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ABSTRACT  22 

Populations generally differ in environmental and genetic factors, which can create 23 

differences in allele substitution effects between populations. Therefore, a single genotype 24 

may have different additive genetic values in different populations. The correlation between 25 

the two additive genetic values of a single genotype in both populations is known as the 26 

additive genetic correlation between populations and can differ from one. Our objective was 27 

to investigate whether differences in linkage disequilibrium (LD) and allele frequencies of 28 

markers and causal loci between populations affect bias of the estimated genetic correlation. 29 

We simulated two populations that were separated for 50 generations. Markers and causal loci 30 

were selected to either have similar or different allele frequencies in the two populations. 31 

Differences in consistency of LD between populations were obtained by using different 32 

marker density panels. Results showed that when the difference in allele frequencies of causal 33 

loci between populations was reflected by the markers, genetic correlations were only slightly 34 

underestimated using markers. This was even the case when LD patterns, measured by LD 35 

statistic r, were different between populations. When the difference in allele frequencies of 36 

causal loci between populations was not reflected by the markers, genetic correlations were 37 

severely underestimated. We conclude that for an unbiased estimate of the genetic correlation 38 

between populations, marker allele frequencies should reflect allele frequencies of causal loci 39 

so that marker-based relationships can accurately predict the relationships at causal loci, i.e. 40 

E(Gcausal loci|Gmarkers) ≠ Gmarkers. Differences in LD between populations have little effect on the 41 

estimated genetic correlation. 42 

 43 

  44 
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INTRODUCTION 45 

Alleles in different populations are often expressed in a different environment and a 46 

different genetic background. As a result of genotype by environment interaction and non-47 

additive genetic effects, those differences result in different allele substitution effects between 48 

populations (Fisher 1918; Fisher 1930; Falconer 1952). In addition, the set of loci underlying 49 

a trait can differ between populations. Therefore, a single genotype may have different 50 

additive genetic values in different populations. For each population, the additive genetic 51 

value is the product of the genotype, measured as allele count at each locus, multiplied by the 52 

allele substitution effects for that population. The additive genetic correlation between two 53 

populations is the correlation between the two additive genetic values of a single genotype in 54 

both populations and may considerably differ from one.  55 

Knowledge of the genetic correlation between populations helps to understand the 56 

differences and similarities between populations in genetic architecture of complex traits (De 57 

Candia et al. 2013; Brown et al. 2016). For both genomic prediction and genome-wide 58 

association studies, combining information from populations is an attractive approach to 59 

increase the prediction accuracy of estimated genetic values or the power to identify 60 

quantitative trait loci. This is especially the case when the number of individuals with 61 

genotypes and phenotypes in a population is limited. For both genomic prediction as well as 62 

genome-wide association studies, the genetic correlation between populations determines the 63 

added benefit of combining information from multiple populations (De Candia et al. 2013; 64 

Wientjes et al. 2015; Wientjes et al. 2016). Therefore, the genetic correlation between 65 

populations is an important parameter in human studies (e.g., De Candia et al. 2013; Yang et 66 

al. 2013), as well as in animal and plant breeding (e.g., Karoui et al. 2012; Lehermeier et al. 67 

2015). 68 
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For estimating a genetic correlation between two populations, it is essential to know the 69 

relationships between individuals from the two populations. Traditionally, relationships 70 

between individuals are based on pedigree information, which is generally only available 71 

within population. The current availability of genome-wide marker panels has opened up new 72 

opportunities to estimate genetic correlations between populations of distantly related 73 

individuals, such as between breeds (e.g., Karoui et al. 2012; Carillier et al. 2014), lines 74 

(Huang et al. 2014), sub-populations (e.g., Lehermeier et al. 2015), or ethnicities (e.g., De 75 

Candia et al. 2013; Yang et al. 2013). Genetic correlations between populations can be 76 

estimated using methods based on genomic relationships (Karoui et al. 2012), random 77 

regression on genotypes (Sørensen et al. 2012; Krag et al. 2013), or summary statistics of 78 

genome-wide association studies (Bulik-Sullivan et al. 2015; Brown et al. 2016). Wientjes et 79 

al. (2017) showed that an unbiased estimate of the genetic correlation can be obtained from 80 

genomic relationships based on causal loci.  81 

Because causal loci are generally unknown, genomic relationships have to be based on 82 

marker information. The strength and phase of linkage disequilibrium (LD) between causal 83 

loci and markers is different between populations in humans (Sawyer et al. 2005), livestock 84 

(e.g., Heifetz et al. 2005; Veroneze et al. 2013) and plants (Flint-Garcia et al. 2003; 85 

Lehermeier et al. 2014). Due to imperfect LD between causal loci and markers, not all genetic 86 

variance is explained by the markers which can distort the estimation of genetic correlations 87 

