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Abstract 8 

Remembering is a reconstructive process. Surprisingly little is known about how the reconstruction 9 

of a memory unfolds in time in the human brain. We used reaction times and EEG time-series 10 

decoding to test the hypothesis that the information flow is reversed when an event is reconstructed 11 

from memory, compared to when the same event is initially being perceived. Across three 12 

experiments, we found highly consistent evidence supporting such a reversed stream. When seeing 13 

an object, low-level perceptual features were discriminated faster behaviourally, and could be 14 

decoded from brain activity earlier, than high-level conceptual features. This pattern reversed during 15 

associative memory recall, with reaction times and brain activity patterns now indicating that 16 

conceptual information was reconstructed more rapidly than perceptual details. Our findings 17 

support a neurobiologically plausible model of human memory, suggesting that memory retrieval is 18 

a hierarchical, multi-layered process that prioritizes semantically meaningful information over 19 

perceptual detail.  20 
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1. Introduction  34 

When Rocky Balboa goes back to his old gym in the film Rocky V, the boxing ring and the feeling of 35 

the dusted gloves in his hands trigger a flood of vivid images from the past. Like in many other 36 

movies featuring such mnemonic flashbacks, the main character seems capable of remembering 37 

what the room looked like years ago, who was there at the time, and even an emotional 38 

conversation with his old friend and coach Michael. Perceptual details like colours, however, are 39 

initially missing in the scene, like in a faded photograph, and only gradually saturate over time. This 40 

common way to depict memories in pop culture nicely illustrates that the memories we bring back 41 

to mind are likely not unitary constructs, and also not veridical copies of past events. Instead, they 42 

suggest that remembering is a reconstructive process that might prioritize more meaningful 43 

components of an event over other more shallow aspects (Schacter, 2012; Schacter, Guerin, & St 44 

Jacques, 2011). We here report three experiments that shed light onto the temporal information 45 

flow during memory retrieval. Once a reminder has elicited a stored memory trace, are the different 46 

features of this memory reconstructed in a systematic, hierarchical way?  47 

Considering our vast knowledge about the information processing hierarchy during visual 48 

perception, surprisingly little is known about the time course of memory recall. In the object 49 

recognition literature, it is generally agreed that the presentation of an external stimulus initiates a 50 

processing cascade that starts with low-level perceptual features in early visual areas, and 51 

progresses to increasingly higher levels of semantic integration and abstraction along the inferior 52 

temporal cortex (Carlson, Tovar, Alink, & Kriegeskorte, 2013; Cichy, Pantazis, & Oliva, 2014; Clarke & 53 

Tyler, 2015; Lehky & Tanaka, 2016; Martin, Douglas, Newsome, Man, & Barense, 2018; Serre, Oliva, 54 

& Poggio, 2007). However, mental representations can also be re-created from memory, without 55 

much external stimulation: retrieving a scene from the movie Rocky V will elicit semantic knowledge 56 

about the film (e.g. that the actor is called Sylvester Stallone), but also mental images that can 57 

include fairly low-level details (e.g. whether the scene was in colour or in grey scale). How the brain 58 

manages to bring back each of these features when reconstructing an event from memory remains 59 

an open question. The present series of experiments tested our central working hypothesis that the 60 

stream of information processing is reversed during memory reconstruction compared with the 61 

perception of an external stimulus. 62 

Over the last years, multivariate neuroimaging methods have made it possible to isolate brain 63 

activity patterns that carry information about externally presented stimuli, but also about internally 64 

generated mnemonic representations. Importantly, it has been shown that the neural trace that an 65 

event produces during its initial encoding is reinstated in brain activity during its later retrieval (Chen 66 

et al., 2017; Johnson, McDuff, Rugg, & Norman, 2009; Kuhl, Rissman, Chun, & Wagner, 2011; 67 

Michelmann, Bowman, & Hanslmayr, 2016; Staresina, Henson, Kriegeskorte, & Alink, 2012; Wimber, 68 

Alink, Charest, Kriegeskorte, & Anderson, 2015). Most of these studies focused on the reactivation of 69 

abstract information, including a picture’s category (Kuhl et al., 2011; Staresina et al., 2012; Wimber 70 

et al., 2015) or the task context in which it was encoded (Johnson et al., 2009). Apart from these 71 

higher-level features, evidence also exists for the reactivation of low-level perceptual details in early 72 

visual areas (Bosch, Jehee, Fernandez, & Doeller, 2014; Waldhauser, Braun, & Hanslmayr, 2016). 73 

Moreover, a growing literature using electrophysiological methods has begun to shed light onto the 74 

timing of such reinstatement, typically demonstrating neural reactivation within the first second 75 

after a reminder is presented (Jafarpour, Fuentemilla, Horner, Penny, & Duzel, 2014; Michelmann et 76 
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al., 2016; Sols, DuBrow, Davachi, & Fuentemilla, 2017; Staudigl et al., 2012), and sometimes very 77 

rapidly (Waldhauser et al., 2016; Wimber, Maaß, Staudigl, Richardson-Klavehn, & Hanslmayr, 2012). 78 

However, because all existing studies only focused on a single feature of a memory representation 79 

(e.g., its semantic category), the fundamental question whether memory reconstruction follows a 80 

hierarchical information processing stream, similar to perception, has not been investigated.   81 

We hypothesize that such a processing hierarchy does exist, and that the information flow is 82 

reversed during memory reconstruction compared with perception. That is, based on the widely 83 

accepted idea that memory reconstruction depends on back-projections from the hippocampus to 84 

neo-cortex (Moscovitch, 2008), we expect that those areas that are anatomically closer to the 85 

hippocampus (i.e. high-level conceptual processing areas along the inferior temporal cortex) should 86 

be involved in the reactivation cascade faster that areas that are relatively remote (i.e., low-level 87 

perceptual processing areas in earlier visual cortices). Therefore, we assume that once a reminder 88 

has initiated the reactivation of an associated event, higher-level abstract information will be 89 

reconstructed before lower-level perceptual information, producing an inverse temporal order of 90 

processing compared with perception.  91 

We tested this reverse reconstruction hypothesis in a series of two behavioural and one EEG 92 

experiment (see Fig. 1b, c, and Fig. 3a). All experiments used a simple associative memory paradigm 93 

where participants learn a series of arbitrary associations between word cues and everyday objects, 94 

and are later cued with the word to recall the object. In order to test for a processing hierarchy, it is 95 

important to independently manipulate the perceptual and conceptual contents of these objects. 96 

Therefore, objects varied along two orthogonal dimensions: one perceptual dimension, where the 97 

object can be either presented as a photograph or a line drawing; and a semantic dimension where 98 

the object represents an animate or inanimate entity (Fig. 1a). The two behavioural experiments 99 

measure reaction times while participants make perceptual or semantic category judgments for 100 

objects that are either visually presented on the screen, or reconstructed from memory. The EEG 101 

experiment uses a similar associative recall paradigm together with time-series decoding techniques 102 

(Carlson et al., 2013; Cichy et al., 2014; Kurth-Nelson, Barnes, Sejdinovic, Dolan, & Dayan, 2015), 103 

allowing us to track at which exact moment in time perceptual and semantic components of the 104 

same object are reactivated, and to create a temporal map of semantic and perceptual features 105 

during perception and memory reconstruction (Fig. 3b and c). Our behavioural and 106 

electrophysiological findings consistently support the idea that memory reconstruction is not an all-107 

or-none process, but rather progresses on each single trial from higher-level semantic features to 108 

lower-level perceptual details. 109 

2. Results 110 

2.1. Behavioural experiments 111 

Our two behavioural experiments used reaction times (RTs) to test our central hypothesis that the 112 

information processing hierarchy reverses between the visual perception of an object, and its 113 

reconstruction from memory. We assumed that the time required to answer a question about low-114 

level perceptual (photograph vs. drawing) compared to high-level semantic (animate vs. inanimate) 115 

features of an item would reflect the speed at which the brain gains access to these types of 116 

information. If so, we expected that reaction time patterns would reverse depending on whether the 117 

object is visually presented or reconstructed from memory: during visual perception, RTs should be 118 
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faster for perceptual compared with semantic questions to mirror the forward processing hierarchy, 119 

while during retrieval RTs should be faster for semantic compared with perceptual questions if there 120 

is a reversal of that hierarchy.  121 

Both experiments used a 2 x 2 mixed design (Fig. 1b and c), where all participants answered 122 

perceptual and semantic questions (factor question type, within-subjects) about the objects. 123 

