- B cell receptor crosslinking can augment T cell help-mediated germinal center B cell selection. Jackson S. Turner, Fang Ke, Irina L. Grigorova University of Michigan Medical School Please address correspondence to: Irina Grigorova 1150 W. Medical Center Dr 6748 MSII Ann Arbor, MI 48109 (734) 615-3882 (p) (734) (734) 764-3562 (f) igrigor@umich.edu

## 33 Abstract

34 Selection of germinal center (GC) B cells with B cell receptors (BCR) possessing high 35 affinity to foreign antigen (Ag) and their differentiation into antibody-secreting long-lived 36 plasma cells is critical for potent long-term humoral immunity. Ag-dependent engagement of GC 37 B cell BCR triggers Ag internalization and loading of antigenic peptides on MHCII molecules 38 for presentation to follicular helper T cells (Tfh) and acquisition of T cell help. However, 39 whether it also provides signals that are critical or synergistic with T cell help for GC B cell 40 selection and differentiation *in vivo* is not known. Here we show that T cell help is sufficient to 41 induce GC B cell expansion and plasmablast (PB) formation in the absence of recurrent BCR 42 engagement with Ag. Ag-mediated BCR crosslinking on the other hand is not sufficient to 43 promote GC B cell selection, but can synergize with T cell help to enhance the GC B cell and PB 44 responses when T cell help is limiting.

45

### 46 Introduction

47 GCs are distinct sites within B cell follicles in which activated B cells undergo affinity 48 maturation and can differentiate into memory B cells and long-lived plasma cells (Victora and 49 Nussenzweig, 2012). The GC is characteristically polarized into the dark zone (DZ) and the light 50 zone (LZ). The LZ contains Tfh cells and follicular dendritic cells (FDCs) on which antigen (Ag) 51 is deposited for acquisition by GC B cells. GC B cells with higher affinity for Ag undergo 52 selection in the LZ and then move into the DZ where they proliferate and undergo somatic 53 hypermutation (Allen et al., 2007, Victora et al., 2010, Victora and Nussenzweig, 2012), 54 Through ubiquitination and rapid degradation of MHCII-Ag complexes, they refresh their pool 55 of MHCII molecules and reenter into the LZ for another round of Ag acquisition and

56 presentation (Bannard et al., 2016, Victora et al., 2010, Mesin et al., 2016). Affinity-based 57 selection of GC B cells is based on competition for Ag and T cell help, but the individual roles of 58 the signals provided by BCR engagement and T-cells in promoting selection are not fully 59 understood (Shlomchik and Weisel, 2012). Several studies have examined the effect of 60 increasing T cell help to GC B cells independently of BCR cross-linking by taking advantage of 61 the fact that GC B cells express high levels of DEC-205, a cell-surface lectin that delivers Ags it 62 binds to MHCII loading compartments (Bonifaz et al., 2002, Victora et al., 2010). These studies 63 found that upon administration of DEC-205 antibodies conjugated to T cell Ag (αDEC-Ag), 64 high-affinity GC B cells deficient for DEC-205 were outcompeted by those that expressed the 65 lectin. They also showed that administration of aDEC-Ag during GC responses increased the 66 rate of GC B cell proliferation and hypermutation in a dose-dependent fashion, and promoted 67 formation of PB (precursors of plasma cells) (Victora et al., 2010, Gitlin et al., 2014, Gitlin et al., 68 2015). These results suggest that competition for T cell help can drive GC B cell selection. 69 However, recipient mice in these studies were immunized with B cell cognate Ag to initiate GC 70 responses, raising the possibility that integration with signals from BCR engagement with Ag is 71 necessary for aDEC-Ag-mediated enhancement of GC responses. 72 Indeed, recent evidence supports an important role for BCR engagement in promoting 73 GC B cell selection and differentiation into PBs, despite the inhibition of the BCR signaling 74 pathway in GC B cells (Khalil et al., 2012, Mueller et al., 2015, Nowosad et al., 2016). One 75 study found that blocking GC B cells' ability to acquire Ag inhibited initial PB differentiation 76 more effectually than blockade of CD40 or depletion of Tfh cells (Krautler et al., 2017). 77 Additionally, a recent study found that the signaling pathways downstream of both BCR and

78 CD40, a critical ligand for mediating T cell help to GC B cells, are altered in GC B cells

compared to naïve B cells such that stimulation through both is required for efficient induction of
Myc, a critical driver of B cell proliferation (Luo et al., 2018). These findings suggest that
although BCR signaling pathways are attenuated in GC B cells, they may nevertheless play a
critical role in GC B cell selection and differentiation. However, the direct impact of Agdependent BCR engagement on GC B cells' expansion or differentiation into antibody-secreting
PBs could not be determined due to the difficulty of controlling GC B cells' acquisition of Ag *in vivo*.

86 We recently described an experimental system that enables B cells to participate in GCs 87 after a single transient acquisition of Ag (Turner et al., 2017c). Here we adapted it to recruit B 88 cells into GCs and provide them with the means to acquire potential positive selection signals 89 from BCR crosslinking or T cell help independently or in combination to examine the 90 contributing roles of both signals to GC B cell survival, selection, and effector differentiation. 91 We found that T cell help is sufficient to promote GC B cell expansion and PB differentiation in 92 the absence of Ag-mediated BCR crosslinking. Conversely, Ag engagement of BCRs is 93 insufficient to promote GC B cell selection in the absence of T cell help, but is able to 94 synergistically enhance the GC B cell and PB responses when T cell help is limiting. 95

96 **Results and Discussion** 

To address the individual roles for antigen (Ag)-driven BCR cross-linking and T cell help
in promoting GC B cell selection and effector differentiation, purified Hy10 Ig-Tg B cells (with
BCRs specific to duck egg lysozyme, DEL) were first incubated *ex vivo* for 5 minutes with 50
µg/mL of DEL-OVA (DEL conjugated to ovalbumin, OVA), washed extensively, and
transferred into recipient mice in which OTII Th cells were activated 3d before by immunization

102 with OVA in complete Freund's adjuvant (CFA) (Fig. 1A). As we have shown before, transient 103 Ag acquisition ex vivo and cognate T cell help in vivo enable Ig-Tg B cells' proliferation and 104 participation in GCs, with recruitment into GCs starting by 4d post transfer (d.p.t) (Fig. S1A-C, 105 (Turner et al., 2017c)). At this time point, due to the lack of cognate DEL Ag in the OVA-106 immunized recipient mice, Ig-Tg B cells should not receive any stimulation via Ag-dependent 107 BCR cross-linking. In addition, prior to their differentiation into GC B cells, Ig-Tg cells undergo 108 extensive proliferation (Fig. S1C), diluting the Ag peptides acquired during the ex vivo pulsing 109 with DEL-OVA. Due to this dilution, the Ig-Tg B cells recruited into GCs are likely to present 110 substantially lower amounts of OVA peptides than endogenous OVA-specific GC B cells, which 111 can reacquire Ag in vivo. To summarize, by 4 d.p.t. Ig-Tg cells convert into GC B cells that are 112 not subjected to Ag-dependent BCR crosslinking and should poorly compete for help from 113 OVA-specific Tfh cells within GCs.