(Bulik-Sullivan et al. 2015; Gianola et al. 2015). However, in a simulation study where 88 

populations had different LD patterns, the genetic correlation between populations was 89 

accurately estimated based on marker information (Wientjes et al. 2015).  90 

The objective of this study was to investigate whether differences in LD and allele 91 

frequencies of markers and causal loci between populations affect bias of the estimated 92 

genetic correlation. We simulated two populations that were separated for 50 generations 93 
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using scenarios differing in consistency of LD and in allele frequencies of markers and causal 94 

loci between the populations. We used different marker-based relationship matrices to 95 

estimate the genetic correlation.  96 
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MATERIALS AND METHODS 97 

Population structure 98 

Two populations were simulated using QMSim software (Sargolzaei and Schenkel 2009). 99 

The simulations were set-up to have the following two characteristics; 1) the two populations 100 

should have different LD patterns, as measured by the LD statistic r, and 2) a large number of 101 

loci should segregate in the last generation of which a part (>200 000) has similar allele 102 

frequencies in both populations and another part (>200 000) different allele frequencies in 103 

both populations. We simulated a historical population for 212 generations. The first 104 

generation (generation -211) contained 300 individuals. In the following 100 generations 105 

(generation -211 – -112), population size gradually decreased to 50 individuals to create LD. 106 

From generation -111 to generation -12, population size gradually increased to 300 107 

individuals and was kept constant for the next 10 generations (generation -11 – -2). In the last 108 

generation of the historical population (generation -1), population size increased to 1800 109 

individuals.  110 

The last generation of the historical population was randomly divided into two equally 111 

sized populations (A and B) of 900 individuals. In the next generation, the size of both 112 

populations was increased to 1800 individuals and was kept constant for the following 40 113 

generations (generation 1-40). Those reasonably large population sizes limited the drift of 114 

allele frequencies. Number of offspring was set to 10 and selection was at random, so the 115 

number of selected offspring per individual approximately followed a Poisson distribution, as 116 

assumed in the Wright-Fisher model of genetic drift. In the last 10 generations (generation 41-117 

50), population size decreased to 120 individuals in each population to increase the extent of 118 

LD in each population, and the number of offspring was set to 20. In the entire simulation, the 119 

male to female ratio was 1:5, generations were not overlapping and mating was at random. All 120 

individuals from the last generation (2000) were used for the analyses. 121 
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 122 

Genome size 123 

A genome of 10 chromosomes of one Morgan each was simulated. This genome size was a 124 

balance between the computational effort of the analyses and the variation in relationships 125 

between family members. By using fewer chromosomes, computational effort reduced, but 126 

variation in relationships around their expectation based on the pedigree would have been 127 

inflated (Hill 1993). Each chromosome contained 300 000 randomly spaced loci, with a 128 

recurrent mutation rate of 0.00005 in the historical population. In the last generation of the 129 

historical population, segregating loci were selected and mutation was stopped. The chosen 130 

population size and mutation rate resulted in a U-shaped allele frequency distribution of loci 131 

in the two populations, as commonly found in real populations. 132 

In the last generation (generation 50), markers and 2000 causal loci were selected from all 133 

segregating loci. Three marker panels were constructed: a High Density Panel (HDP) with 134 

200 000 markers, a Low Density Panel (LDP) with 20 000 markers, and a Very Low Density 135 

Panel (VLDP) with 2000 markers. Each of the smaller marker panels was a subset from the 136 

larger marker panels. The different marker densities were used to represent differences in 137 

consistency of LD between populations, since consistency in LD decreases when genomic 138 

distance between markers and causal loci increases (De Roos et al. 2008).  139 

Markers and causal loci were selected to either have similar or different allele frequencies 140 

in population A and B. For both approaches, three selection criteria were used; namely (1) the 141 

segregation in one or both populations, (2) the absolute difference in allele frequency between 142 

population A (pA) and population B (pB), and (3) the difference in variance explained by a 143 

locus between population A and B, when allele substitution effects would be the same in both 144 

populations. The last criterion was mainly effective for loci with a low allele frequency, since 145 
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an apparently small difference in allele frequency can result in a relatively large difference in 146 

variance explained for those loci.  147 

For selecting markers with similar allele frequencies in the two populations, loci had to (1) 148 

segregate in both populations, (2) BA pp   should be less than 0.14, and (3) 149 

)]1(2/[)1(2)1(2 ABABBBAA pppppp   should be less than 2, where 
ABp  was the average 150 

of pA and pB. For selecting markers with different allele frequencies in the two populations, 151 

(1) loci had to segregate in at least one population, (2) BA pp   should be more than 0.14, and 152 

(3) )]1(2/[)1(2)1(2 ABABBBAA pppppp   should be more than 1. The cut-off values 153 

were chosen to either minimize or maximize the difference in allele frequencies between the 154 

populations, while ensuring that enough loci in each replicate met the criteria. We aimed to 155 

select marker panels with a uniform allele frequency distribution to reflect commercially 156 

available marker chips (Matsuzaki et al. 2004; Matukumalli et al. 2009; Ramos et al. 2009; 157 