Importantly, one group of participants was visually presented with the objects while answering 124 

these questions, whereas the other group recalled the same objects from memory (factor task, 125 

between-subjects). The main difference between the two experiments was that in Experiment 1, 126 

both types of features were probed for a given object, and that in Experiment 2, object were 127 

presented on background scenes (not of interest for the present purpose; see Methods section for 128 

details). Overall accuracy in both experiments was near ceiling for the visual reaction time task 129 

(Experiment 1: M = 96.88%; SD = 2.40%; Experiment 2: M = 97.19%, SD = 2.99%), and high for the 130 

memory reaction time task (Experiment 1: 83.15%; SD = 0.92; Experiment 2: M = 66.23%, SD = 131 

15.35). Only correct trials were used for all further RT analyses. 132 

 133 

 134 

 135 
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 136 

Figure 1. Stimuli and design of the behavioural experiments. (a) Illustration of the orthogonal design of the stimulus set. In 137 
all experiments, objects (a total of 128) varied along two dimensions: a perceptual dimension where objects could be 138 
presented as a photograph or as a line drawing; and a semantic dimension where objects could belong to the animate or 139 
inanimate category. (b) In the visual reaction time task, participants were prompted on each trial to categorize the 140 
upcoming object as fast as possible, either according to its perceptual category (photograph vs. line drawing) or its 141 
semantic category (animate vs. inanimate). (c) During the encoding phase of a memory reaction time task, participants 142 
were asked to create word-object associations (a total of 8 per block). Reaction times were then measured during the 143 
retrieval phase, where subjects were presented with a reminder word, and asked to recall and categorize the associated 144 
object according to its perceptual (photograph vs. line drawing) or semantic (animate vs. inanimate) features. Button press 145 
symbols indicate at which moment in a trial RTs were collected.  146 

2.1.2. Reaction times show the expected reversal in Experiments 1 and 2 147 

To directly test for a reversal of the reaction time pattern between visual perception and memory 148 

reconstruction, we performed an analysis of variance comparing the RTs to perceptual and semantic 149 

questions during visual object presentation and during the cued-recall task. As predicted, we found a 150 

significant interaction between task (visual vs. memory group) and question type (i.e. perceptual vs. 151 

semantic) in Experiment 1 (F1, 42 = 11.142, P = .002) and in Experiment 2 (F1, 46 = 10.876, P = .002).  152 

There was no main effect of question type (Experiment 1: F 1, 42 = 3.816, P = .057; Experiment 2: F 1, 46 153 

= 3.184, P = .081), suggesting that participants were not generally faster or slower at answering one 154 

type of question compared to the other (Fig. 2a and b).  155 
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Post-hoc RT analyses were then performed for each task to confirm that this interaction was 156 

produced by differences in the expected direction. In Experiment 1, participants in the visual 157 

perception group were significantly faster when responding to perceptual (M = 795ms; SD = 235ms) 158 

compared to semantic (M = 842ms, SD = 185ms) questions (t22 = 3.68, P = .001). Importantly, these 159 

differences reversed in the memory retrieval group, where RTs to semantic questions (2334ms; SD = 160 

534 sec) were now significantly faster than RTs to perceptual questions (M = 2502ms; SD = 561; t20 = 161 

2.35, P = .029). This pattern was fully replicated in Experiment 2, where again the visual RT group 162 

answered perceptual questions (M = 733ms; SD = 211ms) significantly faster than semantic 163 

questions (M = 797ms, SD = 235; t23 = 2.46, P = .022), whereas the memory group was significantly 164 

faster at responding to semantic questions (M = 3133ms, SD = 660ms)) compared with perceptual 165 

questions (M = 3348ms, SD = 754; t23 = 2.67, P = .014).  166 

Since reaction times are not necessarily normally distributed, we also wanted to confirm the results 167 

using a Wilcoxon signed rank test. The significant RT differences between perceptual and conceptual 168 

questions were also present using this non-parametric statistic in the visual perception group 169 

(Experiment 1: z = 3.16, P = .002; Experiment 2: z = 2.57, P = .010) and in the memory group 170 

(Experiment 1: z = 2.48, P = .013; Experiment 2: z = 2.42, P = .015).  Reaction time analyses thus 171 

support our central hypothesis that the speed of information processing for different object features 172 

reverses between perception and memory, and this pattern fully replicated between Experiments 1 173 

and 2. 174 

2.1.3. Accuracy results support a reversal between perception and memory, and suggest a 175 

directional dependency in the processing hierarchy 176 

Next we investigated whether a similar pattern was, at least qualitatively, also present in terms of 177 

accuracy. We found a significant interaction between task (visual vs. memory group) and question 178 

type (i.e. perceptual vs. semantic question) in both experiments (Experiment 2: F1, 42 = 14.467, P = 179 

.001; Experiment 2: F1, 46 = 9.698, P = .003). Post-hoc accuracy analyses in Experiment 1 revealed that 180 

in the visual reaction task participants were more accurate at answering perceptual questions (M = 181 

97.42%; SD = 2.68%) compared to semantic ones (M = 96.33%; SD = 1.99%). This difference was not 182 

significant (t22 = 2.03, P = .055), most likely because accuracy during perception was close to ceiling. 183 

Accuracy in the memory task showed that, in line with a reversed processing stream, participants 184 

had significantly better accuracy for semantic questions compared with perceptual questions (M = 185 

85.83%; SD = 7.57%; vs. 82.63%; SD = 8.79%, respectively; t20 = 3.12, P = .005). Experiment 2 186 

replicated the same accuracy profile, with participants in the visual group showing a significantly 187 

higher accuracy for perceptual questions (M = 97.97%; SD = 2.77%) compared to semantic questions 188 

(M = 96.41%; SD = 3.07%; t23 = 2.14, P = .042)). The reverse pattern was present in the memory 189 

reaction time task, where an accuracy benefit was found for semantic questions compared to 190 

perceptual ones (69.57%; SD = 15.17%; vs. 62.89%; SD = 15.09%, respectively; t23 = 2.63, P = .015). 191 

Accuracy profiles thus generally corroborated our reaction time results, again suggesting that 192 

semantic information is more easily accessed during retrieval than perceptual information.  193 

The accuracy data from Experiment 1 also allowed us to address an interesting question regarding 194 

the dependency of perceptual and conceptual processing stages. Across the retrieval phase of this 195 

experiment, both types of questions were asked for each given object, and we were thus able to test 196 

to what degree performance on the semantic and perceptual questions was stochastically 197 
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dependent. Our reasoning was that if the reconstruction of semantic and perceptual aspects from 198 

memory was a hierarchical process where access to a later stage depended on having completed the 199 

previous stage(s), as predicted by a reversed stream, then the ability to retrieve perceptual details 200 

would depend on having accurately retrieved semantic details, but not vice versa. In other words, if 201 

the retrieval of semantic information was the first stage in a hierarchical stream, it would not 202 

depend much on any other stages. If on the other hand the retrieval of perceptual information is 203 

indeed a very late stage in the hierarchy, success at this stage should be considerably influenced by 204 

success at earlier (semantic) stages. In line with this reasoning, we found that P(sem/per) – the 205 

conditional probability of remembering the correct semantic information given the perceptual 206 

question was answered correctly for the same word-picture association (M = 91.61%; SD = 6.98%) – 207 

was significantly higher (t20 = 3.08, P = .006) than P(per/sem) – the conditional probability of 208 

answering the perceptual question correctly given a correct semantic answer (M = 88.28%; SD = 209 

8.34%)(Fig. 2c).  For reasons of completeness, we carried out the same conditional probability 210 

analysis in the visual task. In this group, the opposite trend was present, with P(per/sem) (M = 211 

97.30%; SD = 2.82 %) being numerically higher than P(sem/per) (M = 96.21%; SD = 2.09%). However, 212 

this difference was not statistically robust (t22 = 2.04, P = .054), most likely due to ceiling effects. 213 