114 To address whether BCR cross-linking is sufficient to promote GC B cell expansion or 115 the plasma cell response, at 4 d.p.t. of DEL-OVA-pulsed Ig-Tg B cells the recipient mice were 116 re-immunized with 50 µg of multivalent DEL (mDEL) in incomplete Freund's adjuvant (IFA) or 117 with PBS in IFA for negative control (Fig. 1A). While mDEL could engage Ig-Tg GC B cells' 118 BCRs, they should not provide additional Ag peptides to present to OVA-specific Tfh cells. As 119 positive controls, recipient mice received DEL-OVA in IFA to provide both additional BCR 120 cross-linking of Ig-Tg GC B cells, as well as peptides to present to OVA-specific Tfh cells. Of 121 note, in ex vivo stimulation assays, mDEL and DEL-OVA induce similar Ig-Tg BCR cross-122 linking and internalization (Turner et al., 2017). Draining inguinal LNs (dLNs) were collected 2 123 and 4d after re-immunization, and Ig-Tg GC B cells and PB were measured by flow cytometry 124 (Fig. 1A, for gating see Fig. S1A, D). No increase in Ig-Tg GC or PB accumulation was detected

125 after reimmunization of mice with mDEL compared to PBS control. However, a significant 126 accumulation of Ig-Tg GC B cells and PBs was observed in DEL-OVA reimmunized recipients 127 (Fig. 1B, C, Fig. S1E). These data suggest that elevated presentation of OVA peptides for 128 acquisition of T cell help is necessary to promote Ig-Tg GC B cell selection and formation of 129 PBs, while crosslinking of GC BCRs by itself is not sufficient. 130 While this finding is consistent with a well-established requirement of T cell help for GC 131 response (Takahashi et al., 1998, Victora et al., 2010), it does not discriminate whether Ag-132 dependent BCR engagement is necessary for GC B cells in any other way than for deposition of 133 Ag peptides on MHCII. A recent study suggested that combination of BCR signaling and T cell 134 help may be required for GC B cell proliferation and selection (Luo et al., 2018). We therefore 135 next asked whether T cell help was sufficient to promote GC B cell cycling and PB accumulation 136 in vivo, or whether BCR cross-linking was also required. To address this question, we used 137 αDEC-205 antibodies to target Ag to MHCII loading compartments in GC B cells, as previously 138 described (Victora et al., 2010). Binding to the lectin DEC-205, which is upregulated on GC B 139 cells, enables Ag to be loaded on MHCII without engaging the BCR (Victora et al., 2010). We 140 conjugated the OVA peptide 323-339 (OVAp), which contains the OTII T cell epitope of OVA, 141 to αDEC-205 or isotype control antibodies (αDEC-OVAp, iso-OVAp). DEL-OVA pulsed Ig-Tg 142 B cells were recruited into GCs as above and at 4 d.p.t. recipient mice were reimmunized with 143 PBS in IFA and s.c. injected with αDEC-OVAp or iso-OVAp to drain to inguinal LNs (Fig. 1D). 144 Of note, both Ig-Tg and endogenous GC B cells express DEC-205 and would receive additional 145 OVAp to present for T cell help upon administration of  $\alpha DEC$ -OVAp. Significant increases in 146 Ig-Tg GC B cell and PB accumulation were observed at 4d post administration of αDEC-OVAp, 147 suggesting that elevated presentation of OVA peptides by GC B cells may be sufficient to induce

their selection and differentiation in the absence of additional crosslinking of BCRs (Fig. 1E, F,
Fig. S1F).

| 150 | To verify that the observed results were not due to the transfer of small amounts of Ag by            |
|-----|-------------------------------------------------------------------------------------------------------|
| 151 | the DEL-OVA-pulsed Ig-Tg B cells in vivo, we significantly reduced the amount of Ag initially         |
| 152 | acquired by Ig-Tg B cells by pulsing them ex vivo with only 0.5µg/mL of DEL-OVA which is              |
| 153 | slightly above the threshold dose required for BCR-driven activation of Ig-Tg B cells (Turner et      |
| 154 | al., 2017c). To further minimize the potential for Ag transfer, the number of DEL-OVA pulsed          |
| 155 | Ig-Tg B cells transferred to recipient mice was reduced to $10^5$ , of which the vast majority        |
| 156 | localizes to the spleens rather than peripheral LNs (Turner et al., 2017c). As before, DEL-OVA        |
| 157 | pulsed Ig-Tg B cells were extensively washed and transferred into OVA-immunized recipient             |
| 158 | mice in which activated OTII Th cells were present. 4 days later the recipients were reimmunized      |
| 159 | with PBS in IFA and injected with 0.05-10 $\mu$ g of $\alpha$ DEC-OVAp or with 10 $\mu$ g iso-OVAp as |
| 160 | negative controls (Fig. 1G). To compare the rescue of Ig-Tg GC and PB response by $\alpha DEC$ -      |
| 161 | OVAp administration to a more conventional immunization scenario, we also assessed the                |
| 162 | kinetics of Ig-Tg B cell participation in the GC and PB response in mice immunized with DEL-          |
| 163 | OVA, where transferred Ag-pulsed cells could reacquire cognate Ag in vivo (Fig. 1H). Draining         |
| 164 | LNs were collected at various times and Ig-Tg GC participation and PB accumulation were               |
| 165 | analyzed (Fig. 1G, H). As previously described, at 4 d.p.t. Ag-pulsed Ig-Tg B cells were              |
| 166 | similarly recruited into GC and PB responses in OVA or DEL-OVA immunized mice (Fig. 1I-               |
| 167 | K) (Turner et al., 2017b, Turner et al., 2017c). However, 4 days later Ig-Tg B cells started to       |
| 168 | drop out of GCs in the OVA-immunized mice. In contrast, in DEL-OVA immunized mice they                |
| 169 | expanded to around 10% of total GC B cells (Fig. I, J). Ig-Tg PB production was maximized in          |
| 170 | DEL-OVA immunized mice at 6 d.p.t. (Fig. 1K). In the OVA-immunized mice (Fig. 1G)                     |

| 171 | administration of $\alpha DEC$ -OVAp led to dose-dependent rescue of Ig-Tg GC and PB responses                                         |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|
| 172 | (Fig. 1L-N). Ig-Tg B cell fraction in GCs was maximized at around 10% at 3 $\mu$ g of $\alpha$ DEC-                                    |
| 173 | OVAp (Fig. 1L, M). Of note, Tfh cell response was largely consistent across various amounts of                                         |
| 174 | $\alpha$ DEC-OVAp administered, except of the highest 10 µg dose of $\alpha$ DEC-OVAp when a trend                                     |
| 175 | towards a larger Tfh cell population was observed (Fig. S1G, H). To control for potential effects                                      |
| 176 | of $\alpha DEC-205$ ligation independent of Ag loading, we analyzed the Ig-Tg GC and PB response at                                    |
| 177 | 3 days after the administration of the intermediate 0.5 $\mu$ g dose of $\alpha$ DEC-OVAp compared to the                              |
| 178 | iso-OVAp or unconjugated $\alpha DEC205$ negative controls (Fig. 10). As expected, only when                                           |
| 179 | conjugated to OVAp, $\alpha DEC205$ induced augmented cycling of Ig-Tg GC B cells as based on the                                      |
| 180 | ratio of the dark zone (DZ) to light zone (LZ) GC B cells (Fig. S1I, Fig. 1P, Q) and an overall                                        |
| 181 | increase in the Ig-Tg GC response (Fig. 1R), while the endogenous GC response was not                                                  |
| 182 | affected (Fig. S1L). Of note, at 2 d post aDEC-OVAp administration Ig-Tg B cell cycling was                                            |
| 183 | not yet elevated (Fig. S1P, Q), presumably due to some time required for Ig-Tg cells to integrate                                      |
| 184 | T cell help when OVAp peptide is loaded through DEC205 binding onto both Ig-Tg and                                                     |
| 185 | endogenous GC B cells. To analyze both the Ig-Tg and endogenous PB responses we performed                                              |
| 186 | intracellular staining with anti pan-Ig, which yields similar numbers for Ig-Tg PBs as                                                 |
| 187 | intracellular HEL staining and enables quantification of endogenous PBs (Fig. S1D, J, K). In                                           |
| 188 | addition, by gating on the Fas <sup>+</sup> CD38 <sup>lo</sup> Ig <sup>high</sup> cells, we identified the PB that recently originated |
| 189 | from GCs (GCPB, <b>Fig. S1O</b> , (Krautler et al., 2017)). We found that $\alpha$ DEC-OVAp administration                             |
| 190 | leads to an increase in the total Ig-Tg PB, as well as GCPB response, while the endogenous PB                                          |
| 191 | response is not significantly elevated (Fig. 1S, T, Fig. S1M, N). Given that DEC205 is expressed                                       |
| 192 | on both endogenous and Ig-Tg GC B cells, the selective increase in Ig-Tg GC and GCPB                                                   |
| 193 | responses following $\alpha DEC$ -OVAp administration indicates that this treatment narrows the                                        |