Groenen et al. 2011). For this step, the loci that met the criteria were divided in 50 bins based 158 

on average allele frequency over the two populations (i.e., allele frequencies of bin 1 ranged 159 

from 0 – 0.02, of bin 2 from 0.02 – 0.04, etc.) and from each bin an equal number of loci was 160 

randomly selected. When the number of loci was too small in the two extreme bins (0.00 – 161 

0.02, and 0.98 – 1.00), the bins were combined with the neighboring bin.  162 

For selecting causal loci, the same criteria and cut-off values were used as for markers, 163 

with one exception. For the scenario where allele frequencies in the two populations were 164 

similar, causal loci did not have to segregate in both populations, since some causal loci are 165 

known to be at least partly population-specific (Kemper et al. 2015). As an additional 166 

criterion, causal loci could not already be selected as marker. Causal loci were randomly 167 

selected from all loci that met the criteria, and therefore their allele frequency pattern 168 
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followed an approximate U-shaped distribution as expected for causal loci (Yang et al. 2010; 169 

Kemper and Goddard 2012).  170 

 171 

LD patterns and consistency of LD 172 

The LD pattern and consistency in LD between the populations was investigated. Within 173 

each population and between all causal loci and markers less than 10 cM apart, the parameter 174 

r was calculated (Hill and Robertson 1968): 175 

 

2.1..2.1

21122211

ffff

ffff
r


 , 176 

where f11 is the haplotype frequency with allele 1 at the first locus and allele 1 at the second 177 

locus, f22, f12 and f21 are frequencies of the other possible haplotypes, f1. and f2. are the 178 

frequencies of allele 1 and allele 2 at the first locus, and f.1 and f.2 are the frequencies of allele 179 

1 and allele 2 at the second locus. The LD pattern within each population was represented by 180 

the average r
2
 for intervals of 0.1 cM distance between the markers. The consistency of LD 181 

between the two populations was calculated as the correlation between r values of the two 182 

populations for intervals of 0.1 cM, following De Roos et al. (2008).  183 

 184 

Phenotypes 185 

For each causal locus, allele substitution effects were sampled from a bivariate normal 186 

distribution, with mean 0, standard deviation 1, and a correlation between the populations of 187 

either 1, 0.8, 0.6, 0.4, 0.2 or 0. For each individual, its allele counts for the causal loci (coded 188 

as 0, 1, and 2) were multiplied by the corresponding allele substitution effects and results 189 

were summed over loci to calculate the additive genetic value (AGV) of the individual. The 190 

AGV were scaled to a mean of 0 and variance of 1 across all individuals. Since allele 191 

substitution effects were sampled independently from allele frequency, the correlation 192 
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between AGV of population 1 and 2 (i.e., genetic correlation) was similar to the correlation 193 

between allele substitution effects (i.e., either 1, 0.8, 0.6, 0.4, 0.2 or 0). A normally-distributed 194 

environmental effect was sampled for each individual to obtain a heritability of 0.3 in each 195 

population. Phenotypes of all 2000 individuals in generation 50 were computed by summing 196 

the AGV and the environmental effects. 197 

 198 

Estimating the genetic correlation 199 

The additive genetic correlation between populations was estimated using the following 200 

bivariate model: 201 
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where yk is a vector with phenotypes for population k (k= A, B), xk is an incidence vector 203 

relating phenotypes to the mean in population k (µk), Zk is an incidence matrix relating 204 

phenotypes to estimated additive genetic values (ak ~ N 

2

2
,
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with   representing the Kronecker product function, and ek are vectors with independent 206 

residual effects. Genetic and residual variances were estimated using REML. The first 207 

analyses were performed using ASReml software (Gilmour et al. 2015). For the scenarios 208 

analyzed later, we switched to MTG2 (Lee and van der Werf 2016) to reduce computation 209 

time. We verified that the estimated variance components were identical using both programs. 210 

The genomic relationship matrix (G) between all individuals was calculated as (Wientjes et 211 

al. 2017):  212 
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where Wk is a matrix with centered allele counts of all individuals from population k, and pki 215 

is the allele frequency for locus i in population k. Centered allele counts were calculated as gijk 216 

– 2pik
 
, where gijk is the allele count of locus i for individual j from population k, coded as 0, 1 217 

or 2. This G defines the relationships as standardized covariances between the genetic values 218 

of individuals (Wientjes et al. 2017). In all scenarios and in all 50 replicates, we calculated G 219 

using allele counts of 1) causal loci, 2) HDP markers, 3) LDP markers, or 4) VLDP markers.  220 

The relationships at causal loci are the true relationships for that trait, that are 221 

approximated when using markers. Marker-based relationships are subject to sampling error, 222 

since markers are a subset of the genome. A way to account for this sampling error is by 223 

regressing G towards the pedigree relationship matrix (A) (Powell et al. 2010; Yang et al. 224 