Altogether, the findings from our two behavioural experiments provide support for our main 214 

hypothesis that during retrieval of a complex visual representation, the temporal order in which 215 

perceptual and semantic features are processed reverses between perception (feed-forward) and 216 

memory retrieval (feed-backward).  The results suggest that reaction times can be used as a proxy to 217 

probe neural processing speed, as argued in previous studies (Ritchie, Tovar, & Carlson, 2015). In the 218 

next sections, we report the findings from an EEG study that more directly taps into the neural 219 

processes that we believe are producing the behavioural pattern. 220 

 221 

Figure2. Behavioural results. (a) Box plots representing reaction times in Experiment 1 for perceptual (blue) and semantic 222 
questions (pink) during object presentation (visual task, left) and object recall (memory task, right). A significant interaction 223 
was found in a 2x2 ANOVA comparing RTs for perceptual and semantic questions when an object was physically presented 224 
on the screen (visual task) or cued by a reminder (memory task). (b) Box plots representing reaction times in Experiment 2 225 
for perceptual and semantic questions during in the visual and memory groups, replicating the results from Experiment 1. 226 
For illustrative purposes the Y-axis in (a) and (b) is logarithmically scaled. (c) Conditional probability results in Experiment 1. 227 
The conditional probability of remembering the correct semantic information given the perceptual question was answered 228 
correctly for the same object, P(sem/per) was significantly higher than the conditional probability of answering the 229 
perceptual question correctly given a correct semantic answer, P(per/sem). Each line represents the trend for one 230 
participant. In all three panels, errors bars represent standard error of the mean. The line in the middle of each box 231 
represents the median, and the tops and bottoms of the boxes the 25th and 75th percentiles of the samples, respectively. 232 
Whiskers are drawn from the interquartile ranges to the furthest minimum (bottom) and maximum (top) values. 233 
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2.2. EEG experiment 234 

While it is reasonable to assume that reaction times tap into the neural processing speed for a given 235 

feature, based on previous literature (Ritchie et al., 2015), we also wanted to obtain a more direct 236 

signature of feature activation from human brain activity. We therefore used multivariate pattern 237 

analysis applied to electrophysiological (EEG) recordings, with the goal to pinpoint when in time, on 238 

an individual trial, the perceptual and semantic features of an object could be decoded from brain 239 

activity. We expected to find the maximum decodability of perceptual information before semantic 240 

information when an object was visually presented on the screen, and expected the order of these 241 

peaks to reverse when the object was recalled from memory. The design closely followed the 242 

behavioural experiments, with the important difference that all factors were manipulated within 243 

subjects, such that each participant carried out a visual encoding phase that served to probe visual 244 

(forward) processing, and a subsequent recall phase used to probe mnemonic (backward) processing 245 

(Fig. 3). The trial timing was optimised for obtaining a clean signal during object presentation and 246 

object recall, rather than for measuring reaction times. We therefore presented the perceptual and 247 

semantic questions only during the recall phase in order to probe memory accuracy, and questions 248 

were presented at the end of each recall trial, such that they would not bias processing towards 249 

perceptual or semantic features of the object.   250 

2.2.1 Accuracy in the EEG study replicates the response pattern found in the behavioural 251 

experiments 252 

In the retrieval phase of the EEG experiment, subjects were again cued with a word and asked to 253 

retrieve the associated object. On average participants subjectively declared to retrieve the object 254 

on 93.6% of the trials (SD = 5.89%), with an average reaction time of 3046ms (SD = 830ms; minimum 255 

= 1369ms; maximum = 5124ms) to make this response. We then asked two objective questions at 256 

the end of each trial, one perceptual and one semantic, which participants answered with an overall 257 

mean accuracy of 86.37% (SD = 6.6). Mirroring our behavioural experiments, hit rates for answering 258 

the semantic question were 87.65% (SD = 6.57%), significantly higher (t20= 5.16, P = .001) than the 259 

accuracy for the perceptual question (M = 85.08%; SD = 6.53%). Note that the EEG task was not 260 

designed to measure reaction times, and participants were instructed to prioritize accuracy over 261 

speed.  262 

2.2.2 Single-trial classifier fidelity suggests a reversal of information processing between 263 

perception and memory recall 264 

In order to determine the temporal trajectory of feature processing on a single trial level, we carried 265 

out a series of time resolved decoding analyses. Linear discriminant analysis (LDA, see Method 266 

section) was used to classify perceptual (photograph vs. line drawing) and semantic (animate vs. 267 

inanimate) features of an object based on the EEG topography at a given time point, either during 268 

object presentation (encoding) or during object retrieval from memory (cued recall).  269 

Our first aim was to confirm that there was a forward stream during perceptual object processing. 270 

Two separate classifiers were therefore trained and tested during encoding to classify the perceptual 271 

category (photograph vs. line drawing) and the semantic category (animate vs. inanimate) of the to-272 

be-encoded object, respectively, in each trial and time point per participant (see Fig. 3). For these 273 

analyses, decoding was performed in separate time windows starting 100ms before stimulus onset 274 
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and up until 500ms post-stimulus. Our main interest was to determine the specific moment in each 275 

trial at which the two classifiers showed the highest fidelity in determining the correct perceptual 276 

and semantic categories (Fig. 3b and c). For the encoding data, we thus identified the highest d value 277 

peak per trial within 500ms of stimulus onset (see Methods section). This approach allowed us to 278 

compare, within each encoding trial, whether the classification peak for perceptual features 279 

occurred earlier than the classification peak for semantic features. 280 

 281 

Figure3. Design for EEG experiment and time resolved multivariate decoding. In the EEG experiment participants were 282 
asked to create word-object associations (panel A), and to later reconstruct the object as vividly as possible when cued 283 
with the word, and to indicate with a button press when they had a vivid image back in mind. EEG was recorded during 284 
learning and recall, with the aim to perform time-series decoding analyses that can detect at which moment, within a 285 
single trial, a classifier is most likely to categorise perceptual and semantic features correctly. Coloured time lines under 286 
object and cue time windows represent our reversal hypothesis regarding the temporal order of maximum semantic (pink) 287 
and perceptual (blue) classification during the perception (encoding) and retrieval of an object. All EEG analyses were 288 
aligned to the object onset during encoding, and to the button press during retrieval. (b) Decoding analyses were 289 
performed independently per participant at each time point. For each given time point during a trial, two linear 290 
discriminant analysis (LDA) based classifiers were trained on the EEG signal: one perceptual classifier discriminating 291 
photographs from line drawings, and one semantic classifier discriminating animate from inanimate objects. Classifiers 292 
were tested using a leave-one-out procedure, which allowed us to obtain a time series of confidence values (d-values, 293 
reflecting the distance from the separation hyperplane) for each single trial. (c) Our main interest was to compare the time 294 
points of maximal fidelity of the perceptual (blue) and semantic classifiers (pink) on each trial, to test the hypothesis that 295 
the perceptual maximum (blue) precedes the semantic one (pink) during perception (encoding, panel A), and importantly 296 
that this order is reversed during memory recall (panel B).  297 

Comparing all single trial d value peaks from encoding (Fig. 4a), we found a significant difference (z = 298 

1.87, P = 0.03) between the timing of perceptual and semantic peaks using a one-tailed Wilcoxon 299 

signed rank test, suggesting that confidence peaks for perceptual classification occurred before 300 

those for semantic classification. The obtained Z score was compared against a bootstrapped data 301 

set (see Methods section) to estimate the likelihood of obtaining a distance between peaks of the 302 

same or larger size from a distribution with randomly shuffled category labels, using the same EEG 303 

epochs and the same time window. The observed difference score (z = 1.87) exceeded the 95th 304 

percentile (z = 1.64) of the random distribution. This result from the encoding phase of the 305 

experiment thus confirms previous studies showing that low-level features are processed before 306 
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high-level features during visual perception (Carlson et al., 2013; Cichy et al., 2014; Clarke & Tyler, 307 

2015; Lehky & Tanaka, 2016; Serre et al., 2007). 308 

Importantly, following the same procedure, we next analysed the differences between the 309 

perceptual and semantic classifier peaks during memory reactivation, to test whether the order 310 

reversed during retrieval compared with encoding. The single-trial approach made sure that the 311 

relative temporal order of perceptual and semantic peaks within a trial would be preserved even if 312 

the retrieval process was set off with a varying delay across trials. To further minimize variance 313 

between the retrieval trials, we aligned all trials relative to the button press, i.e. the moment when 314 

participants declared that they had retrieved the associated object from memory. The time window 315 

used in this analysis covered 3sec prior to participants’ response and, based on behavioural reaction 316 

times, only trials with a RT ≥ 3 sec were included. Using a one-tailed Wilcoxon signed rank test, a 317 

significant difference (z = 2.53, P = .006) was found when we compared d value peak distributions of 318 

perceptual with those of semantic classification obtained from all single trials and participants (Fig. 319 

4b). The obtained Z score was again higher than the 95th percentile (z = 1.59) of the random 320 

distribution of a bootstrapped data set (see Methods section) using the same EEG signal and time 321 

window. Critically, the one-tailed test in this case confirms our central hypothesis that during 322 

memory retrieval, semantic information can be classified in brain activity significantly earlier than 323 

perceptual information, suggesting a reversal of information flow relative to perception.  324 

