity patterns were variable across trials. 864 

(Bottom), One side length of FOV: 507 µm. Color code is same as in b.  865 

 866 

Figure 7. Independent correlated activities between subsets of responsive neurons provide robust 867 

representation against trial-to-trial variability 868 

a. Noise correlations between the overlapping neurons. These neurons formed three clusters (black squares). 869 

Cell order is same as in Fig. 6. The number of clusters (i.e., three in this case) which showed minimal 870 

between-cluster correlation was used (see Supplementary Fig. 5a). 871 

b. Distribution of the number of clusters which showed minimal noise correlation between clusters.  872 

c. Response correlation of within- (red) and between-cluster (blue) neuron pairs for all data (across reference 873 

cells, stimulus and planes). Between-cluster neuron pairs show almost-zero correlations on average, indicating 874 

independent activities between clusters. 875 

d. Trial-variability of reconstructed images by the three clusters shown in (a). The three clusters represent the 876 

local part of the image in different trials, and integration of clusters provides robustness against trial-to-trial 877 

variability (Fig. 6d, also see Supplementary Fig. 5e, f). Correlation coefficients of trial-variability of the 878 

images were shown on the right side of the panels. 879 

 880 

Figure 8. Visual features of natural images are distributed among most neurons in a population 881 

a. Raster plots of highly responsive cells for each image in the representative plane shown in the previous 882 

figures (n = 711/726 responsive cells). The image # is sorted by the image reconstruction performance 883 

(descending order, right panel). In each line, cells that did not respond to the previously plotted images are 884 

added on the right side. As image # increased, the number of newly added cells decreased, and then, cell # 885 
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quickly reached a plateau level, indicating that many images are represented by the combination of cells that 886 

responded to other images. Thus, most images could be represented with some degree of accuracy by the 887 

combination of subsets of responsive cells of the population.      888 

b. The numbers of responsive cells (black line) and numbers of newly added responsive cells (red line) are 889 

plotted against image # for the case shown in (a). Again, the number of newly added cells quickly decreased as 890 

the image # increased.  891 

c. The numbers of responsive cells (black line) and numbers of newly added responsive cells (red line) are 892 

plotted against image #. N = 24 planes. Three lines in each colour indicate the mean and the mean ± the 893 

standard errors. 894 

d, Schema of the analysis. The feature set of each natural image was linearly regressed by the weights from the 895 

cell-selection model of all the responsive cells in each plane, and the fitting error (% error, see Methods) was 896 

computed in each image. If the features encoded in all the responsive cells were sufficient to represent natural 897 

images, the weights of the responsive cells should work as basis functions to represent visual features of the 898 

natural images. 899 

e. Distributions of the errors of all images collected across planes. 900 

f. The median of % error across planes (bar, n = 24 planes). Each dot indicates the median in each plane. 901 

 902 

Supplementary figure legends 903 

Supplementary Figure 1. Gabor filter set and prediction performance of encoding model 904 

a. Scheme of the process used to transform natural image features with Gabor filters. Each natural image was 905 

subjected to Gabor filters to obtain the corresponding Gabor feature values. Conversely, a set of Gabor feature 906 

values were transformed into an image by summing the Gabor filters after multiplying by the corresponding 907 

Gabor feature values.  908 

b. Scheme of the Gabor filter set. Four orientations, 2 phases, 4 scales (or spatial frequencies) of Gabor filters 909 

were used. The 4 scales of Gabor filters (spatial frequency: 0.016, 0.033, 0.067, and 0.13 cpd) were positioned 910 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/300863doi: bioRxiv preprint 

https://doi.org/10.1101/300863


37 
 

on a 1 × 1, 3 × 3, 5 × 5, and 11 × 11 grids. A total of 1248 filters were used. 911 

c. Effect of feature selection on the response prediction performance. The response prediction performances 912 