2010; Goddard et al. 2011), which is expected to reduce bias of estimated variance 225 

components (Yang et al. 2010). To investigate the effect of this regression, G matrices based 226 

on the three marker panels were regressed towards A and used for the scenarios with a 227 

correlation of 0.8 or 0.4. 228 

Before regressing G towards A, the inbreeding level of each within-population block in G 229 

was rescaled to the inbreeding level in A, following (Powell et al. 2010): 230 

  JGG kk FF 21*  , 231 

where kF  is the average inbreeding coefficient of all individuals of population k based on the 232 

pedigree, and J is a matrix of ones. The rescaled G
*
 was regressed towards A following 233 

(Yang et al. 2010; Goddard et al. 2011):  234 

 AGAG  *ˆ b , 235 

with 236 
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where n is the number of markers. To set-up A, the pedigree of the last 10 generations was 238 

used, so that between-population A relationships were zero. The regression was done 239 

separately within each population per bin of pedigree relationships (<0.10, 0.10-0.25, 0.25-240 

0.50, >0.5) and between populations, since regression coefficients are higher for higher 241 

pedigree relationships (Veerkamp et al. 2011; Wientjes et al. 2013). For the diagonal 242 

elements, only the inbreeding coefficients were regressed (Yang et al. 2010). Regression 243 

coefficients were all close to one for higher marker density panels (>0.99 for HDP and >0.97 244 

for LDP). For VLDP markers, regression coefficients were lower; ~0.84 for between-245 

population relationships, ~0.89, ~0.91, ~0.94 and ~0.96 for the four bins of within-population 246 

relationships, and ~0.93 for inbreeding coefficients.  247 

 248 

Data availability 249 

Supplemental Material, File S1, is available at FigShare. This file contains the input file used 250 

for QMSim, the Fortran-programs to select markers and causal loci for the different scenarios, 251 

the Fortran-program to simulate phenotypes and the seeds for the different programs in each 252 

of the replicates.   253 
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RESULTS 254 

Characteristics of simulations 255 

The criteria for selecting markers and causal loci resulted in clear differences between the 256 

scenarios with similar and different allele frequencies in the two populations (Figure 1). As 257 

intended, the allele frequency distribution was uniform for markers and U-shaped for causal 258 

loci (not shown). Therefore, the percentage of causal loci with a minor allele frequency below 259 

0.05 was higher (on average 33% in each population) than the percentage of markers with a 260 

minor allele frequency below 0.05 (on average only 15% in each population). The decay of 261 

LD was similar in both populations (Figure 2), with a strong decay of LD at increasing 262 

distances between the loci at the 0 – 2 cM interval. The consistency of LD phase decreased 263 

rapidly at short distances (0 – 5 cM), and fluctuated around zero at distances larger than 5 cM.  264 

 265 

Proportion of variance explained 266 

The proportion of the phenotypic variance explained by the markers, known as the 267 

genomic heritability (De los Campos et al. 2015), was close to the simulated heritability for 268 

all scenarios (not shown). This implies that genetic variances were accurately estimated using 269 

all three marker panels.  270 

 271 

Estimated genetic correlation  272 

With relationships based on causal loci, all estimated genetic correlations were unbiased, 273 

irrespective of whether causal loci had similar or different allele frequencies in the two 274 

populations (Figure 3). This was also expected based on previous results (Wientjes et al. 275 

2017).  276 

With relationships based on markers, all estimated genetic correlations were biased. When 277 

marker-based relationships were not regressed towards the pedigree relationships, genetic 278 
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correlations were only slightly underestimated when the difference in allele frequencies of 279 

causal loci between populations was reflected by the markers, i.e., when markers and causal 280 

loci both had similar or different allele frequencies in the two populations (Figure 3A and 3C; 281 

~2.5% for HDP, ~3% for LDP, and ~11% for VLDP). The genetic correlation was much more 282 

severely underestimated when the difference in allele frequencies of causal loci between 283 

populations was not reflected by the markers (Figure 3B; ~28% for HDP, ~30% for LDP, and 284 

~41% for VLDP).  285 

Across all scenarios, regressing G towards the pedigree relationship matrix only had a 286 

small effect on the estimated genetic correlation (Figure 4). At a high marker density, 287 

regressing G lowered the estimated genetic correlation. Therefore, the underestimation for 288 

HDP and LDP markers increased from ~4% to ~9% when the difference in allele frequencies 289 

of causal loci between populations was reflected by the markers, and from ~28% to ~32% 290 

when the difference in allele frequencies of causal loci between populations was not reflected 291 

by the markers. In contrast, regressing G resulted in higher estimated genetic correlations at 292 

low marker density. For VLDP markers, the underestimation decreased from ~12% to ~8% 293 

when the difference in allele frequencies of causal loci between populations was reflected by 294 

the markers, and from ~41% to ~38% when the difference in allele frequencies of causal loci 295 

between populations was not reflected by the markers. Thus, regressing G was only beneficial 296 

for estimating the genetic correlation between populations when the marker density was low. 297 