The last classification analysis was aimed at confirming the results obtained from the previous single-325 

trial, fixed-effects analyses using a random-effects approach. We calculated the average d value 326 

peak latency for perceptual and semantic classification in each participant, and performed a 2x2 327 

ANOVA with stage (encoding vs. retrieval) and type of feature (perceptual vs. semantic) as within-328 

subject factors. Confirming our main hypothesis, this analysis revealed a significant interaction (F1, 20 329 

= 4.63, P = .044) between stage and the type of feature. We further found a main effect of type of 330 

feature (F 1, 20 = 4.80, P = .04). Post-hoc T-tests showed no significant difference (t20= 0.67, P = .253) 331 

between the average perceptual and semantic d value peaks during encoding (Fig. 4c). However, 332 

during retrieval, we found that the semantic classifier systematically (t20= 2.20, P = .020, one-tailed) 333 

peaked earlier than the perceptual classifier (Fig. 4d). These findings indicate that even though a 334 

single-trial comparison of classifier fidelity is more sensitive to the temporal dynamics of feature 335 

processing, the same pattern is also present in the average classification values. 336 

Overall, the results again confirm our hypothesis that the information processing hierarchy reverses 337 

between perception (encoding) and recall, and that memory recall prioritizes semantic over 338 

perceptual information.  339 

 340 
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 341 

Figure4. EEG multivariate analysis results. Classifier fidelity in terms of single-trial d value peak distributions (dashed lines 342 
represent the median) during object encoding (a) and object retrieval (b), shown separately for classifying perceptual 343 
(blue) and semantic (pink) classes.  A significant difference between the two peak distributions was found during object 344 
encoding (P = .015), indicating a bias towards earlier occurrence of perceptual (blue) compared with semantic (pink) peaks. 345 
During object retrieval, a significant difference between the distributions was found (P = .006) in the opposite direction 346 
relative to encoding, with semantic peaks now occurring earlier than perceptual peaks. Box plots represent group peak 347 
distribution of d values for perceptual and semantic categories during encoding (c) and retrieval (d) after averaging peaks 348 
within participants. A significant interaction (P = .048) was found between task (encoding or retrieval) and type of feature 349 
(i.e. perceptual or semantic). n.s. indicates a non–significant T-value in posthoc tests. All box plots elements represent the 350 
same metrics as in Figure 2. 351 

2.2.3 Univariate ERP results are consistent with the reverse processing hypothesis 352 

In a final step, we also sought to corroborate our findings by more conventional event-related 353 

potential (ERP) analyses. If the differences in neural activity between perceptual (photograph vs. line 354 

drawing) and semantic (animate vs. inanimate) categories, as picked up by the LDA classifier, were 355 

produced by a signal that is relatively stable across trials and participants, we expected to see these 356 

signal differences in the average ERP time courses across participants. A comparison of the ERP 357 

peaks during encoding and retrieval would then reveal the same perception-to-memory reversal as 358 

found in our multivariate analyses.  359 
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Firstly, a series of cluster-based permutation tests (see Methods section) was performed during 360 

object presentation to test for ERP differences between perceptual and semantic categories. 361 

Contrasting objects from the two different perceptual categories (photographs and line drawings), 362 

we obtained a significant positive cluster (Pcorr = .008) between 136ms and 232ms after stimulus 363 

onset, with a maximum difference based on the sum of T values at 188ms, and located over occipital 364 

and central electrodes (see Fig. 5a). Contrasting objects from the different semantic categories 365 

(animate and inanimate) revealed a later cluster over frontal and occipital electrodes (Pcorr = .001) 366 

from 237ms until 357ms after stimulus presentation, with a maximum difference at 306ms (see Fig. 367 

5a). The peak semantic ERP difference for encoding thus occurred ~120ms after the peak perceptual 368 

difference, consistent with the existing ERP literature (Fabiani, M., Gratton, G., & Federmeier, 2007) . 369 

Similar contrasts between perceptual and semantic categories were then carried out during 370 

retrieval, aligning trials to the time of the button press. We found a significant perceptual cluster 371 

distinguishing the recall of photographs and line drawings over occipital electrodes (Pcorr = .046) 372 

between 1390ms and 1336ms before participants’ responses, with a maximum difference based on 373 

the sum of T values at 1360ms prior to response time (see Fig. 5b). Comparing ERPs for the different 374 

semantic categories, we found a significant cluster distinguishing the recall of animate from 375 

inanimate objects over frontal electrodes (Pcorr = .032) between 1781ms and 1735ms before object 376 

retrieval, with a maximum difference at 1770ms (see Fig. 5b). Therefore, during memory retrieval, 377 

the peak semantic ERP difference occurred ~400ms before the peak perceptual difference. Note that 378 

the timing of the effects also coincides with the timing of the classifier results in terms of the 379 

maximum differences between perceptual and semantic categories (see Fig. 4). The ERP results thus 380 

mirror, qualitatively, the results of our previous multivariate analyses in terms of the timing of the 381 

maximum signal difference between categories. Again, these results suggest that perceptual aspects 382 

are coded in brain activity earlier than semantic aspects during visual processing, but semantic 383 

differences dominate the EEG signal earlier than perceptual ones during retrieval. 384 

 385 

Figure 5. Univariate analysis results. (a) Left panels represent ERP group differences (T-values) across time in those 386 
electrodes that formed a significant cluster during object presentation, locked to the onset of the stimulus. Top left panel 387 
shows the contrast of photographs vs. line drawings, and the bottom left panel differences between animate vs. inanimate 388 
objects. Scalp figures next to each contrast illustrate the maximum cluster’s topography, averaged across the significant 389 
time-window, with all significant electrodes in a cluster being marked with an asterisk. (b) Right panels show ERP group 390 
differences (T-values) over time in those electrodes that are contained in the maximum significant clusters during memory 391 
retrieval, time locked to participants’ responses). The top right panel shows the perceptual contrast, and the bottom right 392 
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panel the semantic contrast. Cluster topographies for each comparison are located next to each panel, and the temporal 393 
extent of significant clusters is shaded in colour. 394 

3. Discussion 395 

When a memory is triggered by a reminder, how does its neural fingerprint unfold in time? While it 396 

is widely accepted that object recognition starts with low-level perceptual followed by high-level 397 

abstract processing (Carlson et al., 2013; Cichy et al., 2014; Lehky & Tanaka, 2016; Serre et al., 2007), 398 

much less is known about the mnemonic processing cascade. Here we demonstrate that the 399 

reconstruction of a visual memory does depend on a hierarchical stream too, but this mnemonic 400 

stream follows the reverse order relative to visual processing. Across three experiments, we found 401 

highly converging evidence in favour of such a reversal from behavioural reaction times and accuracy 402 

(Experiments 1 and 2), from multivariate classification analyses, and from univariate ERP analyses 403 

(Experiment 3). 404 

The behavioural studies demonstrate that participants were significantly faster at detecting low-405 

level perceptual differences than abstract, conceptual differences during a visual classification task, 406 

i.e. while an object was presented on the screen. Critically, however, when we asked participants to 407 

categorize the perceptual or semantic components of objects recalled from memory, the reverse 408 

effect was found: subjects required significantly less time to correctly retrieve semantic information 409 

about the object compared to perceptual details (see Fig. 2a and Fig. 2b). This reversal was 410 

corroborated by a significant interaction between the kind of feature (perceptual or semantic) and 411 

the kind of task (visual perception or memory recall task). Based on signal-detection models (Ashby, 412 

2000; O’Connell, Dockree, & Kelly, 2012), the RT findings suggest that during memory 413 

reconstruction, the decision threshold to identify abstract information of a mnemonic 414 

representation is reached before a judgment about low-level information can be made. The 415 

response latency pattern therefore supports our central hypothesis that the temporal order of 416 

feature processing is reversed when retrieving a previously stored representation of an object, 417 

relative to its perception.  418 

In addition to reaction times, the same reversal pattern was present in accuracy. Here, the accuracy 419 

profiles from Experiment 1 also allowed us to conduct a conditional probability analysis. Specifically, 420 

we were interested in whether access to semantic features and access to perceptual features are 421 

dependent on each other, and whether the direction of this mutual dependency would provide 422 

evidence for a processing hierarchy. Conditional probabilities revealed that when participants 423 

correctly retrieved perceptual information of a given object, they were highly likely to also make an 424 

accurate response about the semantic features of the same object, but not vice versa (see Fig. 2c). In 425 

other words, retrieving perceptual features required access to semantic features, but retrieving 426 

semantic features did not predict access to perceptual features to the same degree, as would be 427 

expected if the processing stream was hierarchically organized. These findings are consistent with an 428 

information-processing stream where access to perceptual details of a mnemonic representation 429 

depends on having completed the presumably earlier semantic stage, a finding consistent with 430 

hierarchical memory system models (Henson & Gagnepain, 2010).    431 

The results from our third, EEG experiment fully support the conclusions drawn from the 432 

behavioural studies. We used temporally resolved multivariate decoding analyses to observe when 433 

in time, during object perception and object retrieval, the perceptual and semantic features of an 434 
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object would be maximally decodable from a participant’s brain activity patterns. These analyses 435 

were carried out on a single trial level such that the fidelity peaks of the perceptual and semantic 436 

classifiers could be directly compared. When an object was visually presented during encoding, the 437 

maximum fidelity (d value) in classifying perceptual information (photograph vs. line drawings) 438 

occurred significantly earlier (approximately 100 ms) than the maximum for semantic information 439 