(correlation coefficients between the observed and predicted responses) are plotted against the threshold values 913 

of the feature selection for 30 representative cells. Pearson’s correlation coefficient (corr. R) between each 914 

feature values and response was computed, and the features with corr. R greater than the pre-set threshold 915 

values were used for the regression analysis of the encoding model. The threshold value for the final model 916 

was selected from the pre-set values to maximize the response prediction. 917 

d and e. Averaged prediction performance plotted against the feature selection threshold among all cells in the 918 

representative plane shown in the main figures (n = 726 cells from one plane, d) and among all planes (n = 24 919 

planes, e). As the threshold increased, the prediction performance increased slightly and reached a plateau 920 

level. The threshold was independently adjusted for each cell such that the response prediction was maximized. 921 

Means ± standard errors are shown. 922 

f–h. Results of the response predictions for the representative plane shown in the main figures (n = 726 cells 923 

from one plane). Distributions of the response prediction performances (n = 200 images, f), percentages of 924 

features used for each cell (n = 726 cells. g), and percentages of overlapping features between cells (n = 925 

263175 pairs, h). In each cell pair, the number of overlapping features was divided by the number of features 926 

used in the encoding model for each cell and averaged between the two cells in a pair.  927 

i. Distribution of the response prediction performance of all cells across all planes (n = 12755 cells from 24 928 

planes).   929 

j–l. Results of the response prediction performance across planes (n = 24 planes). Distributions of the response 930 

prediction performances (j), percentages of features used for each cell (k), and percentages of overlapping 931 

features between cells (l) are shown.  932 

 933 

Supplementary Figure 2. Relationships between the weights of the encoding model and the RF structure 934 

a–d. Relationship between the weights of the Gabor features and the RF structure.  935 
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a and b. (a) Schema of the analysis. In each cell, the RF structure was determined using a pseudo-inverse 936 

method (see Methods), and pixel-to-pixel Pearson’s correlation coefficients between the RFs and Gabor filters 937 

were computed (R1 and R2 in (a); R (RF vs. Gabor)). (b) Then, Pearson’s correlation coefficient (R) between 938 

the R (RF vs. Gabor) and weight values (W1 and W2 in (a)) was computed for each cell. In the example cell 939 

shown in (b), the R (RF vs. Gabor) and weight values were positively correlated (R = 0.83), indicating that 940 

Gabor filters similar to the RF were assigned high weight value.  941 

c and d. Distributions of R between R(RF vs. Gabor) and weights for all cells in the representative plane (c) 942 

and for all planes (d).  943 

e–i. Relationship between the spatial overlap of the encoding filter and percentage of overlapping features 944 

between cells.  945 

e. Examples of the response prediction performances of the two representative cells. The black and coloured 946 

lines indicate the observed and predicted responses, respectively.  947 

f. Weights and encoding filters of the two cells shown in (e). In these cells, the percentage of overlapping 948 

non-zero feature (% overlapping feature) was 12%, and the spatial similarity of the encoding filters 949 

(pixel-to-pixel correlation, R (filter)) was 0.26. The encoding filter was obtained by computing the sum of 950 

Gabor filters multiplied by the weights of the encoding model. The red and blue colours of the encoding filter 951 

indicate positive and negative values, respectively. 952 

g. Relationship between the % overlapping feature and absolute value of the R (filter). These two values were 953 

positively correlated, indicating that the % overlapping feature reflects the spatial similarity of the encoding 954 

filters. All pairs in the representative plane are illustrated by color code.  955 

h. Diverse structure of the encoding filters. The absolute R (filter) was relatively small for all pairs (median: 956 

0.05), which indicated the diverse structure of the encoding filters between cells.  957 

i. Distribution of the correlation coefficient between the % overlapping feature and the absolute value of R 958 

(filter) (|R(filter)|, N = 24 planes).  959 

 960 
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Supplementary Figure 3. Image reconstructions based on three models: all-cells, cell-selection 961 

(encoding-optimized) and image-optimized models  962 

a. Relationship between the encoding model (cyan arrows, Fig. 2 in the main text) and the image 963 

reconstruction model (red arrows, Fig.3 in the main text). In the image reconstruction model, each Gabor 964 

feature value was independently linearly regressed by the visual responses of multiple neurons. In the 965 