Standard errors across replicates for the estimated genetic correlation were generally small 298 

for all scenarios (~0.02), and tended to be slightly larger for lower true genetic correlations. 299 

Moreover, standard errors were slightly larger when the difference in allele frequencies of 300 

causal loci between populations was not reflected by the markers (Figure 3B versus Figure 3A 301 

and 3C). Regression of G towards the pedigree relationship matrix had no effect on the 302 

standard error. 303 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 13, 2018. ; https://doi.org/10.1101/301333doi: bioRxiv preprint 

https://doi.org/10.1101/301333
http://creativecommons.org/licenses/by-nd/4.0/


16 

 

 304 

Genomic relationships 305 

Genetic variance estimates are biased when the regression of true relationships on marker-306 

based relationships is not equal to one (Goddard et al. 2011). We investigated whether this 307 

could explain the underestimation of the genetic correlation by considering the genomic 308 

relationships at the causal loci as the true relationships for that trait. In Figure 5 and 6, we 309 

plotted the relationships at the causal loci versus the unregressed relationships at the markers 310 

for one of the replicates. The regression coefficients for within-population genomic 311 

relationships were close to one, and were only slightly lower when causal loci had different 312 

allele frequencies (Figure 6) compared to similar allele frequencies (Figure 5) in the two 313 

populations. This means that the within-population relationships at the markers can quite 314 

accurately predict the relationships at the causal loci.  315 

Regression coefficients of between-population relationships deviated more from one, 316 

especially at low marker density. When the difference in allele frequencies of causal loci 317 

between populations was reflected by the markers, the regression coefficients were ~0.8 for 318 

HDP and LDP, and 0.67 for VLDP (Figure 5). This means that the relationships at the 319 

markers overpredict the relationships at the causal loci. When the difference in allele 320 

frequencies of causal loci between populations was not reflected by the markers, regression 321 

coefficients of between-population relationships were ~0.30 (Figure 6). Thus the 322 

overprediction of between-population relationships using markers was much larger when the 323 

difference in allele frequency of the causal loci between the populations was not reflected by 324 

the markers. 325 

The correlation between the relationships at the causal loci and at the markers, i.e., the 326 

accuracy of the marker-based relationships, decreased when the density of the markers 327 

decreased (Figure 5 and 6). When the difference in allele frequencies of causal loci between 328 
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populations was reflected by the markers, the correlation for within-population relationships 329 

was ~0.91 for HDP and LDP, and ~0.88 for VLDP. The correlation for between-population 330 

relationships was ~0.70 for HDP and LDP, and 0.60 for VLDP. The correlation between 331 

relationships at causal loci and at markers was much lower when the difference in allele 332 

frequencies of causal loci between populations was not reflected by the markers (within-333 

population relationships: ~0.66 for HDP and LDP, ~0.63 for VLDP; between-population 334 

relationships: ~0.09 for HDP and LDP, ~0.08 for VLDP).  335 
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DISCUSSION 336 

The objective of this study was to investigate whether differences in LD and allele 337 

frequencies of markers and causal loci between populations affect bias of the estimated 338 

genetic correlation between populations. Results showed that when a difference in allele 339 

frequencies of causal loci between populations was reflected by the markers, estimated 340 

genetic correlations were only slightly underestimated using markers. This was even the case 341 

when LD patterns, as measured by LD-statistic r, were different between populations. When 342 

the difference in allele frequencies of causal loci between populations was not reflected by the 343 

markers, genetic correlations were severely underestimated. Differences in LD and allele 344 

frequencies of causal loci between populations only had a very slight effect on the precision 345 

of the estimated genetic correlation.  346 

 347 

Estimating the genetic correlation using marker-based relationships 348 

Genetic variance and heritability estimates are known to be biased when the regression 349 

coefficient of the true relationships on the marker-based relationships is not equal to one, i.e., 350 

when E(Gcausal loci|Gmarkers) ≠ Gmarkers (Yang et al. 2010; Goddard et al. 2011; Yang et al. 351 

2015). When this regression coefficient is below one, relationships at the markers show too 352 

much variation, resulting in an underestimation of the genetic variance. Yang et al. (2010) 353 

argued that a regression coefficient smaller than one can be a result of two effects; 1) 354 

sampling error on the relationships because the number of markers is finite, and 2) a 355 

difference in allele frequency distribution between causal loci and markers. In all our 356 

scenarios, the number of markers was finite and the allele frequency distribution was different 357 

for causal loci than for markers. However, within populations, the estimated genomic 358 

heritability (De los Campos et al. 2015) was close to the simulated trait heritability for all 359 

scenarios. This suggests that enough markers were used to constrain the sampling error on 360 
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within-population relationships to an acceptable level, and that our estimated genetic 361 

variances were only slightly affected by the difference in allele frequency distribution 362 

between causal loci and markers. Thus the underestimation of the genetic correlation between 363 

populations is not a result of biased genetic variance estimates. 364 

The relative sampling error as a result of using a finite number of markers was much larger 365 

for between-population relationships than for within-population relationships, because more 366 

markers are needed to accurately estimate the small between-population relationships 367 