(animate vs. inanimate) (see Fig. 4a). This finding is consistent with a predominantly feed-forward 440 

processing stream as described previously (Carlson et al., 2013; Cichy et al., 2014; Clarke & Tyler, 441 

2015; Lehky & Tanaka, 2016; Serre et al., 2007). Conversely, when we asked participants to 442 

reactivate an object’s representation from memory, peaks in classifying semantic information were 443 

found roughly 300ms before the peaks for perceptual categories (see Fig. 4b). This reversal in 444 

classifier fidelity was present on a trial-by-trial level but also when averaging peak latencies per 445 

participant (see Fig. 4c and Fig. 4d). Like in the behavioural experiments, a consistent reversal 446 

between perception and memory was supported by a significant interaction between the kind of 447 

feature (perceptual or semantic) and the type of task (perception vs. retrieval). Finally, we also found 448 

the same reversal pattern in the ERP peaks when comparing the maximum ERP difference between 449 

perceptual and semantic object classes. During object perception, the largest perceptual ERP cluster 450 

occurred ~100ms before the semantic ERP cluster, whereas during retrieval the perceptual cluster 451 

followed the semantic one with a lag of about 400ms (see Fig. 5). In summary, our two behavioural 452 

experiments, together with the decoding results and the ERP analyses, provide robust evidence for 453 

our main prediction that semantic features are prioritized over perceptual features during memory 454 

recall, opposite to the well-known forward stream of visual-perceptual processing. Follow-up studies 455 

will need to test whether this reversed stream is robust under different conditions, for example in 456 

tasks that vary the encoding demands to explicitly prioritize the encoding of perceptual over 457 

semantic aspects of an event. 458 

In our studies, the behavioural data were acquired separately from the EEG data, in a setting that 459 

was optimized for measuring reaction times. Previous studies simultaneously measuring RTs and 460 

neural activity suggest that a meaningful relationship exists, on a single trial level, between the d 461 

values resulting from EEG classification and human behaviour. In line with signal detection models 462 

(Ashby, 2000; O’Connell et al., 2012), it has been argued that the distance between two or more 463 

categories in a neural representational space can serve as a decision boundary that guides 464 

behavioural categorization (Ritchie et al., 2015). For example, Carlson et al (Carlson, Ritchie, 465 

Kriegeskorte, Durvasula, & Ma, 2014) used fMRI-based activation patterns in late visual brain regions 466 

during an object recognition task, where participants had to make animacy judgements, similar to 467 

our semantic task. They found that the faster the reaction time on a given trial, the further away in 468 

neural space the object was represented relative to the boundary between semantic categories. 469 

Similarly, an MEG study (Ritchie et al., 2015) showed that the decision values during the time points 470 

of maximum decodability, derived in a way similar to our EEG study, were strongly correlated with 471 

reaction times for visual categorization. Both studies thus suggest that during object vision, single-472 

trial decoding measures reflect a distance between categories in a neural space that directly 473 

translates into behaviour. Even though we did not obtain reaction times during the same trials that 474 

were used for EEG decoding, our findings indicate that this meaningful brain-behaviour relationship 475 

extends to mental object representations during memory reconstruction. 476 

How does the reverse reconstruction hypothesis fit with existing knowledge about the neural 477 

pathways involved in memory reconstruction? It is generally accepted that during memory 478 
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formation, information flows from domain-specific sensory modules via perirhinal and entorhinal 479 

cortices into the hippocampus. Recent evidence suggests that during visual processing, the coding of 480 

perceptual object information is preserved up to relatively late perirhinal processing stages (Martin, 481 

Douglas, Newsome, Man & Barense, 2018). The hippocampus is considered a domain-general 482 

structure (Howard Eichenbaum, 2004; Moscovitch, 2008; Staresina & Davachi, 2008) whose major 483 

role is the associative binding of the various elements that constitute an episode (Davachi, 2006; H. 484 

Eichenbaum, Yonelinas, & Ranganath, 2007; Squire, Stark, & Clark, 2004). The hippocampal code 485 

later allows a partial cue to trigger the reconstruction of these different elements from memory. This 486 

memory reconstruction process is thought to depend on back-projections from the hippocampus to 487 

neocortical areas, causing the reactivation of memory patterns in at least a subset of the areas that 488 

were involved in perceiving the original event. Such reactivation has consistently been reported in 489 

higher-order sensory regions related to processing of complex stimulus and task information 490 

(Johnson et al., 2009; Kuhl et al., 2011; Michelmann et al., 2016; Wimber et al., 2015), but also in 491 

relatively early sensory cortex (Bosch, Jehee, Fernandez, & Doeller, 2014; Waldhauser et al, 2016), 492 

suggesting that in principle higher- and lower-level information can be reconstructed from memory. 493 

Interestingly, however, recent evidence suggests that the semantic structure of complex naturalistic 494 

events is represented in brain activity patterns more consistently when participants reproduce the 495 

event narratives (movies) from memory, as opposed to watching the movies (Chen et al., 2017). Our 496 

work offers a neurobiologically plausible explanation for why higher-order meaningful information 497 

might be prioritized during retrieval. Within the medial temporal lobe, regions that are involved in 498 

the processing of objects and scenes are also activated when retrieving objects and scenes from 499 

memory, but with a delay relative to the actual perception of objects and scenes, consistent with a 500 

reversed information flow (Staresina, Cooper, & Henson, 2013). Intracranial EEG recordings have 501 

shown that connectivity between the entorhinal cortex and the hippocampus changes directionality 502 

between encoding and retrieval (Fell et al., 2016), which could provide the functional basis for 503 

cortical reinstatement. Studies in rodents also indicate that the neural codes that represent certain 504 

spatial trajectories are often replayed in reverse order when the animal is awake and resting, 505 

suggesting a potential role in memory retrieval (Carr & Frank, 2012), and there is very recent work in 506 

humans pointing to reverse replay of spatial sequences during offline states (Kurth-Nelson, 507 

Economides, Dolan, & Dayan, 2016). Finally, previous work using MEG decoding suggests that it is 508 

mainly the later processing stages of the encoding stream that are reactivated during retrieval, 509 

consistent with a prioritization of higher-level information during retrieval (Kurth-Nelson et al., 510 

2015). Our proposal of a reverse processing hierarchy is thus plausible based on functional anatomy 511 

and the existing literature, even though it has never been explicitly proposed or tested so far.  512 

We regard our reverse reconstruction hypothesis as complementary to existing models that address 513 

the nature and timing of different retrieval processes, including the influential dual process model 514 

(for a review see Yonelinas, Aly, Wang, & Koen, 2010). Dual process models focus on recognition 515 

rather than recall tasks, and on the cognitive processes and operations required to access a stored 516 

memory rather than the reactivated features of a memory themselves. They assume that successful 517 

recognition of a previously stored stimulus can be based on a sense of familiarity, or on the 518 

additional recollection of contextual information associated with the stimulus during encoding, an 519 

influential idea in the memory field since the introspective analyses of William James (James, 1890). 520 

While the original model does not explicitly address the time course of these processes, it is now 521 

widely accepted, based on the EEG literature, that familiarity signals occur earlier than recollection 522 
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signals. Familiarity signals can be detected in the EEG as early as 300ms after the onset of a 523 

recognition probe, while recollection-related activity typically begins to emerge after 500-600ms 524 

(Bridson, Fraser, Herron, & Wilding, 2006; Klimesch et al., 2001; Mecklinger, 2006; Rugg & Curran, 525 