194 difference in the amount of OVAp presented by Ig-Tg and endogenous GC B cells, enabling 195 them to more successfully compete for T cell help over time (Fig. 1G-N). Altogether these 196 results indicate that GC and PB responses are enhanced when GC B cells receive additional 197 sources of peptide to present for T cell help, and suggest that Ag-dependent BCR engagement is 198 not absolutely required to promote GC B cell expansion or PB formation. 199 We then addressed whether Ag-mediated BCR cross-linking may be able to enhance GC 200 B cell selection or PB differentiation in combination with saturating or sub-saturating amounts of 201 T cell help. To test that, Ig-Tg B cells were recruited into GCs as above, and the recipient mice 202 were injected with 0.5µg or 10µg  $\alpha$ DEC-OVAp and reimmunized with PBS or 50 µg mDEL in 203 IFA. As negative controls, mice received isotype-OVAp (Fig. 2A). Draining LNs were analyzed 204 3d later. The Ig-Tg GC and PB responses were not enhanced following re-immunization with 205 mDEL compared to PBS in recipients that received either isotype-OVAp or 10µg aDEC-OVAp, 206 suggesting that BCR crosslinking does not promote GC B cell selection in the absence of T cell 207 help or in the presence of saturating T cell help (Fig. 2B-E, J-M). Interestingly, in the absence of 208 additional peptide presentation for Tfh cells, administration of 50  $\mu$ g of mDEL led to modest 209 reduction in Ig-Tg GC B cells (Fig. 2C, isotype-OVAp), which was reversed when GC B cells 210 were presenting some cognate peptides for T cell help (Fig. 2G, K, aDEC-OVAp). The observed 211 effect is consistent with previous studies where acute administration of a large dose of cognate to 212 BCR Ag (or membrane-associated presentation of cognate self-Ag in proximity to GCs) reduced 213 the numbers of GC B cells (Pulendran et al., 1995, Shokat and Goodnow, 1995, Silva et al., 214 2017, Chan et al., 2012). Based on the previous studies and our work (Turner et al., 2017a), we 215 speculate that receiving BCR signaling in the absence of sufficient T cell help may purge GC B 216 cells from prolonged "hanging on" participation in GCs.

| 217 | In contrast, after administration of an intermediate dose of $\alpha DEC$ -OVAp (0.5µg) that by    |
|-----|----------------------------------------------------------------------------------------------------|
| 218 | itself led to only a modest increase in Ig-Tg responses (Fig. 1L, N), re-immunization with mDEL    |
| 219 | in IFA led to accumulation of Ig-Tg GC and PB compared to PBS in IFA control (Fig. 2F-I).          |
| 220 | Reimmunization with 10 fold lower dose of mDEL (5 $\mu$ g) also led to robust increases in the Ig- |
| 221 | Tg GC, GCPB and PB responses (Fig. S2A-F). Finally, similar trends were obtained when mice         |
| 222 | were reimmunized with highly multivalent polystyrene microspheres coated with DEL (sphDEL)         |
| 223 | in IFA (Fig. S2G-J). These results suggest that Ag-dependent BCR engagement in GC B cells,         |
| 224 | while neither sufficient nor necessary for GC B cell selection, can enhance GC and PB responses    |
| 225 | in combination with T cell help.                                                                   |
| 226 |                                                                                                    |
| 227 | Our findings are consistent with an ex vivo observation that simultaneous engagement of            |
| 228 | GC BCRs and CD40 enhances upregulation of Myc in GC B cells which is required for cell             |
| 229 | cycling (Luo et al., 2018). However, they suggest that T cell help may be sufficient on its own.   |
| 230 | Although CD40 is a critical component of the 'help' provided by Tfh cells, other T-cell derived    |
| 231 | factors may enable T cell help to promote expansion of GC B cells and formation of PBs             |
| 232 | independently of re-engagement of their BCRs with Ag. The importance of T cell help-mediated       |
| 233 | factors other than CD40 in promoting GC PB response was also suggested by another study in         |
| 234 | which depletion of CD4 T cells during the GC response inhibited PB response more profoundly        |
| 235 | than blockade of CD40L (Krautler et al., 2017).                                                    |
| 236 | Interestingly, the study by Krautler et al. also demonstrated that differentiation of PB           |
| 237 | from GC B cells was more effectively impeded by blockade of B cells' acquisition of Ag than by     |
| 238 | depletion of T cells, suggesting that Ag-dependent BCR cross-linking may play a critical role in   |
| 239 | initiating GC B cells' differentiation into PBs. However, whether BCR crosslinking alone may be    |
|     |                                                                                                    |

sufficient to initiate formation of the early PB in the absence of T cell help has not beenexplored. We sought to address this question directly using our experimental system to induce

- 242 BCR crosslinking and T cell help independently.
- 243 Early PBs differentiating from GC B cells were previously identified as having a GC 244 phenotype (CD38<sup>10</sup>) and intermediate expression of the transcription factor Blimp1 and surface 245 Ig, whereas later PBs had higher Blimp1 expression and lower surface Ig. Additional 246 characterization of these populations indicated that early PBs had increased surface expression of 247 B220 and CD45 compared to more mature PBs (Krautler et al., 2017). Using Blimp1 reporter Ig-248 Tg B cells, we identified that B220 downregulation could be used as a surrogate marker of PB 249 and GCPB maturation, as B220<sup>+</sup> GCPBs expressed lower amounts of Blimp1 and syndecan, and higher amounts of CD86, surface IgG<sub>1</sub>, and CD45.1 than their B220<sup>lo</sup> counterparts (Fig. 3A, B, 250 251 Fig. S3A). To determine whether BCR cross-linking is sufficient to promote early differentiation 252 of PBs in GC B cells, Ig-Tg B cells were recruited into the GC response as above, and recipient 253 mice were injected with 0.5 $\mu$ g isotype-OVAp or  $\alpha$ DEC-OVAp. The recipient mice were then 254 reimmunized with PBS, mDEL, or sphDEL in IFA, and the GC PB response was measured 1 and 255 2d later (Fig. 3C, D). We found that BCR crosslinking alone was insufficient to increase 256 accumulation of early GCPBs, independently of whether moderately multivalent Ag mDEL or 257 highly multivalent sphDEL were used for reimmunization (Fig. 3E-G). Of note, when analysis of early PB differentiation was confined to the  $IgG_1^+$ -cells we detected a potential increase in the 258 259 early Ig-Tg PBs at 2d following reimmunization with highly multivalent sphDEL (Fig. S3B). If 260 confirmed, these results could indicate an isotype-dependent sensitivity of GC B cells to highly 261 multivalent Ag. Alternatively, the increase in these cells could represent increased class 262 switching to IgG<sub>1</sub> in response to highly multivalent Ag. Finally, at 1-2 days after reimmunization

| 263 | we detected no increase in the total or DZ Ig-Tg GC B cells in response to BCR crosslinking               |
|-----|-----------------------------------------------------------------------------------------------------------|
| 264 | alone, independently of their class-switching to IgG <sub>1</sub> (Fig. 3H, Fig. S3C, D, data not shown). |
| 265 | In contrast, in the presence of subsaturating amounts of $\alpha DEC205$ -OVAp, BCR                       |
| 266 | crosslinking promoted Ig-Tg early GCPB responses, as well as Ig-Tg GC B cell expansion and                |
| 267 | accumulation in the DZ (Fig. 3I-L, Fig. S3E-G). At the same time no accumulation of non-                  |
| 268 | GCPB has been observed (Fig. 3A, Fig. S3H-K). Therefore, in the presence of subsaturating T               |
| 269 | cell help, Ag-dependent BCR crosslinking can promote increased differentiation of GC B cells              |
| 270 | into PBs and induce an increase in GC B cell expansion. Overall, our findings are consistent with         |
| 271 | the previously discovered role of Ag-dependent BCR engagement in driving GC differentiation               |
| 272 | into PB. However, while in the previous study T cell help has been shown to be critical for               |
| 273 | maturation and survival of the early GCPB (Krautler et al., 2017), our findings are more                  |
| 274 | consistent with another study (Ise et al., 2018) and suggest that an ongoing T cell help is               |
| 275 | required, even for the initial differentiation of GC B cells into PBs.                                    |
| 276 | To summarize, in this study we found that BCR crosslinking is not sufficient to promote                   |
| 277 | GC B cell expansion, selection or differentiation into PB. In contrast, acquisition of T cell help is     |
| 278 | sufficient to induce GC B cell expansion and PB formation even in the absence of BCR                      |
| 279 | engagement with Ag (Fig. 4). These findings are consistent with a recent study which showed               |
| 280 | that in the presence of abundant T cell help, non-Ag specific B cells could participate in GCs and        |
| 281 | persist long enough to acquire specificity to Ag (Silver et al., 2018).                                   |
| 282 | Although loading GC B cells with T cell Ag peptides was sufficient to promote their                       |
| 283 | selection and PB differentiation in a dose-dependent fashion (Fig. 1G, H, (Gitlin et al., 2014)),         |
| 284 | we found that Ag-dependent BCR engagement potentiated GC B cell expansion and PB                          |
| 285 | differentiation when the amount of T cell Ag peptide loaded was subsaturating (Fig. 4). The               |