“all-cells” model of image reconstruction, each feature value was reconstructed using all cells (not shown in 966 

the figure). In the “cell-selection” model of image reconstruction, each feature was reconstructed using a 967 

subset of cells (thin red arrows) selected by the encoding model (thin cyan arrows). 968 

b–c. The image reconstruction performances (R) were compared across the three models, i.e., all-cells, 969 

cell-selection (encoding-optimized) and image-optimized model. The performances were almost comparable 970 

between the all-cells and cell-selection models (see the main text). The performance was only slightly 971 

improved when the cell selection for each Gabor feature was performed to maximize the reconstruction of the 972 

feature value (“image optimized” model in Supplementary Fig. 3b and c). In the image-optimized model, cells 973 

were first selected based on the correlation between the cell’s response and the feature value, similar to the 974 

feature selection in the encoding model (see Methods). Then, each feature was linearly regressed only by the 975 

selected cells. Threshold of the correlation coefficient for cell selection was determined such that the 976 

reconstruction performance for each feature value was maximized.  977 

b. Representative reconstructed images. Top panels: stimulus images; second row panels: reconstructed images 978 

from the all-cells model; third row panels: reconstructed images from the cell-selection model (also called 979 

“encoding-optimized” model hereafter in the legends); fourth row panels: reconstructed images from the 980 

image-optimized models; bottom panels: reconstructed images using overlap of the cells for each feature 981 

(overlap) between the encoding-optimized and image-optimized models. In the overlap model, each feature 982 

value was reconstructed using the cells employed in both the encoding-optimized and image-optimized 983 

models. 984 

c. Comparison of R. Mean ± standard errors (n = 24 planes) are shown. Each dot indicates the average of all 985 
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images in each plane. The image-optimized model exhibited an only slightly better R than the other models. P 986 

= 2.4×10−3 (all-cells vs. encoding-optimized), 1.1×10−4 (all-cells vs. image-optimized), 2.1×10−4 (all-cells vs. 987 

overlap), 1.1×10−4 (encoding-optimized vs. image-optimized), 1.1×10−4 (encoding-optimized vs. overlap), and 988 

1.1×10−4 (image-optimized vs. overlap), using signed rank test with the Bonferroni correction. 989 

d. Percentages of cells used for each feature are plotted against the spatial frequencies of Gabor filters. The 990 

image-optimized model (blue) used more cells to reconstruct each feature value than the encoding-optimized 991 

model (i.e., cell-selection model, red). The plot of the encoding-optimized model is the same as the plot shown 992 

in Fig.2g in the main text.  993 

e. Overlap of the cells between the image-optimized and encoding-optimized models. In the reconstruction of 994 

each feature value, the cells used in the encoding-optimized model were almost included in the cells used in 995 

the image-optimized model. Image-only: percentage of cells used only in the image-optimized model. 996 

Encoding-only: percentage of cells used only in the encoding-optimized model. Overlap: percentage of cells 997 

used in both models. The results in (c–e) indicate that the overlapping cells mainly contributed to the image 998 

reconstruction and the image-only cells contributed to the slight increase in R of the image-optimized model.  999 

f–h. Comparison of reverse filters among the overlap, image-only and encoding-only cells. 1000 

f. Examples of reverse filters (reconstruction filters, i.e., the sums of Gabor filters multiplied by the weights in 1001 

each cell) in the overlap cells (upper panels), image-only cells (middle), and encoding-only cells (lower) used 1002 

to reconstruct the feature whose Gabor filter is shown in the left panel (reconstruction target). The centre 1003 

panels present reverse filters of single cells, and the right-most column presents averaged reverse filters among 1004 

the cells. The reverse filters of the overlap cells appear to be similar to the Gabor filter of the reconstructed 1005 

feature. In the image-only cells, the reverse filters of the individual cells do not appear to be similar to the 1006 