(Goddard et al. 2011). Moreover, the accuracy of predicting the between-population 368 

relationships at the causal loci using markers was depending on the reflection of the 369 

difference in allele frequency of causal loci between populations by the markers. Those two 370 

effects can result in an underestimated genetic covariance between populations, which can 371 

explain the slight underestimation of the genetic correlation in the scenarios where the 372 

difference in allele frequencies of causal loci between the populations was reflected by the 373 

markers, and the more severe underestimation in the scenarios where this was not the case. 374 

The higher sampling error on between-population relationships can also explain the larger 375 

underestimation of the genetic correlation for VLDP markers than for HDP and LDP markers. 376 

Thus for estimating the genetic correlation between populations, it is important that the 377 

difference in allele frequencies of causal loci between the populations is reflected by the 378 

markers and that the number of markers is high.  379 

 380 

Regression of the maker-based relationships 381 

Regressing G towards the pedigree relationship matrix is a way to correct the marker-382 

based relationships for the sampling error as a result of using a finite number of markers 383 

(Powell et al. 2010). The regression was strongest for VLDP markers, where it reduced the 384 

underestimation of the genetic correlation. Those results agree with the findings that 385 
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regressing G is important when the number of markers is low (Yang et al. 2010) and supports 386 

our statement that relationships at VLDP markers were affected by sampling error. However, 387 

regressing G increased the underestimation of the genetic correlation with HDP and LDP 388 

markers. The reason for this is not clear. It might be that the regression of G not only reduces 389 

the sampling error, but also amplifies the effect of the difference in allele frequency 390 

distribution of causal loci and markers.  391 

In our study, regressing G towards A was detrimental for estimating the genetic correlation 392 

when using HDP (200 000) or LDP (20 000) markers, where all regression coefficients were 393 

close to one, and regressing was beneficial when using VLDP (2000) markers, where 394 

regression coefficients were considerably below one. The simulated genome was about one 395 

third of the genome of livestock species such as cattle and chicken (Ihara et al. 2004; Groenen 396 

et al. 2009). This would indicate that regressing G is detrimental when using a genome-wide 397 

total of 60 000 or more markers in livestock. Note that this number of markers will depend on 398 

the consistency in LD between populations. Between-population relationships are all closer to 399 

zero when consistency in LD between populations is lower (Goddard 2009). Those lower 400 

relationships generally require more markers to reduce their relative sampling error to an 401 

acceptable level (Yang et al. 2010). Hence, we think that the regression coefficients may be a 402 

better indicator for deciding whether or not to regress G; when all regression coefficients are 403 

close to one, e.g., above 0.95, it is probably better to not regress G towards A when estimating 404 

the genetic correlation between populations. 405 

The coefficients to regress G towards A were approximated using the number of markers 406 

and the variation in Gmarkers-A, assuming that the sampling error was only a result of using a 407 

limited number of markers (Goddard et al. 2011). To investigate the impact of this 408 

approximation and whether we could remove the observed underestimation of the genetic 409 

correlation by rescaling Gmarkers such that E(Gcausal loci|Gmarkers) = Gmarkers, we repeated some 410 
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 (Goddard et al. 2011) as regression 411 

coefficient to regress G towards A. This regression requires the causal loci to be known, 412 

which was the case in our simulations. We calculated b separately for within- and between-413 

population relationships, using 11 bins based on pedigree relationships within populations 414 

(<0.05, 0.05-0.10, 0.10-0.15, 0.15-0.20, 0.20-0.25, 0.25-0.30, 0.30-0.35, 0.35-0.40, 0.40-0.50, 415 

>0.50, self-relationships) and 3 bins based on genomic relationships between populations (<-416 

0.10, -0.10-0.10, >0.10), and used those b’s to rescale the relationships. As shown in Figure 7, 417 

this rescaling almost completely removed the bias in genetic correlation estimates using HDP 418 

and LDP markers. The genetic correlation was overestimated when using rescaled 419 

relationships based on VLDP markers. This might be a result of the much larger sampling 420 

error for VLDP markers compared to HDP and LDP markers, which could result in 421 

underestimated b values. Thus, there appears to be a lower boundary for the number of 422 

markers to calculate between-population genomic relationships that can be corrected using 423 

regression. Altogether, those results confirm that for an unbiased estimate of the genetic 424 

correlation between populations, the regression coefficient of true relationships on marker-425 

based relationships should be one. 426 

 427 

Consistency in LD  428 

We used different marker densities to represent differences in consistency in LD between 429 

populations. We expected that a lower consistency in LD would reduce the estimated genetic 430 

correlation between populations, because it reduces the correlation between (apparent) marker 431 

effects. Surprisingly, our results showed that estimated genetic correlations were similar with 432 