286 dynamics of GC B cells' acquisition of Ag and T cell help in vivo are not completely understood. 287 It is possible that when Ag is abundant, LZ GC B cells may reacquire Ag multiple times from 288 FDCs and make serial productive contacts with Tfh cells that efficiently induce Myc and 289 promote selection and differentiation. However, when Ag becomes more limiting, BCR signaling 290 induced by Ag engagement is likely to be temporally separated from T cell help due to the time 291 required for Ag digestion, MHCII loading and efficient competition with other GC B cells for T 292 cell help. While BCR signaling was shown to induce transient nuclear exclusion of Foxo1 (a 293 suppressor of Myc) in GC B cells ex vivo, it starts to decline 20 minutes after BCR engagement 294 (Luo et al., 2018). Therefore, GC B cells are likely to have a very short window of time 295 following Ag acquisition in which they need to acquire T cell help to synergistically induce Myc. 296 Sufficiency of T cell help for GC B cell selection relieves this time constraint and ensures that 297 GC B cell selection can continue when Ag reacquisition from FDCs becomes more limiting. 298 While CD40 induces only minor upregulation of Myc ex vivo, additional factors produced by Tfh 299 cells, such as BAFF, ICOS, and IL-21 may be sufficient to promote GC B cell selection and 300 effector differentiation in vivo (Han et al., 1995, Ding et al., 2013, Goenka et al., 2014). Other 301 factors promoting GC B cells' survival or differentiation can also be provided by FDCs (e.g. 302 BAFF, IL-6, complement fragments, and adhesion molecules) (El Shikh et al., 2010, Victoratos 303 et al., 2006) or toll-like receptor ligands and could synergize with T cell help in the absence of 304 Ag-dependent BCR engagement (Wang et al., 2011, Garin et al., 2010, Rookhuizen and 305 DeFranco, 2014). 306 Overall, our current study suggests a dual role of BCR signaling and T cell help for GC B

307 cell response *in vivo* with T cell help playing the dominant role and Ag-dependent BCR

308 crosslinking enhancing GC B cell selection and differentiation into plasma cells (Fig. 4).

## 309 Materials and Methods

Mice. B6 (C57BL/6) and B6-CD45.1 (Ptprc<sup>a</sup> Pepc<sup>b</sup>/BoyJ) mice were purchased from Charles River or the Jackson Laboratory. Blimp1<sup>yfp</sup> (Prdm1-EYFP) mice were purchased from the Jackson Laboratory. BCR transgenic (Ig-Tg) Hy10 mice and TCR transgenic OTII mice were generously provided by Jason Cyster (Allen et al., 2007, Barnden et al., 1998). Hy10 mice were crossed with B6-CD45.1 and Blimp1<sup>yfp</sup> mice. All mice were maintained in specific pathogen free environments and protocols were approved by the Institutional Animal Care and Use Committee of the University of Michigan.

317 Antigen preparation and antibody conjugation. Duck eggs were locally purchased and 318 lysozyme was purified as previously described (Allen et al., 2007). Ovalbumin (OVA) was 319 purchased from Sigma. Duck egg lysozyme (DEL) was conjugated to OVA via glutaraldehyde 320 cross-linking as previously described (Allen et al., 2007). For production of multimeric DEL 321 (mDEL), purified DEL was conjugated to biotin at a 1:2 molar ratio using biotin-X NHS-ester 322 (Pierce) according to the manufacturer's directions and incubated with purified streptavidin 323 (Thermo Scientific) at a 10:1 molar ratio for 30 minutes on ice, followed by removal of unbound 324 DEL-bio by passage through a 30 kDa molecular weight cut-off desalting column (Bio-Rad). 325 For generation of DEL-coated microspheres (sphDEL), 0.11 µm streptavidin coated 326 polystyrene microspheres (Bangs Laboratories) were diluted into PBS and combined with a 327 saturating amount of DEL-bio as described previously (Eckl-Dorna and Batista, 2009) 328 For generation of aDEC-OVAp and iso-OVAp, purified DEC-205 (NLDC-145) and rat 329 IgG2a isotype control antibodies were purchased from Biolegend and partially reduced with 50 330 mM 2-mercaptoethylamine (2-MEA) in PBS, 10 mM EDTA for 90 minutes at 37° C. 2-MEA 331 was removed by passage through 30 kDa molecular weight cut-off desalting columns (Bio-Rad),

and half-IgGs were incubated with a 9-fold molar excess of maleimide-substituted OVA peptide
323-339 (Genscript) for 2h at 4° C. Unbound peptide was removed by passage through 30 kDa
molecular weight cut-off desalting columns (Bio-Rad) and conjugation was verified by SDSPAGE.

336 Adoptive transfer and immunization. Spleens were harvested from male donor OTII 337 mice and pressed through 70µm nylon cell strainers (Falcon) in DMEM (Cellgro) supplemented 338 with 2% FBS (Atlanta Biologicals), 10 mM HEPES, 50 IU/mL of penicillin, and 50 µg/mL of 339 streptomycin (HyClone). Splenocytes were centrifuged for 7 minutes at 380 rcf, 4° C and 340 resuspended in 0.14 M NH<sub>4</sub>Cl in 0.017 M Tris buffer, pH 7.2 for erythrocyte lysis, washed twice 341 with DMEM supplemented as above, and counted using a Cellometer Auto X4 (Nexcelom). The 342 fraction of CD19<sup>-</sup> CD8<sup>-</sup> CD4<sup>+</sup> V $\beta$ 5<sup>+</sup> (OTII) splenocytes was determined by flow cytometry, and 343 the indicated number of OTII cells were transferred i.v. to male recipient mice. Ig-Tg B cells 344 were enriched from male or female donor mice by negative selection as previously described 345 (Allen et al., 2007). For transient exposure to Ag, purified Ig-Tg B cells were incubated with the 346 indicated concentration of DEL-OVA ex vivo for 5 minutes at 37° C, washed four times with 347 DMEM supplemented as above, and transferred i.v. to recipient mice. Where indicated, recipient 348 mice were immunized s.c. in the flanks and base of tail with 50 or 5 µg of the indicated Ag 349 emulsified in complete or incomplete Freund's adjuvant (Sigma), prepared according to the 350 manufacturer's directions. Where indicated, recipient mice were injected s.c. in the base of tail 351 with unconjugated aDEC-205, aDEC-OVAp or iso-OVAp in PBS.

# **Flow cytometery.** The following antibodies specific to B220 (RA3-6B2), CD19 (1D3),

353 CD95 (Jo2), IgG1 (A85-1), IgG1a (10.9), rat IgG1 isotype control (R3-34) from BD-

354 Pharmingen; CD4 (RM-45), CD45.1 (A20), CD45.2 (104), CD86 (GL-1), IgD (11-26c.2a), CD3

| 355 | (17A2), CD197 (4B12), CD279 (RMP1-30), TCR Vβ5 (MR9-4) from Biolegend; CD-8 (53-6.7),               |
|-----|-----------------------------------------------------------------------------------------------------|
| 356 | CXCR5 (2G8), CD138 (281.2) from BD Bioscience, CD38 (90), GL-7 (GL-7), CXCR4 (2B11)                 |
| 357 | from eBioscience have been used for flow cytometry analysis. Single-cell suspensions from           |
| 358 | draining lymph nodes were incubated with biotinylated antibodies for 20 minutes on ice, washed      |
| 359 | twice with 200 $\mu$ l FACS buffer (2% FBS, 1mM EDTA, 0.1% NaN <sub>3</sub> in PBS), incubated with |
| 360 | fluorophore-conjugated antibodies and streptavidin (SA-Qdot 605, SA-Alexa647 from Life              |
| 361 | technologies; SA-Dylight 488 from Biolegends) for 20 minutes on ice, washed twice more with         |
| 362 | 200 µl FACS buffer, and resuspended in FACS buffer for acquisition. For intracellular staining,     |
| 363 | surface-stained cells were fixed and permeabilized for 20 minutes on ice with BD                    |
| 364 | Cytofix/Cytoperm buffer, washed twice with 200 $\mu$ l BD Perm/Wash buffer, incubated with          |
| 365 | Alexa 647-conjugated HEL or polyclonal goat anti-Ig(H+L) from Southern Biotech for 20               |
| 366 | minutes on ice, followed by two more washes with 200 $\mu$ l Perm/Wash buffer, and resuspended in   |
| 367 | FACS buffer for acquisition. Cells were acquired on a FACSCanto, and data was analyzed using        |
| 368 | FlowJo (TreeStar).                                                                                  |
| 369 | Statistics. Statistical tests were performed as indicated using Prism 7 (GraphPad).                 |
| 370 | Differences between groups not annotated by an asterisk did not reach statistical significance. No  |
| 371 | blinding or randomization was performed for animal experiments, and no animals or samples           |
| 372 | were excluded from analysis.                                                                        |
| 373 |                                                                                                     |
| 374 |                                                                                                     |
| 375 |                                                                                                     |
| 376 |                                                                                                     |
| 377 |                                                                                                     |