Gabor filter of reconstructed feature, whereas the average of reverse filters resembles the Gabor filters. This 1007 

suggests that the overlapping cells represent the reconstructed feature at the single-cell level, whereas the 1008 

image-only cells represent the feature as a population. 1009 

g. Correlation between the reverse filters of single cells and the Gabor filters of the reconstructed feature. At 1010 
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the single-cell level, the reverse filters of the overlapping cells (black line) are more similar to the Gabor filters 1011 

of reconstructed features than the reverse filters of the image-only and encoding-only cells. The similarity of 1012 

the reverse filter to the Gabor filter of reconstructed feature was indistinguishable between the image-only and 1013 

encoding-only cells (red and blue lines). Mean ± s.e. are shown. P = 1, 1, 0.087 and 0.080 (0.016–0.13 cpd) for 1014 

encoding-only vs. image-only; 2.4×10−3, 2.2×10−4, 2.2×10−4, and 2.2×10−4 for encoding-only vs. overlap; 1015 

2.2×10−4, 2.2×10−4, 2.2×10−4, and 2.2×10−4 for image-only vs. overlap; using signed rank test with the 1016 

Bonferroni correction. 1017 

h. Correlation between the averaged reverse filters and Gabor filters of the reconstructed feature. As a 1018 

population, the similarities of the average reverse filters of the image-only cells (blue) to the Gabor filters are 1019 

slightly less than the similarity of the overlapping cells (black) but greater than the encoding-only cells (red). 1020 

Based on these results, the image-only cells were responsible for the slight increase in R by representing the 1021 

reconstructed feature as a population. Mean ± s.e. are shown. P = 2.4×10−3, 2.2×10−4, 2.5×10−4, and 2.5×10−4 1022 

(0.016–0.13 cpd) for encoding-only vs. image-only; 2.4×10−3, 2.2×10−4, 2.2×10−4, and 2.2×10−4 for 1023 

encoding-only vs. overlap; 4.1×10−4, 2.2×10−4, 2.2×10−4, and 2.5×10−4 for image-only vs. overlap; using 1024 

signed rank test with the Bonferroni correction. 1025 

In summary, the cells used in both the encoding- and image-optimized models (i.e., overlapping cells) 1026 

likely represented the reconstructed feature at the single-cell level, whereas the additional cells that were used 1027 

only in the image-optimized model (i.e., image-only cells) probably represented the reconstructed feature as a 1028 

population. Thus, the main information about visual contents was obtained from the encoding-optimized 1029 

model (i.e., cell-selection model), and additional information was extracted when more cells that were not 1030 

captured by the cell-selection using encoding model were integrated into the reconstruction model. 1031 

 1032 

Supplementary Figure 4. Spatial overlap of reverse filters among responsive neurons 1033 

a. Spatial overlap of reverse filters. Reverse filter was transformed to z-score, and area in which absolute 1034 

z-score was greater than 1.5 was defined as a significant area (red contours in left panels). The significant area 1035 
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was transformed to a binary image, and a pixel-to-pixel correlation coefficient of the binary image was 1036 

computed between two cells. Cell pair whose correlation coefficient was greater than 0.4 was defined as 1037 

spatially overlapping cell pair. 1038 

b. Distribution of the number of spatially overlapping cells. 1039 

 1040 

Supplementary Figure 5. Independent activities between subsets of responsive neurons provide robust 1041 

representation against trial-to-trial response variability. 1042 

a. Noise correlations in between-cluster cell pairs in the representative neuron set (reference and overlapping 1043 

cells) shown in Fig. 5c  ̧ 6b, 6c and 7a. Cluster number which showed minimal noise correlation between 1044 

clusters was used in the analyses of main figures. 1045 

b. Correlation of reverse filters between cells in within- (red) and between-cluster pairs (blue). Distributions 1046 

highly overlapped between the two pairs, although median correlation coefficient of the within-cluster pair 1047 

was higher than those of the between-cluster pair (0.23[0.05–0.43], n=620990 in within-cluster pairs, and 1048 