HDP and LDP markers, and only slightly lower with VLDP markers. This can be explained 433 

by the potential of marker-based relationships to accurately predict the relationships at the 434 
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causal loci, which is essential to unbiasedly estimate the genetic (co)variances and the genetic 435 

correlation between populations. A lower consistency in LD between populations results in a 436 

lower variation in between-population relationships (Goddard 2009; Goddard et al. 2011). 437 

Because a lower consistency in LD reduces the variation in between-population relationships 438 

at both causal loci and markers, the regression coefficient of the relationships at the causal 439 

loci on the relationships at the markers may not be affected much (Figure 5 and 6; HDP and 440 

LDP markers). Therefore, the estimated genetic correlation between populations seems little 441 

affected by the consistency in LD between the populations.  442 

The consistency in LD between populations does affect the correlation between the 443 

relationships at the causal loci and the marker-based relationships (Figure 5 and 6), i.e., the 444 

accuracy of the marker-based relationships. For an unbiased estimate of the genetic 445 

correlation between populations, the regression of true relationships on marker-relationships 446 

should be one and marker-based relationships don’t necessarily have to be accurate. This is in 447 

contrast to estimating genetic values, as is done in genomic prediction, for which relationships 448 

have to be accurate and have to show variation (Goddard et al. 2011). Thus, an unbiased 449 

estimate of the genetic correlation between populations does not guarantee that accurate 450 

genomic prediction across populations can be performed. 451 

 452 

LD structure 453 

The extent and consistency of LD in the simulated populations is comparable to the 454 

patterns found in chicken and pig populations (Andreescu et al. 2007; Badke et al. 2012; 455 

Veroneze et al. 2013; Veroneze et al. 2014). This simulated LD was much higher than 456 

generally found in human populations (Pritchard and Przeworski 2001; Shifman et al. 2003). 457 

Since marker density, and thereby the average LD between causal loci and nearest marker, 458 
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had no effect on the estimated genetic correlation, it is expected that the simulated LD pattern 459 

did not affect the results.  460 

We simulated causal loci randomly spread across the genome, which is not always the case 461 

in real populations. When causal loci are enriched in regions with either high or low LD, 462 

(co)variance estimates can be over- or underestimated (Speed et al. 2012; Yang et al. 2015). 463 

However, we would expect a smaller impact of the heterogeneity of LD on the estimated 464 

genetic correlation than on the heritability, since differences in LD across the genome affect 465 

both the genetic variance and covariance estimates. This mechanism may also explain why 466 

genetic correlation estimates between traits within a population are less affected by 467 

incomplete LD between causal loci and markers than genetic variance estimates (Trzaskowski 468 

et al. 2013).  469 

 470 

Genomic relationship matrix 471 

The current generation within each population was used as base population for our 472 

genomic relationships, since we used current population-specific allele frequencies. This 473 

means that between-population relationships are on average zero. When the consistency in LD 474 

between the populations is not zero, due to the existence of a recent or distant common 475 

ancestor, between-population relationships will show variation around zero (Goddard 2009). 476 

That variation is essential in order to estimate the genetic correlation between populations, 477 

and genetic correlation estimates are more precise when the variation in between-population 478 

relationships is higher (Visscher et al. 2014).  479 

Another commonly used multi-population G matrix is the matrix following Chen et al. 480 

(2013). We repeated part of our analyses using that matrix, where the scaling factor of the 481 

block between populations is   )1()1(2 BiBiAiAi pppp  (GChen) instead of 482 

  )1(2)1(2 BiBiAiAi pppp  (GWientjes). In agreement with our previous study based 483 
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on causal loci (Wientjes et al. 2017), we found that genetic correlations were underestimated 484 

using GChen. This underestimation is mainly a result of effectively removing markers 485 

segregating in only one population from the scaling factor of between-population 486 

relationships. This underestimation increases when those markers were also removed from 487 

within-population relationships, because it increased the bias in genetic variance estimates. 488 

Moreover, GChen was more prone to singularities than GWientjes. In GWientjes, markers 489 

segregating in only one population contributed to the scaling factor for between-population 490 

relationships, which resulted in lower between-population relationships when the number of 491 

markers segregating in only one population was higher. This resulted in a larger difference 492 

between within- and between-population relationships in GWientjes, which reduced the risk of 493 

singularities.  494 

 495 

Implications  496 

Marker panels are generally composed to have intermediate allele frequencies across 497 

multiple populations (Matsuzaki et al. 2004; Matukumalli et al. 2009; Groenen et al. 2011). 498 