### 378 **References:**

- ALLEN, C. D., OKADA, T., TANG, H. L. & CYSTER, J. G. 2007. Imaging of germinal center
   selection events during affinity maturation. *Science*, 315, 528-31.
- BANNARD, O., MCGOWAN, S. J., ERSCHING, J., ISHIDO, S., VICTORA, G. D., SHIN, J.
   S. & CYSTER, J. G. 2016. Ubiquitin-mediated fluctuations in MHC class II facilitate
   efficient germinal center B cell responses. *J Exp Med*, 213, 993-1009.
- BARNDEN, M. J., ALLISON, J., HEATH, W. R. & CARBONE, F. R. 1998. Defective TCR
  expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes
  under the control of heterologous regulatory elements. *Immunol Cell Biol*, 76, 34-40.
- BONIFAZ, L., BONNYAY, D., MAHNKE, K., RIVERA, M., NUSSENZWEIG, M. C. &
   STEINMAN, R. M. 2002. Efficient targeting of protein antigen to the dendritic cell
   receptor DEC-205 in the steady state leads to antigen presentation on major
   histocompatibility complex class I products and peripheral CD8+ T cell tolerance. *J Exp Med*, 196, 1627-38.
- CHAN, T. D., WOOD, K., HERMES, J. R., BUTT, D., JOLLY, C. J., BASTEN, A. & BRINK,
   R. 2012. Elimination of germinal-center-derived self-reactive B cells is governed by the
   location and concentration of self-antigen. *Immunity*, 37, 893-904.
- DING, B. B., BI, E., CHEN, H., YU, J. J. & YE, B. H. 2013. IL-21 and CD40L synergistically
   promote plasma cell differentiation through upregulation of Blimp-1 in human B cells. J
   *Immunol*, 190, 1827-36.
- EL SHIKH, M. E., EL SAYED, R. M., SUKUMAR, S., SZAKAL, A. K. & TEW, J. G. 2010.
  Activation of B cells by antigens on follicular dendritic cells. *Trends Immunol*, 31, 20511.
- 401 GARIN, A., MEYER-HERMANN, M., CONTIE, M., FIGGE, M. T., BUATOIS, V., GUNZER,
   402 M., TOELLNER, K. M., ELSON, G. & KOSCO-VILBOIS, M. H. 2010. Toll-like
   403 receptor 4 signaling by follicular dendritic cells is pivotal for germinal center onset and
   404 affinity maturation. *Immunity*, 33, 84-95.
- GITLIN, A. D., MAYER, C. T., OLIVEIRA, T. Y., SHULMAN, Z., JONES, M. J., KOREN, A.
  & NUSSENZWEIG, M. C. 2015. HUMORAL IMMUNITY. T cell help controls the
  speed of the cell cycle in germinal center B cells. *Science*, 349, 643-6.
- GITLIN, A. D., SHULMAN, Z. & NUSSENZWEIG, M. C. 2014. Clonal selection in the
   germinal centre by regulated proliferation and hypermutation. *Nature*, 509, 637-40.
- GOENKA, R., MATTHEWS, A. H., ZHANG, B., O'NEILL, P. J., SCHOLZ, J. L., MIGONE, T.
  S., LEONARD, W. J., STOHL, W., HERSHBERG, U. & CANCRO, M. P. 2014. Local
  BLyS production by T follicular cells mediates retention of high affinity B cells during
  affinity maturation. *J Exp Med*, 211, 45-56.
- HAN, S., HATHCOCK, K., ZHENG, B., KEPLER, T. B., HODES, R. & KELSOE, G. 1995.
  Cellular interaction in germinal centers. Roles of CD40 ligand and B7-2 in established
  germinal centers. *J Immunol*, 155, 556-67.
- 417 ISE, W., FUJII, K., SHIROGUCHI, K., ITO, A., KOMETANI, K., TAKEDA, K.,
  418 KAWAKAMI, E., YAMASHITA, K., SUZUKI, K., OKADA, T. & KUROSAKI, T.
  419 2018. T Follicular Helper Cell-Germinal Center B Cell Interaction Strength Regulates
  420 Entry into Plasma Cell or Recycling Germinal Center Cell Fate. *Immunity*, 48, 702-715
- 421 e4.

- KHALIL, A. M., CAMBIER, J. C. & SHLOMCHIK, M. J. 2012. B cell receptor signal
  transduction in the GC is short-circuited by high phosphatase activity. *Science*, 336,
  1178-81.
- KRAUTLER, N. J., SUAN, D., BUTT, D., BOURNE, K., HERMES, J. R., CHAN, T. D.,
  SUNDLING, C., KAPLAN, W., SCHOFIELD, P., JACKSON, J., BASTEN, A.,
  CHRIST, D. & BRINK, R. 2017. Differentiation of germinal center B cells into plasma
  cells is initiated by high-affinity antigen and completed by Tfh cells. *J Exp Med*, 214,
  1259-1267.
- LUO, W., WEISEL, F. & SHLOMCHIK, M. J. 2018. B Cell Receptor and CD40 Signaling Are
  Rewired for Synergistic Induction of the c-Myc Transcription Factor in Germinal Center
  B Cells. *Immunity*, 48, 313-326 e5.
- MESIN, L., ERSCHING, J. & VICTORA, G. D. 2016. Germinal Center B Cell Dynamics.
   *Immunity*, 45, 471-482.
- MUELLER, J., MATLOUBIAN, M. & ZIKHERMAN, J. 2015. Cutting edge: An in vivo
   reporter reveals active B cell receptor signaling in the germinal center. *J Immunol*, 194, 2993-7.
- NOWOSAD, C. R., SPILLANE, K. M. & TOLAR, P. 2016. Germinal center B cells recognize
  antigen through a specialized immune synapse architecture. *Nat Immunol*, 17, 870-7.
- PULENDRAN, B., KANNOURAKIS, G., NOURI, S., SMITH, K. G. & NOSSAL, G. J. 1995.
  Soluble antigen can cause enhanced apoptosis of germinal-centre B cells. *Nature*, 375, 331-4.
- ROOKHUIZEN, D. C. & DEFRANCO, A. L. 2014. Toll-like receptor 9 signaling acts on
  multiple elements of the germinal center to enhance antibody responses. *Proc Natl Acad Sci U S A*, 111, E3224-33.
- 446 SHLOMCHIK, M. J. & WEISEL, F. 2012. Germinal centers. Immunol Rev, 247, 5-10.
- SHOKAT, K. M. & GOODNOW, C. C. 1995. Antigen-induced B-cell death and elimination during germinal-centre immune responses. *Nature*, 375, 334-8.
- SILVA, M., NGUYEN, T. H., PHILBROOK, P., CHU, M., SEARS, O., HATFIELD, S.,
  ABBOTT, R. K., KELSOE, G. & SITKOVSKY, M. V. 2017. Targeted Elimination of Immunodominant B Cells Drives the Germinal Center Reaction toward Subdominant
  Epitopes. *Cell Rep*, 21, 3672-3680.
- 453 SILVER, J., ZUO, T., CHAUDHARY, N., KUMARI, R., TONG, P., GIGUERE, S.,
- 454 GRANATO, A., DONTHULA, R., DEVEREAUX, C. & WESEMANN, D. R. 2018.
  455 Stochasticity enables BCR-independent germinal center initiation and antibody affinity
  456 maturation. *J Exp Med*, 215, 77-90.
- TAKAHASHI, Y., DUTTA, P. R., CERASOLI, D. M. & KELSOE, G. 1998. In situ studies of
   the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. V. Affinity maturation
   develops in two stages of clonal selection. *J Exp Med*, 187, 885-95.
- TURNER, J. S., BENET, Z. L. & GRIGOROVA, I. 2017a. Transiently antigen primed B cells
   can generate multiple subsets of memory cells. *PLoS One*, 12, e0183877.
- 462 TURNER, J. S., BENET, Z. L. & GRIGOROVA, I. L. 2017b. Antigen Acquisition Enables
  463 Newly Arriving B Cells To Enter Ongoing Immunization-Induced Germinal Centers. J
  464 Immunol, 199, 1301-1307.
- 465 TURNER, J. S., MARTHI, M., BENET, Z. L. & GRIGOROVA, I. 2017c. Transiently antigen466 primed B cells return to naive-like state in absence of T-cell help. *Nat Commun*, 8,
  467 15072.

