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Abstract

Summary: Estimating linkage disequilibrium (LD) is essential for a wide range of summary statistics-
based association methods for genome-wide association studies (GWAS). Large genetic data sets, e.g.
the TOPMed WGS project and UK Biobank, enable more accurate and comprehensive LD estimates,
but increase the computational burden of LD estimation. Here, we describe emeraLD (Efficient Methods
for Estimation and Random Access of LD), a computational tool that leverages sparsity and haplotype
structure to estimate LD orders of magnitude faster than existing tools.
Availability and Implementation: emeraLD is implemented in C++, and is open source under GPLv3.
Source code, documentation, an R interface, and utilities for analysis of summary statistics are freely
available at http://github.com/statgen/emeraLD
Contact: corbinq@umich.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Linkage disequilibrium (LD) – pairwise association between alleles at dif-
ferent genetic variants – is of fundamental interest in population genetics
as a vestige of natural selection and demographic history, and is essen-
tial for a wide range of analyses from summary statistics in genome-wide
association studies (GWAS). Motivated by restrictive data sharing policies
and logistical constraints, a variety of methods have been developed for
analysis of GWAS summary statistics (single-variant association statistics)
rather than individual-level data. For example, summary statistics-based
methods have been developed for fine-mapping (Benner et al., 2016), con-
ditional association (Yang et al., 2012), gene-based association (Bakshi
et al., 2016; Barbeira et al., 2016; Lamparter et al., 2016), heritability esti-
mation (Bakshi et al., 2016), and functional enrichment analysis (Finucane
et al., 2015; Lamparter et al., 2016). These methods generally rely on LD
estimates from an external data set, which are ideally calculated on-the-
fly rather than precomputed and stored due to prohibitive storage costs.
For example, the 1000 Genomes Project Phase 3 panel includes over 35M

shared variants (1000 Genomes Project Consortium, 2015), which corre-
sponds to over 4× 1011 pairwise LD coefficients within 1 Mbp windows
genome-wide.

1.1 Existing Tools to Estimate LD

Existing tools to estimate LD generally scale linearly with sample size,
prompting a need for more efficient methods for large data sets. PLINK
is a widely used software toolkit for analyzing genetic data, and is among
the most computationally efficient tools for estimating LD (Purcell et al.,
2007; Purcell and Chang, 2016). PLINK’s BED genotype data format
allows efficient querying and data processing, but demands prohibitive
storage space for large sample sizes and large numbers of markers (e.g.,
7.6TB for the TOPMed Whole Genome Sequencing Project, which inclu-
des >60K individuals). VCFtools is another widely used software toolkit
for manipulating and analyzing genetic data in the Variant Call Format
(VCF) (Danecek et al., 2011). Compressed VCF files (VCF.gz) require
far less storage space than BED files (e.g., >30× less storage space for
the TOPMed WGS Project), and permit random access of genomic regi-
ons through block-compression and Tabix indexing (Danecek et al., 2011;
Li, 2011). VCFtools provides utilities to estimate LD from VCF files,
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but is computationally burdensome for large data sets. M3VCF format
uses a compact haplotype representation that requires far less storage than
genotype formats (Das et al., 2016). m3vcftools provides efficient utilities
for estimating LD with M3VCF format, but is substantially slower than
PLINK with BED file input.

2 Methods

2.1 LD Statistics

Three common measures of LD are the LD coefficient D (the covaria-
nce of genotypes), the standardized LD coefficient D′ (D divided by its
maximum value given allele frequencies), and the Pearson correlation r

or its square (Gabriel et al., 2002). Each of these statistics can be written
as a function of allele frequency estimates, sample size, and dot product
of genotype vectors. Importantly, only the dot product must be calcula-
ted for each pair of variants to calculate LD, since allele frequencies and
haplotype counts can be precomputed when processing genotype data.