0.19[0.02–0.39], n=809833, in between-cluster pairs, p < 1.0×10−9 by signed rank test).  1049 

c. Comparisons of reconstructed images by the clusters shown in Fig 7a. Similarity of reconstructed images 1050 

between clusters was estimated by pixel-to-pixel Pearson’s correlation coefficient. Trial-averaged images are 1051 

shown. 1052 

d. Distribution of reconstructed image correlation between clusters. Positive correlation of the distribution 1053 

indicates that clusters represent similar image patterns. Median [25–75th]: 0.33 [0.11–0.52], n=57420 cluster 1054 

pairs. 1055 

e. Correlation of across-trial local image intensity change between clusters. The local image intensity was 1056 

obtained by averaging absolute pixel values inside the overlapping area (red contours in Fig. 5d in the main 1057 

figure). As predicted by response correlations (Fig. 7c), the distribution shows almost-zero correlation on 1058 

average (-0.08[-0.24–0.09], n=57420 cluster pairs), indicating independent representations between clusters. 1059 

f. Across-trial reliability of reconstructed by individual clusters (blue) and all cells in a set of overlapping cells 1060 
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(red). The reliability was estimated by computing correlation coefficient between single-trial and 1061 

trial-averaged reconstructed images and averaging across trials. P = 1.8×10−5 by signed rank test (n = 24 1062 

planes). Middle, lower and upper lines of a box, and whiskers indicate median, 25–75th and 5–95th percentiles 1063 

across planes (n = 24 planes). 1064 

g-i. The main results (Fig. 7 and Supplementary Fig. 5) are independent of the number of clusters. (g) Noise 1065 

correlation of within-cluster pairs and between-cluster pairs (blue), corresponding to Fig. 7c. Almost 1066 

zero-correlation in between-cluster neuron pairs were observed in all the number of clusters. (h) Correlation of 1067 

reconstructed image between clusters corresponding to supplementary fig. 5c and d. Positive correlations were 1068 

observed in all the number of clusters. (i) Correlation of across-trial image intensity change between clusters, 1069 

corresponding to supplementary fig. 5e. Image intensity was computed by averaging absolute pixel values 1070 

inside the overlapping area. Almost zero correlation between clusters were observed in all the number of 1071 

clusters. (g–i) Middle, lower and upper lines of a box, and whiskers indicate median, 25–75th and 5–95th 1072 

percentiles across all samples. (g) n = 739579, 1001691, 1134950, 1218522 in between-cluster (blue), and n = 1073 

691244, 429132, 295873, 212301 in within cluster pairs (red), for cluster number 2, 3, 4, 5 respectively. (h, i) 1074 

n = 30573, 91719, 183438, 305730 cluster pairs for cluster number 2, 3, 4, 5, respectively.  1075 

 1076 

Supplementary Figure 6. Neurons were spatially intermingled between clusters.  1077 

a–c. Representation areas of a set of overlapping cells (top) and cell’s location in the imaging field (bottom). 1078 

Top. Contours of representation areas are drawn on a stimulus image by colour lines (each colour indicates 1079 

each cluster). Bottom. Grey dots indicate locations of recorded neurons, and coloured lines connect cells in 1080 

one cluster. Different colors indicate different clusters. Three sets of overlapping cells are presented in a–c. 1081 

d–f. Same as (a–c) except for the stimulus image and reference cells. Scales of figures are same in a–f. Scale 1082 

bar indicates 100 microns.  1083 

g. Distribution of cell-cell distance of within-cluster pair (red) and between-cluster pair (blue). Distributions 1084 

almost overlap, indicating that cells are spatially intermingled between clusters. Thus, cell potions do not 1085 
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simply explain the structure of noise correlations. Median [25–75th percentiles]: 165 [103–242] microns, n = 1086 

809833 for between-cluster cell pairs and 162 [100–238] microns, n = 620990 for within-cluster cell pairs. 1087 
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Yoshida and Ohki, Supplementary Figure 1
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