| 468 | VICTORA, G. D. & NUSSENZWEIG, M. C. 2012. Germinal centers. Annu Rev Immunol, 30,            |
|-----|----------------------------------------------------------------------------------------------|
| 469 | 429-57.<br>VICTORA, G. D., SCHWICKERT, T. A., FOOKSMAN, D. R., KAMPHORST, A. O.,             |
| 470 |                                                                                              |
| 471 | MEYER-HERMANN, M., DUSTIN, M. L. & NUSSENZWEIG, M. C. 2010. Germinal                         |
| 472 | center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent       |
| 473 | reporter. Cell, 143, 592-605.                                                                |
| 474 | VICTORATOS, P., LAGNEL, J., TZIMA, S., ALIMZHANOV, M. B., RAJEWSKY, K.,                      |
| 475 | PASPARAKIS, M. & KOLLIAS, G. 2006. FDC-specific functions of p55TNFR and                     |
| 476 | IKK2 in the development of FDC networks and of antibody responses. <i>Immunity</i> , 24, 65- |
| 477 | 77. $(1)$                                                                                    |
| 478 | WANG, X., CHO, B., SUZUKI, K., XU, Y., GREEN, J. A., AN, J. & CYSTER, J. G. 2011.            |
| 479 | Follicular dendritic cells help establish follicle identity and promote B cell retention in  |
| 480 | germinal centers. J Exp Med, 208, 2497-510.                                                  |
| 481 |                                                                                              |
| 482 |                                                                                              |
| 102 |                                                                                              |
| 483 |                                                                                              |
| 484 |                                                                                              |
|     |                                                                                              |
| 485 |                                                                                              |
|     |                                                                                              |
| 486 |                                                                                              |
|     |                                                                                              |
| 487 |                                                                                              |
|     |                                                                                              |
| 488 |                                                                                              |
|     |                                                                                              |
| 489 |                                                                                              |
|     |                                                                                              |
| 490 |                                                                                              |
|     |                                                                                              |
| 491 |                                                                                              |
|     |                                                                                              |
| 492 |                                                                                              |
| -   |                                                                                              |
| 493 |                                                                                              |
|     |                                                                                              |
| 494 |                                                                                              |
|     |                                                                                              |
| 495 |                                                                                              |
|     |                                                                                              |
| 496 |                                                                                              |
|     |                                                                                              |
| 497 |                                                                                              |

#### 498 Figures

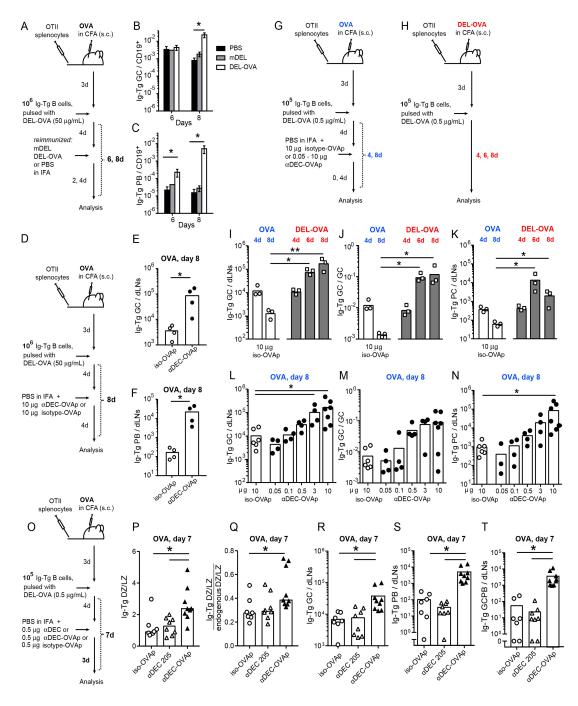
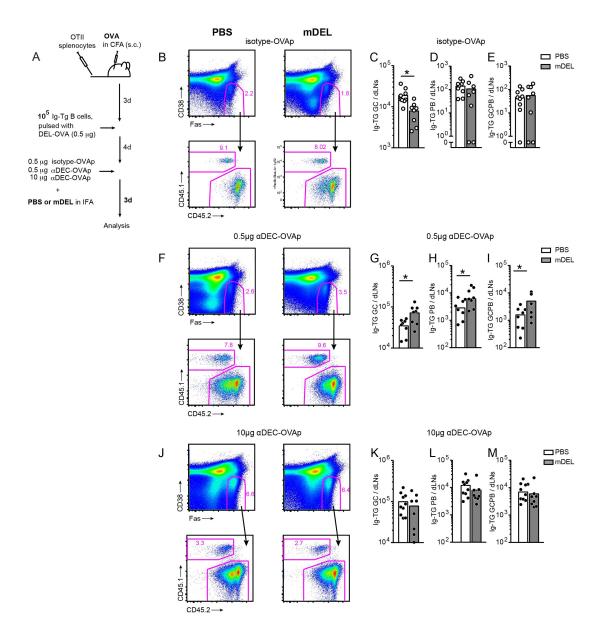
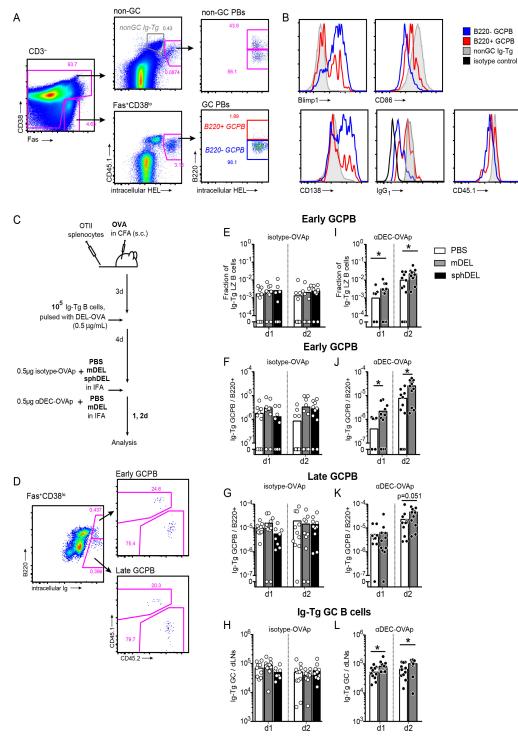




Figure 1. T cell help is sufficient for GC B cell selection and PB differentiation. A, Experimental outline for B, C. Purified Hy10 Ig-Tg B cells were pulsed *ex vivo* for 5 min with  $50 \mu \text{g/mL}$  DEL-OVA, washed, and  $10^6$  were transferred to recipient B6 mice preinjected with