2.2 Computational Approach

We tailored our computational approach to exploit the structure of each
supported input data format. For genotype formats (e.g., VCF (Danecek
et al., 2011)), we calculate the dot product using sparse-by-dense and
sparse-by-sparse vector products. Using haplotype block format (M3VCF
(Das et al., 2016)), we can calculate the dot product using within-block
and between-block haplotype intersections.

Sparse Representation of Phased Genotypes For each variant, we keep
a {0, 1}2n vector of genotypes (where 1 indicates the minor allele)
and sparse vector containing the indexes of non-zero entries. If the
major allele is non-reference in the input file (allele count greater than
n), we reverse the sign of its LD coefficients for consistency. Letting
Cj = {i|Gij = 1} denote the set indexing minor-allele carriers of vari-
ant j, the dot product mjk := Gj · Gk between variants j and k can
be calculated in min(mj ,mk) operations, where mj is the minor allele
count (MAC) for variant j, by using the sparse-by-dense product formula
mjk =

∑
i∈Cj

Gik .

Sparse Representation of Unphased Genotypes For unphased genotypes,
we store a {0, 1, 2}n vector of genotypes and sparse vectors indexing
heterozygotes and minor-allele homozygotes for each variant. In this case,
LD between two variants can be calculated in min(Nj1 + Nj2, Nk1 +

Nk2) operations, where Nji is the number of individuals with genotype
i at variant j.

Haplotype Block Representation A haplotype is a sequence of contiguous
alleles along a chromosome within a genomic region, or haplotype block.
Due to the limited diversity of human haplotypes (Wall and Pritchard,
2003), the number of distinct haplotypes in a block withJ biallelic variants
is typically small relative to the sample size n or number of possible
haplotypes 2J (whichever is smaller). M3VCF format maps each sample
to a haplotype within each block, and maps each variant in a block to the
set of haplotypes that contain the non-reference allele (Das et al., 2016).
Given M3VCF input, we precompute the number of observations Nb

h of
each haplotype h for each block b, and index the set of haplotypes Hb

j

containing the minor allele at each variant j in block b. For two variants
j and k in the same block, the dot product can then be calculated in at
most min(cbj , c

b
k) operations, where cbk = #Hb

k is the number of distinct
haplotypes that carry the minor allele at variant k, using the sparse-by-
dense product formula mjk =

∑
h∈Hb

j
1Hb

k
(h)Nb

h. To calculate LD for

variants in different blocks, we can compute a between-block count matrix
Nab

hh′ , the number of samples with haplotypeh in blocka and haplotypeh′

in block b. The dot product between variants j and k can then be calculated
in caj×cbk operations using the formulamjk =

∑
h∈Ha

j

∑
h′∈Hb

k
Nab

hh′ .

In practice, sparse-by-dense genotype products are typically more efficient
for between-block calculations.

Informed Subsampling to Estimate LD with Large Sample Sizes When
both variants j and k have large MAC (e.g., common variants and/or
large sample sizes), calculating sparse-by-dense products to estimate LD
becomes expensive. In this case, we use an informed subsampling approach
to efficiently estimate LD while maintaining a user-specified bound on the
precision of LD estimates.

We treat the sample correlation r = (pjk−pjpk)/sjsk as a parameter
to be estimated by informed subsampling. Here, pj , pk, sj and sk can be
calculated efficiently and stored; because pjk must be calculated for each
pair of variants, we subsample from the carriers of the rarest allele to
increase computational efficiency. In Supplementary Materials, we show
that the approximate estimator r̃` can be calculated in at most ` operations
for any pair of variants, and increases the mean squared error (MSE) by
no more than 1/` relative to exact LD estimates (or 2/` for unphased
genotypes), where ` is a user-specified parameter. In very large data sets
(n > 50K), subsampling with ` = 250 decreased computation time for
common variants (MAF > 5%) by an order of magnitude or more.