2007). In contrast to the above-mentioned studies, our studies probed memory via cued recall, 526 

where successful recall strongly depends on the recollection of associative information. Within this 527 

recollection process, we find that the semantic “gist” of a memory is accessed before perceptual 528 

details. This hierarchical progression from an early global semantic (i.e., familiarity-like) signal to 529 

more fine-grained recollection might thus be a fundamental principle of retrieval that is shared 530 

between recall and recognition memory. 531 

Beyond specific models of declarative memory, there are also interesting parallels between our 532 

findings and visual learning phenomena like the Eureka effect (Ahissar & Hochstein, 1997). The 533 

general idea that perception is shaped by stored representations has been proposed over a century 534 

ago by von Helmholtz (Helmholtz, 1924). A wealth of findings now support the idea that previous 535 

exposures to a stimulus can exert a strong top-down influence on its subsequent perception (for a 536 

review; Aggelopoulos, 2015). Reminiscent of our present findings, Ahissar and Hochstein (2004) 537 

suggest that such visual learning is a top-down process that progresses from high-level to low-level 538 

visual areas with increasing practice. Specifically, they argue that improvements in visual 539 

discrimination tasks (e.g. identifying a tilted line among distractors) are guided by high-level 540 

information (e.g. “the gist of the scene”) during earlier stages of learning, and increasingly more by 541 

low-level information (e.g. line orientations or colours) at later stages. Our findings indicate that 542 

during the reactivation of an object’s stored representation, its high-level features are retrieved 543 

more rapidly than its low-level components. Abstract information might thus be reactivated more 544 

easily and during earlier stages of visual learning, and thus have a stronger driving influence on 545 

performance than more detailed information. Even though speculative at the moment, our reverse 546 

reconstruction framework might thus have explanatory value for findings in related fields of learning 547 

and memory.   548 

How our brain brings back to mind past events, and enriches our mental life with vivid images or 549 

sounds or scents beyond the current external stimulation, is still a fascinating and poorly understood 550 

phenomenon. Our present results suggest that memories, once they are triggered by a reminder, 551 

unfold in a systematic and hierarchical way, and that the mnemonic processing hierarchy is reversed 552 

with respect to the major visual processing hierarchy. We hope that these findings can inspire more 553 

dynamic frameworks of memory retrieval that explicitly acknowledge the reconstructive nature of 554 

the process, rather than simply conceptualizing memories as reactivated snapshots of past events. 555 

Such models will help us understand the heuristics and systematic biases that are inherent in our 556 

memories and memory-guided behaviours.  557 

4. Methods 558 

4.1. Participants 559 

A total of 49 volunteers (39 female; mean age 20.02 +/- 1.55 years old) took part in behavioural 560 

Experiment 1. Twenty-six of them (19 female; mean age 20.62 +/- 1.62 years old) participated in the 561 

memory reaction time task. Five out of these 26 participants were not included in the final analysis 562 

due to poor memory performance (<66% general accuracy) compared with the rest of the group (t24 563 

= 6.65, p < 0.01). Another group of 23 participants (20 female; mean age 19.35 ± 1.11 years) 564 
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volunteered to participate in the visual reaction time task. In a second behavioural experiment 565 

(Experiment 2), 48 participants were recruited (42 female; mean age 19.25 +/- 0.91 years). Twenty-566 

four of them performed the memory reaction time task and another group of 24 took part in the 567 

visual reaction time task. For the electrophysiological experiment we recruited a total of 24 568 

volunteers (20 female; mean age 21.91 ± 4.68 years). Since the first 3 subjects we recorded 569 

performed a slightly different task during retrieval blocks (i.e., they were not asked to mentally 570 

visualise the object for 3 seconds, and they had to answer only one of the perceptual and semantic 571 

questions per trial), we did not include these participants in any of the retrieval analyses. 572 

All participants reported being native or highly fluent English speakers, having normal (20/20) or 573 

corrected-to-normal vision, normal colour vision, and no history of neurological disorders. We 574 

received written informed consent from all participants before the beginning of the experiment. 575 

They were naïve as to the goals of the experiments, but were debriefed at the end. Participants were 576 

compensated for their time, receiving course credits or £6 per hour for participation in the 577 

behavioural task, or a total of £20 for participation in the electrophysiological experiment. The 578 

University of Birmingham’s Science, Technology, Engineering and Mathematics Ethical Review 579 

Committee approved all experiments.  580 

4.2. Stimuli 581 

In total, 128 pictures of unique everyday objects and common animals were used in the main 582 

experiment, and a further 16 were used for practice purposes. Out of these, 96 were selected from 583 

the BOSS database (Brodeur, Dionne-Dostie, Montreuil, & Lepage, 2010), and the remaining images 584 

were obtained from online royalty-free databases. All original images were pictures in colour on a 585 

white background. To produce two different semantic object categories, half of the objects were 586 

chosen to be animate while the other half was inanimate. Within the category of inanimate objects, 587 

we selected the same amount of electronic devices, clothes, fruits and vegetables (16 each). The 588 

animate category was composed of an equivalent number of mammals, birds, insects and marine 589 

animals (16 each). With the objective of creating two levels of perceptual manipulation, a freehand 590 

line drawing of each image was created using the free and open source GNU image manipulation 591 

software (www.gimp.org). Hence a total of 128 freehand drawings of the respective 128 pictures of 592 

everyday objects were created. Each drawing was composed of a white background and black lines 593 

to generate a schematic outline of each stimulus. For each subject, half of the objects were pseudo-594 

randomly chose to be presented as photographs, and half of them as drawings, with the restriction 595 

that the two perceptual categories were equally distributed across (i.e. orthogonal with respect to) 596 

the animate and inanimate object categories. All photographs and line drawings were presented at 597 

the centre of the screen with a rescaled size of 500 x 500 pixels. For the memory reaction time task 598 

and the EEG experiment, 128 action verbs were selected that served as associative cues. Experiment 599 

2 also used colour background scenes of indoor and outdoor spaces (900 x 1600 pixels) that were 600 

obtained from online royalty-free databases, which are irrelevant for the present purpose. 601 

4.3. Procedure 602 

4.3.1. Behavioural experiments 603 

4.3.1.1. Experiment 1 604 
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Visual reaction time task 605 

Before the start of the experiment, participants were given oral instructions and completed a 606 

training block of 4 trials to become familiar with the task. The main perceptual task consisted of 4 607 

blocks of 32 trials each (Fig.1b). All trials started with a jittered fixation cross (500 to 1500ms) that 608 

was followed by a question screen. On each trial, the question could either be a perceptual question 609 

asking the participant to decide as quickly as possible whether the upcoming object is shown as a 610 

colour photograph or as a line drawing; or a semantic question asking whether the upcoming object 611 

represents an animate or inanimate object. Two possible response options were displayed at the 612 

two opposite sides of the screen (right or left). The options for “animate” and “photograph” were 613 

always located on the right side to keep the response mapping easy. The question screen was 614 

displayed for 3 seconds, and an object was then added at the centre of the screen. In Experiment 2, 615 

this object was overlaid onto a background that filled large parts of the screen. Participants were 616 

asked to categorize the object in line with the question as fast as they could as soon as the object 617 

appeared on the screen, by pressing the left or right arrow on the keyboard. Reaction times (RTs) 618 

were measured to test if participants were faster at making perceptual compared to semantic 619 

decisions.  620 

All pictures were presented until the participant made a response but for a maximum of 10 sec, after 621 

which the next trial started. Feedback about participants’ performance was presented at the end of 622 

each experimental block. There were 256 trials overall, with each object being presented twice 623 

across the experiment, once together with a perceptual and once with a semantic question. 624 

Repetitions of the same object were separated by a minimum distance of 2 intervening trials. In each 625 

block, we asked the semantic question first for half of the objects, and the perceptual question first 626 

for the other half.  627 

The final reaction time analyses only included trials with correct responses, and excluded all trials 628 

with an RT that exceeded the average over subjects by +- 2.5 standard deviations (SDs). 629 

Memory reaction time tasks 630 

The memory version was kept very similar to the visual reaction time task, but we now measured 631 

RTs for objects that were reconstructed from memory rather than being presented on the screen, 632 

and we thus had to introduce a learning phase first. At the beginning of the session, all participants 633 

received instructions and performed two short practice blocks. Each of the overall 16 experimental 634 

blocks consisted of an associative learning phase (8 word-object associations) and a retrieval phase 635 