Therefore, markers tend to have a higher average minor allele frequency than causal loci 499 

(Yang et al. 2010; Kemper and Goddard 2012). Moreover, the difference in allele frequencies 500 

of causal loci between populations is probably not accurately represented by markers. Those 501 

factors likely result in underestimated genetic correlations between populations using real 502 

data, but the impact of each of the factors requires further research.  503 

 504 

Conclusion 505 

For an unbiased estimate of the genetic correlation between populations from marker 506 

information, it is important that marker-based relationships accurately predict the 507 

relationships at causal loci, i.e., E(Gcausal loci|Gmarkers) = Gmarkers. To achieve this, the difference 508 
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in allele frequencies of causal loci between the populations should be reflected by the 509 

markers, and the number of markers should be sufficiently high to constrain the sampling 510 

error on between-population relationships to an acceptable level. The consistency in LD 511 

between populations has little effect on the bias of the estimated genetic correlation.  512 

  513 
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FIGURES 657 

 658 

 659 

Figure 1 - Allele frequencies of markers for two populations using two selection 660 

approaches. 661 

For one random replicate, allele frequencies of markers from both populations are plotted 662 

against each other when markers are selected to have (A.) similar allele frequencies in the two 663 

populations, or (B.) different allele frequencies in the two populations.  664 
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 666 
Figure 2 - LD pattern in two populations and correlation of LD phase between the 667 

populations. 668 

The average LD (r
2
) between causal loci and markers for both populations, and the correlation 669 

of LD-phase (correlation of r) between the populations, as a function of distance between 670 

causal loci and markers for one random replicate. 671 
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 673 

Figure 3 - Estimated genetic correlations between populations without regressing the 674 

genomic relationship matrix. 675 

The average estimated genetic correlation (± standard error) at different simulated genetic 676 

correlations for the scenario where (A.) markers and causal loci have similar allele 677 

frequencies in the two populations, (B.) markers have similar and causal loci different allele 678 
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frequencies in the two populations, or (C.) markers and causal loci have different allele 679 

frequencies in the two populations, when the genomic relationship matrix is either based on 680 

the genotypes of causal loci (2000), HDP (200 000), LDP (20 000), or VLDP (2000) markers 681 

without regression towards the pedigree relationship matrix. Standard errors were calculated 682 

as the standard deviation over replicates divided by the square root of the number of 683 

replicates. 684 
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 686 

Figure 4 - Estimated genetic correlations between populations with regression of the 687 

genomic relationship matrix. 688 

The average estimated genetic correlation (± standard error) at a simulated genetic correlation 689 

of (A.) 0.8 or (B.) 0.4 for the three scenarios with HDP (200 000), LDP (20 000), or VLDP 690 

(2000) markers and regression of G towards the pedigree relationship matrix. Standard errors 691 

were calculated as the standard deviation over replicates divided by the square root of the 692 

number of replicates. 693 
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 695 

Figure 5 - Genomic relationships at causal loci versus markers when causal loci have 696 

similar allele frequencies in the two populations. The genomic relationships at the causal 697 

loci versus the genomic relationships based on (A.) HDP (200 000) markers, (B.) LDP (20 698 

000) markers, or (C.) VLDP (2000) markers, when markers and causal loci have similar allele 699 

frequencies in the two populations for one replicate. Relationships in population A are 700 

represented in dark blue (equation 1 of regression line and correlation), relationships in 701 

population B are represented in medium blue (equation 2 of regression line and correlation), 702 

and relationships between population A and B are represented in light blue (equation 3 of 703 

regression line and correlation).704 
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 705 

Figure 6 - Genomic relationships at causal loci versus markers when causal loci have 706 

different allele frequencies in the two populations. The genomic relationships at the causal 707 

loci versus the genomic relationships based on the (A.) HDP (200 000) markers, (B.) LDP (20 708 

000) markers, or (C.) VLDP (2000) markers, when markers have similar and causal loci 709 

different allele frequencies in the two populations for one replicate. Relationships in 710 

population A are represented in dark blue (equation 1 of regression line and correlation), 711 

relationships in population B are represented in medium blue (equation 2 of regression line 712 
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and correlation), and relationships between population A and B are represented in light blue 713 

(equation 3 of regression line and correlation). 714 
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 716 

Figure 7 - Estimated genetic correlations between populations after rescaling the 717 

marker-based genomic relationship matrix. 718 

The average estimated genetic correlation (± standard error) at different simulated genetic 719 

correlations for the scenario where markers and causal loci have similar allele frequencies in 720 

the two populations when the genomic relationship matrix is either based on the genotypes of 721 

HDP (200 000), LDP (20 000), or VLDP (2000) markers, after rescaling the marker-based 722 

relationships using a regression coefficient based on the relationships at causal loci. Standard 723 

errors were calculated as the standard deviation over replicates divided by the square root of 724 

the number of replicates. 725 

 726 
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