| splenocytes containing $5 \times 10^5$ OTII Th cells and subcutaneously (s.c.) preimmunized with OVA                                  |
|---------------------------------------------------------------------------------------------------------------------------------------|
| in CFA. Four days after Ig-Tg transfer, recipient mice were s.c. re-immunized with mDEL, DEL-                                         |
| OVA, or PBS in IFA. <b>B</b> , <b>C</b> Accumulation of Ig-Tg GC ( <b>B</b> ) and PBs ( <b>C</b> ) per CD19 <sup>+</sup> cells in the |
| dLNs of re-immunized recipient mice at 2 and 4d post reimmunization (6 and 8d post Ig-Tg B                                            |
| cell transfer). See also Fig. S1A-E. D, Experimental outline for E, F. 10 <sup>6</sup> 50µg/ml DEL-OVA                                |
| pulsed Ig-Tg B cells were recruited into GCs as in A, and 4 d.p.t. recipient mice were s.c. re-                                       |
| immunized with PBS in IFA and injected with $10\mu g$ of $\alpha DEC$ -OVAp or iso-OVAp. <b>E</b> , <b>F</b> , Ig-Tg                  |
| GC (E) and PB (F) accumulation in dLNs from mice that received $10\mu g$ iso-OVAp (open                                               |
| symbols) or αDEC-OVAp (closed symbols) 4d earlier. See also Fig. S1F. G, Experimental                                                 |
| outline for I-N. $10^5 0.5 \mu$ g/ml DEL-OVA pulsed Ig-Tg B cells were recruited into GCs as in A,                                    |
| and 4 d.p.t. recipient mice were s.c. re-immunized with PBS in IFA and injected the indicated                                         |
| amount of aDEC-OVAp or iso-OVAp. H, Experimental outline for I-K. Recipient mice were                                                 |
| injected with OTII splenocytes as in A and s.c. immunized with DEL-OVA in CFA. $10^5$                                                 |
| $0.5\mu$ g/ml DEL-OVA pulsed Ig-Tg B cells were transfered as in G and dLNs analyzed at                                               |
| indicated time points. I, L, Ig-Tg GC B cell accumulation in dLNs. J, M, Fraction of Ig-Tg GC                                         |
| B cells in GCs. K, N, Ig-Tg PB accumulation in dLNs. See also Fig. S1G, H. O, Experimental                                            |
| outline for P-T. Mice were treated as in G and at 4d post Ig-Tg cell transfer reimmunized with                                        |
| PBS in IFA and s.c. injected with 0.5 $\mu$ g $\alpha$ DEC-OVAp, iso-OVAp, or unconjugated $\alpha$ DEC-205                           |
| for analysis 3 days later (7 days after Ig-Tg cell transfer). P, Ig-Tg GC DZ to LZ ratio. Q, Ig-Tg                                    |
| DZ to LZ ratio normalized to the endogenous GC DZ to LZ cell ratio. R, Ig-Tg GC B cells                                               |
| accumulation in dLNs. S, T, Ig-Tg PB (S), and GCPB (T) accumulation in dLNs. See also Fig.                                            |
| <b>S1I-O. B, C,</b> Data from $3-5$ independent experiments, $3-6$ mice per condition, shown as mean $\pm$                            |
| SEM.* p<0.05, Kruskal-Wallis with Dunn's post test between PBS, mDEL, or DEL-OVA. E–T,                                                |
|                                                                                                                                       |

- 526 Data from 2–4 independent experiments. Each symbol represents one mouse. \*, p<0.05, Mann-
- 527 Whitney test (**E**, **F**) or Kruskal-Wallis with Dunn's post test between isotype and each αDEC-
- 528 OVAp dose (I-N), or between all conditions (P-T).

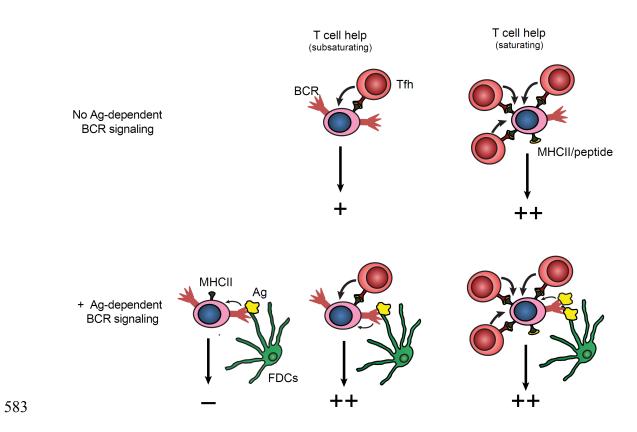


**Figure 2. BCR Cross-linking promotes GC and PB response when T cell help is subsaturating**. **A**, Experimental outline. 0.5 µg/mL DEL-OVA pulsed Ig-Tg B cells were recruited into GC responses as in **Fig. 1G**. 4 d.p.t., recipient mice were s.c. re-immunized with PBS or 50 µg mDEL in IFA and injected with 0.5µg iso-OVAp or with 0.5µg or 10µg  $\alpha$ DEC-OVAp. **B-K**, Representative examples of GC B cell gating analysis of Ig<sup>+</sup> CD3<sup>-</sup> lymphocytes in dLNs at 3 days post reimmunization (7 days post Ig-Tg cell transfer) (in **B**, **F**, **J**) and accumulation of Ig-Tg GC B cells (**C**, **G**, **K**), PB (**D**, **H**, **L**) and GCPB (**E**, **I**, **M**) in dLNs. Data from 2–4 independent

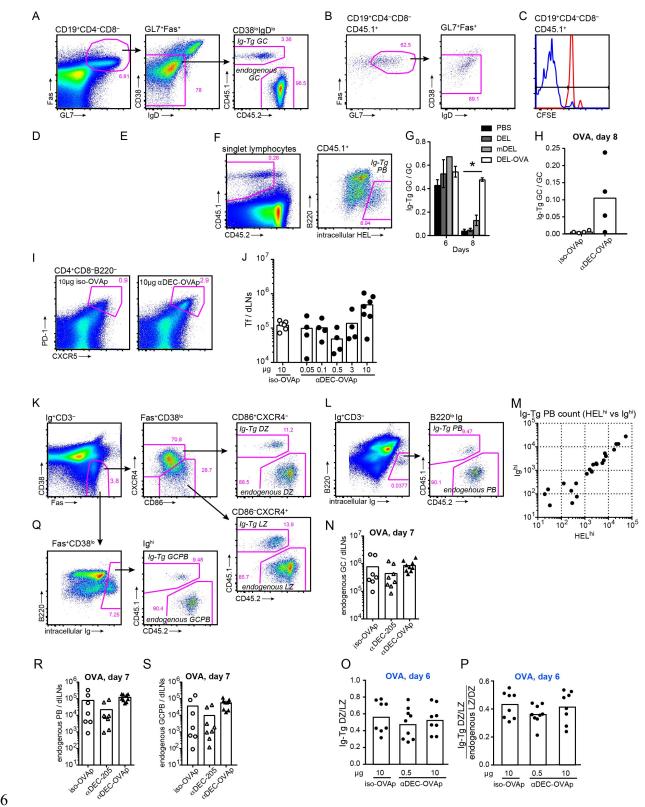
| 544 | experiments. Each symbol represents one mouse. *, p<0.05, Mann-Whitney test. See also Fig. |
|-----|--------------------------------------------------------------------------------------------|
| 545 | <b>S2.</b>                                                                                 |
| 546 |                                                                                            |
| 547 |                                                                                            |
| 548 |                                                                                            |
| 549 |                                                                                            |
| 550 |                                                                                            |
| 551 |                                                                                            |
| 552 |                                                                                            |
| 553 |                                                                                            |
| 554 |                                                                                            |
| 555 |                                                                                            |
| 556 |                                                                                            |
| 557 |                                                                                            |
| 558 |                                                                                            |
| 559 |                                                                                            |
| 560 |                                                                                            |
| 561 |                                                                                            |
| 562 |                                                                                            |
| 563 |                                                                                            |



564


565 Figure 3. BCR cross-linking enhances early PB differentiation when T cell help is sub-

saturating. A, Gating strategy for Ig-Tg early and late PBs and GCPBs. 10<sup>5</sup> Blimp1<sup>yfp</sup> or regular
 CD45.1<sup>pos</sup> Ig-Tg B cells were transferred to B6 recipient mice, which were immunized s.c. with

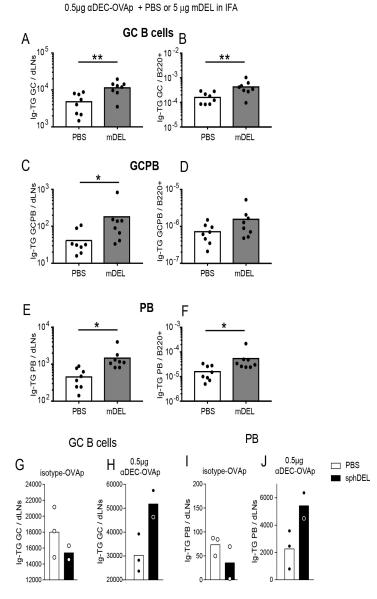

| 568 | 50µg DEL-OVA. | dLNs were analy | zed 10 d.p.i. <b>B</b> | , representative hist | ographs of Blimp1 | L. CD86. |
|-----|---------------|-----------------|------------------------|-----------------------|-------------------|----------|
|     |               |                 |                        |                       |                   | .,,      |