3 Results

3.1 Implementation and Usage

We implemented our algorithms as an open-source C++ tool, emeraLD
(efficient methods for estimation and random access of LD), which can be
used via command line or through an R interface included with source files.
emeraLD accepts block compressed VCF.gz and M3VCF.gz input, and
leverages Tabix (Li, 2011) and the C library HTSlib to support rapid quer-
ying and random access of genotype data over genomic regions. emeraLD
implements several options to customize output fields (variant information
and LD statistics) and formats (long tables or square symmetric matrices).
We also provide tools to facilitate estimating LD from a reference panel
for analysis of GWAS summary statistics.

3.2 Performance

We used WGS genotype data from the 1000 Genomes Project Phase 3
(1KGP;n = 2,504) (1000 Genomes Project Consortium, 2015), Haplotype
Reference Consortium (HRC; n = 32,470) (Haplotype Reference Consor-
tium, 2016), and imputed genotype data from the UK Biobank (UKBB;
n = 487,409) to compare performance between emeraLD and PLINK
v1.9 (Purcell and Chang, 2016), LDstore (Benner et al., 2017), VCFto-
ols (Danecek et al., 2011), and m3vcftools (Das et al., 2016). For UKB,
emeraLD from M3VCF.gz file input is >100× faster than PLINK from
BED files (Table 1), which are >10× larger than VCF.gz and >30×
larger than M3VCF.gz. For HRC, which includes 32K individuals and
only variants with MAC ≥5, emeraLD calculates LD from M3VCF.gz
files >6× faster than PLINK from BED files, which are >4× larger than
VCF.gz and >20× larger than M3VCF.gz. Times reported for emeraLD
used ` = 1, 000 (MSE of approximation ≤ 0.001); this has a negligible
effect for 1KGP, but reduced overall computation time by ~50% for UKB
and HRC. Using M3VCF.gz files reduced computation time for emeraLD
by ~30-50% relative to VCF.gz.

3.3 Applications

Our approach will be implemented in a forthcoming web-based service
capable of providing LD information from large panels with >60K sam-
ples, such as the TOPMed WGS project, in real time. This enables use of
improved LD information by rapidly emerging and gaining in popularity
web-based interactive analysis and visualization tools such as LocusZoom
(Pruim et al., 2010).

We have also used emeraLD to estimate LD for gene-based associ-
ation and functional enrichment analysis of GWAS summary statistics.
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Table 1. Benchmarking: Time and Memory Usage

Tool: m3vcftools PLINK 1.9 LDstore emeraLD* Absolute*
Format: M3VCF.gz BED BGEN M3VCF.gz
CPU Time Relative to emeraLD
1KGP 18.8 1.3 4.4 1.0 8.5 m
HRC 44.7 6.8 16.8 1.0 2.6 m
UKB 473.7 128.4 250.6 1.0 19.9 m
Memory Usage Relative to emeraLD
1KGP 0.7 137.6 372.4 1.0 43.8 MiB
HRC 0.6 10.7 26.1 1.0 156.9 MiB
UKB 0.4 4.7 4.8 1.0 4.8 GiB
Time and memory to calculate LD in a 1Mbp region of chr20 (28,126
variants in 1KGP; 13,174 in HRC; and 32,783 in UKB). All
experiments were run on a 2.8GHz Intel Xeon CPU. emeraLD
*Absolute time or memory for emeraLD as reference

This approach avoids precomputing and storing LD without compromising
speed – for example, we developed an implementation of the MetaXcan
gene-based association method (Barbeira et al., 2016) using emeraLD to
estimate LD on-the-fly, which is ~5× faster than the original implementa-
tion using precomputed LD estimates. To enable simple integration with
R scripts or libraries, we include an R interface to emeraLD with source
files.

4 Conclusions
Here we described computational and statistical methods to efficiently esti-
mate LD with large data sets. Our methods exploit two natural features
of genetic data: sparsity that arises from the abundance of rare variation,
and high redundancy that arises from haplotype structure. We also develo-
ped an informed subsampling approach to further improve computational
efficiency while maintaining a user-specified bound on precision relative
to exact LD estimates. Finally, we described an open-source software
implementation that can be used to facilitate analysis of GWAS summary
statistics.
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