(16 trials, testing each object twice, once with a perceptual and once with a semantic question). The 636 

associative learning and the retrieval test were separated by a distractor task. During the learning 637 

phase (Fig. 1c), each trial started with a jittered fixation cross (between 500 and 1500ms) that was 638 

followed by a unique action verb displayed on the screen (1500ms). After presentation of another 639 

fixation cross (between 500 and 1500ms), a picture of an object was presented on the centre of the 640 

screen for a minimum of 2 and a maximum of 10 seconds. Participants were asked to come up with a 641 

vivid mental image that involved the object and the action verb presented in the current trial. They 642 

were instructed to press a key (up arrow on the keyboard) as soon as they had a clear association in 643 

mind; this button press initiated the onset of the next trial. Participants were made aware during the 644 

initial practice that they would later be asked about the object’s perceptual properties as well as its 645 

meaning, and should thus pay attention to details including colour and shape. Within a participant, 646 
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each semantic category and sub-category (electronic devices, clothes, fruits, vegetables, mammals, 647 

birds, insects, and marine animals) was presented equally often at each type of perceptual level (i.e. 648 

as a photograph or as a line drawing). The assignment of action verbs to objects for associative 649 

learning was random, and the occurrence of the semantic and perceptual object categories was 650 

equally distributed over the first and the second half of the experiment in order to avoid random 651 

sequences with overly strong clustering. 652 

After each learning phase, participants performed a distractor task where they were asked to classify 653 

a random number (between 1 and 99) on the screen as odd or even. The task was self-paced and 654 

they were instructed to accomplish as many trials as they could in 45 seconds. At the end of the 655 

distractor task, they received feedback about their accuracy (i.e., how many trials they performed 656 

correctly in this block).  657 

The retrieval phase (Fig. 1c) started following the distractor task. Each trial began with a jittered 658 

fixation cross (between 500 and 1500ms), followed by a question screen asking either about the 659 

semantic (animate vs. inanimate) or perceptual (photograph vs. line drawing) features for the 660 

upcoming trial, just like in the visual perception version of the task. The question screen was 661 

displayed for 3 seconds by itself, and then one of the verbs presented in the directly preceding 662 

learning phase appeared above the two responses. We asked participants to bring back to mind the 663 

object that had been associated with this word and to answer the question as fast as possible by 664 

selecting the correct response alternative (left or right keyboard press). If they were unable to 665 

retrieve the object, participants were asked to press the down arrow. The next trial began as soon as 666 

an answer was selected. At the end of each retrieval block, a feedback screen showing the 667 

percentage of accurate responses was displayed. 668 

Throughout the retrieval test, we probed memory for all word-object associations learned in the 669 

immediately preceding encoding phase in pseudorandom order. Each word-object association was 670 

tested twice, once together with a semantic and once with a perceptual question, with a minimum 671 

distance of 2 intervening trials. In addition, we controlled that the first question for half of the 672 

associations was semantic, and perceptual for the other half. Like in the visual RT task, the response 673 

options for “animate” and “photograph” responses were always located on the right side of the 674 

screen. In total, including instructions, a practice block and the 16 learning-distractor-retrieval 675 

blocks, the experiment took approximately 60 minutes. 676 

For RT analyses we only used correct trials, and excluded all trials with an RT that exceeded the 677 

average over subjects by +- 2.5 SDs. 678 

4.3.1.1. Experiment 2 679 

Experiment 2 was very similar in design and procedures to Experiment 1, and we therefore only 680 

describe the differences between the two experiments in the following. 681 

Visual reaction time task 682 

The second experiment started with a familiarisation phase where all objects were presented 683 

sequentially. In each trial of this phase, a jittered fixation cross (between 500 and 1500 ms) was 684 

followed by one screen that showed the photograph and line drawing version of one object 685 

simultaneously, next to each other. During the presentation of this screen (2.5 sec) participants were 686 
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asked to overtly name the object. After a jittered fixation cross (between 500 and 1500 ms), the 687 

name of the object was presented. 688 

After this familiarisation phase, the experiment followed the same procedures as the visual reaction 689 

time task in Experiment 1 except for the following changes. Objects were overlaid onto  a coloured 690 

background scene (1600 x 900 pixels). Also, each object (286 x 286 pixels) was probed only once, 691 

either together with a perceptual question, a semantic question (like above), or a contextual 692 

question asking whether the background scene was indoor or outdoor. For the current purpose we 693 

only describe the RTs to object-related questions in the Results section. Another minor difference to 694 

Experiment 1 was that in this version of the task, the question screen was displayed for 4sec, and the 695 

two options to answer during stimulus presentation were removed from the screen as soon as the 696 

object/reminder appeared.  697 

Memory reaction time task 698 

The memory reaction time task in Experiment 2 also included, during the associative learning phase, 699 

a background scene (1600 x 900 pixels) that was shown on the screen behind each object (286 x 286 700 

pixels), and participants were asked to remember the word-background-object combination. In this 701 

version of the task, each word-object association was tested only once, together with either a 702 

perceptual question about the object, a semantic question about the object, or a contextual 703 

question regarding the background scene (indoor or outdoor). Therefore, one third of the objects 704 

were tested with a semantic question, one third with a perceptual question, and one third with a 705 

contextual question. Again, context was not further taken into account in the present analyses. 706 

4.3.2. EEG experiment (Experiment 3)  707 

Following the EEG set-up, instructions were given to participants and two blocks of practice were 708 

completed. The task procedure of the EEG experiment was similar to the memory task in 709 

Experiments 1 and 2 except for the retrieval phase (Fig. 3a). Each block started with a learning phase 710 

where participants created associations between overall 8 action verbs and objects. After a 40 sec 711 

distractor task, participants’ memory for these associations was tested in a cued recall test. In total, 712 

the experiment was composed of 16 blocks of 8 associations each.  713 

Each trial of the retrieval test started with a jittered fixation cross (500-1500ms), followed by the 714 

presentation of one of the action verbs presented during the learning phase as a reminder. 715 

Participants were asked to visualize the object associated with this action verb as vividly and in as 716 

much detail as possible while the cue was on the screen. To capture the moment of retrieval, 717 

participants were asked to press the up-arrow key as soon as they had the object back in mind; or 718 

the down-arrow if they could not remember the object. This reminder was presented on the screen 719 

for a minimum of 2 sec and until a response was made (maximum 7 sec). Immediately afterwards, a 720 

blank square with the same size as the original image was displayed for 3 sec. During this time, 721 

participants were asked to “mentally visualize the originally associated object on the blank square 722 

space”. After a short interval where only the fixation cross was present (500-1500ms), a question 723 

screen was displayed for 10 seconds or until participant response asking about perceptual 724 

(photograph vs. line drawing) or semantic (animate vs. inanimate) features of the retrieved 725 

representation, like in the behavioural tasks. However, in this case both types of questions were 726 

always asked on the same trial, and they were asked at the end of the trial rather than before the 727 
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appearance of the reminder. The first question was semantic in half of the trials, and perceptual in 728 

the other half. Therefore, each retrieval phase consisted of 8 trials where we tested all verb-object 729 

associations learned in the same block in random order.  730 

4.4. Data Collection (behavioural and EEG) 731 

Behavioural response recording and stimulus presentation were performed using Psychophysics 732 

Toolbox Version 3 (Brainard, 1997) running under MATLAB 2014b (MathWorks). For response inputs 733 

we used a computer keyboard where directional arrows were selected as response buttons.  734 

Electroencephalography (EEG) data was acquired using a BioSemi Active-Two amplifier with 128 735 

sintered Ag/AgCl active electrodes. Through a second computer the signal was recorded at a 1024 Hz 736 

sampling rate by means of the ActiView recording software (BioSemi, Amsterdam, the Netherlands). 737 

4.5. EEG Pre-processing 738 

EEG data was pre-processed using the Fieldtrip toolbox (version from 3rd, August, 2017) for Matlab 739 

(Oostenveld, Fries, Maris, & Schoffelen, 2011). Data recorded during the associative learning phase 740 

was epoched into trials starting 500ms before stimulus onset and lasting until 1500ms after stimulus 741 

offset. The resulting signal was baseline corrected based on pre-stimulus signal (-500ms to onset). 742 

Retrieval epochs contained segments from 4000ms before until 500ms post-response. Since the 743 

post-response signal during retrieval will likely still contain task-relevant (i.e., object specific) 744 

information, we baseline-corrected the signal based on the whole trial. Both datasets were filtered 745 

using a low-pass filter at 100 Hz and a high-pass filter at 0.1 Hz. To reduce line noise at 50 Hz we 746 

band-stop filtered the signal between 48 and 52 Hz. The signal was then visually inspected and all 747 

epochs that contained coarse artefacts were removed. As a result, a minimum of 92 and a maximum 748 

of 124 trials remained per participant for the encoding phase, and a range between 80 and 120 trials 749 

per subject remained for retrieval. Independent component analysis was then used to remove eye-750 

blink and horizontal eye movement artefacts; this was followed by an interpolation of noisy 751 

channels. Finally, all data was referenced to a common-average-reference (CAR). 752 