- 569 CD138, surface IgG<sub>1</sub>, and CD45.1 in B220<sup>+</sup>(red) and B220<sup>lo</sup> (blue) GCPBs and non-GC Ig-Tg B
- 570 cells (grey). For IgG<sub>1</sub> staining non-GC B cells were gated on  $IgG_1^{pos}$  cells. Data representative of
- 571 2-3 independent experiments with 13 mice. C, Experimental outline for D-L. 0.5 µg/mL DEL-
- 572 OVA pulsed Ig-Tg B cells were recruited into GC responses as in Fig. 1G. Four d.p.t., recipient
- 573 mice were s.c. re-immunized with PBS, 50 µg mDEL or sphDEL in IFA and injected with 0.5µg
- 574 iso-OVAp or  $\alpha$ DEC-OVAp. **D**, Representative gating example for Ig-Tg and endogenous B220<sup>+</sup>
- 675 early GCPBs and B220<sup>lo</sup> late GCPBs. E-L, accumulation of B220<sup>+</sup> early (E-J) and B220<sup>lo</sup> late
- 576 (G, K) GCPBs and GC B cells (H, L) in dLNs 1d and 2d post reimmunization. Data from 4
- 577 independent experiments. Each symbol represents one mouse. \*, p<0.05, Kruskal-Wallis with
- 578 Dunn's post test between PBS and mDEL or sphDEL (left column), or Mann-Whitney test. See
- 579 also Fig. S3.
- 580

581



584 Figure 4. Model of GC B cell selection.




# 585 Supplementary Figures

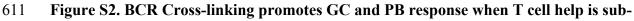


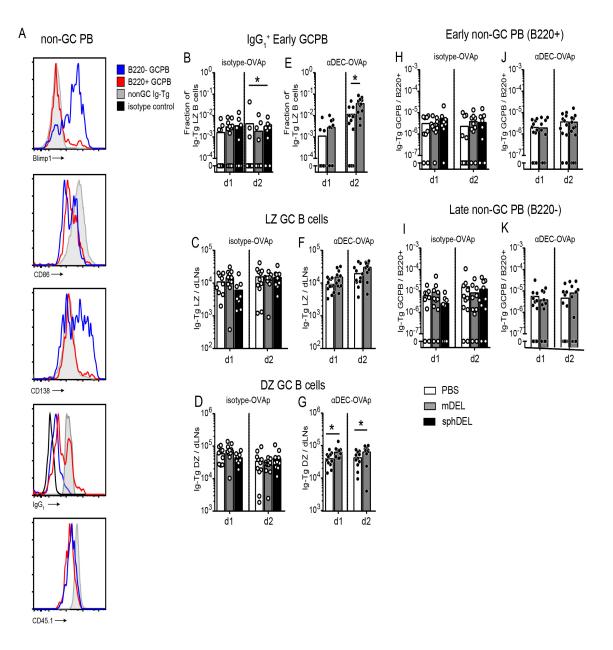

Figure S1. T cell help is sufficient for GC B cell selection and PB differentiation. A, D,

| 588 | Gating strategy for Ig-Tg and endogenous GC B cells (A) and Ig-Tg PBs (D). B, C,                                     |
|-----|----------------------------------------------------------------------------------------------------------------------|
| 589 | Representative plots of Ig-Tg GC participation ( <b>B</b> ) and proliferation ( <b>C</b> ) 4 d.p.t. according to the |
| 590 | experimental design in Fig. 1A. Red line (ctrl) in C is from DEL-OVA pulsed Ig-Tg B cells                            |
| 591 | transferred into unimmunized recipient mice. Representative of 3-5 independent experiments, 3-                       |
| 592 | 6 mice per condition. E, F, Ig-Tg GC B cells fraction of total GC cells analysis of the                              |
| 593 | experiments shown in Fig. 1A, B (in E) and Fig. 1D, E (in F). G, H, Representative flow plots                        |
| 594 | (G) and enumeration (H) of follicular CD4 T cells in dLNs of mice reimmunized with PBS in                            |
| 595 | IFA and injected with 10µg iso-OVAp and $\alpha DEC$ -OVAp 4d earlier, according to the                              |
| 596 | experimental design in Fig. 1G. I, J, O, gating strategies for Ig-Tg and endogenous DZ and LZ                        |
| 597 | GC B cells (I), PB (L) and GCPB (O). K, Numbers of Ig-Tg PBs as determined by intracellular                          |
| 598 | HEL and Ig staining recovered from dLNs of mice treated according to the experimental design                         |
| 599 | in Fig. 1G. Data from 2 independent experiments. Each symbol represents one mouse. L-N,                              |
| 600 | Endogenous GC (L), PB (M), and GCPB (N) accumulation in dLNs of recipient mice                                       |
| 601 | reimmunized with PBS and injected with 0.5 $\mu$ g iso-OVAp (open circles), unconjugated $\alpha$ DEC-               |
| 602 | 205 (open triangles), or $\alpha DEC$ -OVAp (closed triangles) 3d earlier according to the experimental              |
| 603 | design in Fig. 10. Data from 4 independent experiments. Each symbol represents one mouse.                            |
| 604 | Kruskal-Wallis with Dunn's post test between all conditions. P, Q, Analysis of Ig-Tg GC DZ to                        |
| 605 | LZ cell ratio (in P) and Ig-Tg DZ/LZ ratio normalized to endogenous DZ/LZ GC B cell ratio (in                        |
| 606 | <b>Q</b> ) in experiment performed according to the experimental scheme in <b>Fig. 1G</b> and analyzed at 2d         |
| 607 | post administration of iso-OVAp and aDEC-OVAp (or 6 days post Ig-Tg B cell transfer).                                |
| 608 |                                                                                                                      |



610




612 saturating. A-F, Experimental design is similar to that in Fig. 2A, with recipient mice injected

613 with 0.5μg αDEC-OVAp and s.c. reimmunized with PBS or 5 μg mDEL in IFA. Analysis of Ig-

614 Tg GCs (**A**, **B**), GCPB (**C**, **D**) and PB (**E**, **F**) accumulation in dLNs (**A**, **C**, **E**) and per B220<sup>+</sup>

- 615 cells (**B**, **D**, **F**). Data from 2 independent experiments. Each symbol represents one mouse. \*,
- 616 p<0.05, \*\*, p<0.01, Mann-Whitney test. G-J, Experimental design as in Fig. 2A, with recipient
- 617 mice s.c. reimmunized with PBS or sphDEL in IFA and injected with 0.5µg iso-OVAp or αDEC-

- 618 OVAp. Ig-Tg GC (G, H) and PB (I, J) accumulation in dLNs from mice reimmunized with PBS
- 619 (white bars) or sphDEL (black bars). Data from 2–3 independent experiments, with 4–8 mice per
- 620 condition. Each symbol represents one experiment.
- 621



622

623 Figure S3. BCR cross-linking enhances early PB differentiation when T cell help is sub-

624 saturating. A, representative histographs of Blimp1, CD86, CD138, surface IgG<sub>1</sub>, and CD45.1

- 625 in B220<sup>+</sup>(red) and B220<sup>lo</sup> (blue) GCPBs and non-GC Ig-Tg B cells (grey). For IgG<sub>1</sub> staining non-
- 626 GC B cells were gated on  $IgG_1^{pos}$  cells. See Fig. 3A for gating strategy. Data representative of 2-
- 627 3 independent experiments. **B-K**, See **Fig. 3C** for experimental design. Accumulation of  $IgG_1^+$
- 628 Ig-Tg early  $(B220^+)$  GCPBs as a fraction of IgG<sub>1</sub><sup>pos</sup> LZ B cells (in **B**, **E**). Ig-Tg LZ (**C**, **F**) and
- 629 DZ (**D**, **G**) GC B cells. Early  $B220^+$  (**H**, **J**) and late  $B220^{10}$  (**I**, **K**) non-GC Ig-Tg PB in dLNs 1d
- and 2d post reimmunization. Data from 4 independent experiments. Each symbol represents one
- 631 mouse. \*, p<0.05, Kruskal-Wallis with Dunn's post test between PBS and mDEL or sphDEL
- 632 (left panels), or Mann-Whitney test.
- 633
- 634
- 635