4.6. Time resolved multivariate decoding 753 

First, to further increase the signal to noise ratio for multivariate decoding, we smoothed our pre-754 

processed EEG time courses using a Gaussian kernel with a full-width at half-maximum of 24ms.  755 

Time resolved decoding via linear discriminant analysis (LDA) using shrinkage regularization (Lemm, 756 

Blankertz, Dickhaus, & Müller, 2011) was then carried out using custom-written code in MATLAB 757 

2014b (MathWorks). Two independent classifiers were applied to each given time window and each 758 

trial (see Fig. 3b): one to classify the perceptual category (photograph or line drawing) and one to 759 

classify the semantic category (animate or inanimate). In both decoding analyses, we used 760 

undersampling after artefact rejection (i.e. for the category with more trials we randomly selected 761 

the same number of trials as available in the smallest category). The pre-processed raw amplitudes 762 

on the 128 EEG channels, at a given time point, were used as features for the classifier. LDA 763 

classification was performed separately for each participant and time point using a leave-one-out 764 

cross-validation approach. This procedure resulted in a decision value (d value) for each trial and 765 

time point, where the sign indicates in which category the observation had been classified (e.g., - for 766 

photographs and + for line drawings in the perceptual classifier), and the value of d indicates the 767 
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distance to the hyper-plane that divided the two categories (with the hyper-plane being 0). This 768 

distance to the hyper-plane provided us with a single trial time-resolved value that indicates how 769 

confident the classifier was at assigning a given object to a given category. In order to use the 770 

resulting d values for further analysis, the sign of the d values in in one category was inverted, 771 

resulting in d-values that always reflected correct classification if they had a positive value, and 772 

increasingly confident classification with increasingly higher values.  773 

Our main intention was to identify the specific moment within a given trial at which each of the two 774 

classifiers showed the highest fidelity, and to then compare the temporal order of the perceptual 775 

and semantic peaks. We thus found the maximum positive d value in each trial and separately for 776 

the semantic and perceptual classifiers, with the important restriction that we only used peaks with 777 

a value exceeding the 95th percentile of the classifier chance distribution (see section on 778 

bootstrapping below), such as to minimize the risk of including meaningless noise peaks. The 779 

resulting output from this approach allowed us to track and compare the temporal “emergence” of 780 

perceptual and semantic classification within each single-trial. In addition to this single-trial analysis, 781 

we also calculated the average d value peak latency for perceptual and semantic classification in 782 

each participant to compare the two average temporal distributions. Note, however, that many 783 

factors could obscure differences between semantic and perceptual peaks when using this average 784 

approach, including variance in processing speed across trials, e.g. for more or less difficult recalls. 785 

We therefore believe that the single trial values are more sensitive to differences in timing between 786 

the reactivated features. 787 

4.7. Generating an empirical null distribution for the classifier 788 

Previous work has shown that the true level of chance performance of a classifier can differ 789 

substantially from its theoretical chance level that is usually assumed to be 1/number of categories 790 

(Combrisson & Jerbi, 2015; Jamalabadi, Alizadeh, Schönauer, Leibold, & Gais, 2016; Kowalczyk & 791 

Chapelle, 2005). A known empirical null distribution of d values would allow us to determine a 792 

threshold for considering only those d value peaks as significant whose values are higher than the 793 

95th percentile of this null distribution. We generated such an empirical null distribution of d values 794 

by repeating our classifier analysis with randomly shuffled labels a number of times, and combined 795 

this with a bootstrapping approach, as detailed in the following.  796 

As a first step, we generated a set of d-value outputs that were derived from carrying out the same 797 

decoding procedure as for the real data (including the leave-one-out cross-validation), but using 798 

category labels that were randomly shuffled at each repetition. This procedure was carried out 799 

independently per participant. On each repetition, before starting the time-resolved LDA, all trials 800 

were randomly divided into two categories with the constraint that each group contained a similar 801 

number of photographs and line drawings, and approximately the same amount of animate and 802 

inanimate objects (the difference in trial numbers was smaller than 8%). The output of one such 803 

repetition per participant was one d-value per trial and time-point, just as in the real analysis. This 804 

procedure was conducted 50 times per participant for object perception (encoding) and retrieval, 805 

respectively, with a new random trial split and random label assignment on each repetition. For each 806 

participant we thus had a total of 51 classification outputs, one using the real labels, and 50 using 807 

the randomly shuffled labels.  808 
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Second, we also used the shuffled label outputs in order to generate an empirical Z-score 809 

distribution for our single-trial analyses. Our main statistic of interest with respect to the EEG data 810 

was a Wilcoxon signed rank test comparing the order of the perceptual and semantic classifier peaks 811 

on each single trial. This analysis was based on all available single trials accumulated across 812 

participants, and thus resulted in a high number of degrees of freedom, with a possibly exaggerated 813 

likelihood of finding a significant Z-score. We therefore tested our real data against an empirical Z-814 

score distribution obtained from a series of bootstrapping analyses that were based on the same 815 

data and simulated the same number of degrees of freedom. For each participant’ trial, we took the 816 

outputs from two different classifiers randomly selected from a sample of 52 classifiers (i.e., 50 with 817 

shuffled labels, one real perceptual, and one real semantic). That is, we created two arbitrary 818 

conditions per trial to make a pairwise comparison (emulating our perceptual vs. semantic 819 

conditions). There was a 50:1 chance that the “pseudo-semantic” classifier contained the output of 820 

the real semantic classifier, and likewise a 50:1 chance that the “pseudo-perceptual” classifier 821 

contained the d-values from the real perceptual classifier. Next, we choose for each type of 822 

condition the highest d value per trial in the accurate direction and in a given time window, using the 823 

same constraints as for the real classifier outputs. This provided us with one peak per condition 824 

(two) for every trial. To equate the number of degrees of freedom with our contrast of interest, we 825 

randomly selected the same number of pairs as available in the real analysis. Finally, a Wilcoxon 826 

signed rank test was used to compare the temporal distance of the d value peaks between the two 827 

conditions, and the corresponding Z-value was registered, again mirroring the analysis carried out on 828 

the real data. This approach was repeated with replacement for a total of 10000 times, generating 829 

an empirical distribution of Z-values under the null hypothesis that there is no meaningful 830 

information about an object’s category in the EEG data.  831 

Thirdly, to estimate our classification chance distribution for the random-effects (i.e., trial-averaged) 832 

peak analyses, we used the 51 classification outputs from all participants in a bootstrapping 833 

procedure (Stelzer, Chen, & Turner, 2013). On each of the bootstrapped repetitions, we randomly 834 

selected one of the 51 classification outputs (50 from shuffled labels classifiers and one from a real 835 

labels classifier) per participant, and calculated the d value group average based on this random 836 

selection for each given time point. This procedure was repeated with replacement 10000 times. To 837 

generate different distributions for the perceptual and semantic classifiers, we run this 838 

bootstrapping approach two times: once where the real labels output from each subject came from 839 

the semantic classifier, and once where the real d-values came from the perceptual classifier.  840 

4.8 Univariate event-related potential (ERP) analysis  841 

A series of cluster-based permutation tests (Monte Carlo, 2000 repetitions, clusters with a minimum 842 

of 2 neighbouring channels within the FieldTrip software) was carried out in order to test for 843 

differences in ERPs between the two perceptual (photograph vs. line drawing) and the two semantic 844 

(animate vs. inanimate) categories, controlling for multiple comparisons across time and electrodes. 845 

First, we contrasted ERPs during object presentation in the encoding phase in the time interval from 846 

stimulus onset until 500ms post-stimulus. We then carried out the same type of perceptual and 847 

semantic ERP contrasts during retrieval, in this case aligning all trials to the time of the button press. 848 

We used the full time window from 3000ms before until 100ms after the button press, but we 849 

further subdivided this time window into smaller epochs of 300ms to run a series of T-tests, again 850 

using cluster statistics to correct for multiple comparisons across time and electrodes. We were 851 
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mainly interested in the temporal order of the ERP peaks that differentiated between perceptual 852 

and semantic classes during encoding and retrieval. These peaks are based on statistically 853 

meaningful clusters as described above, but we conducted no further statistical comparisons 854 

between the average perceptual and semantic ERP peaks.  855 

4.9 Data and code availability statement 856 

The data and the custom code that support the findings of this study are available from the 857 

corresponding author upon reasonable request. 858 
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