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Abstract: The non-invasive measurements of neuronal receptive field (RF) properties in-vivo 
allow a detailed understanding of brain organization as well as its plasticity by longitudinal 
following of potential changes. Visual RFs measured invasively by electrophysiology in animal 
models have traditionally provided a great extent of our current knowledge about the visual 
brain and its disorders. Voxel based estimates of population RF (pRF) by functional magnetic 
resonance imaging (fMRI) in humans revolutionized the field and have been used extensively 
in numerous studies. However, current methods cannot estimate single-neuron RF sizes as they 
reflect large populations of neurons with individual RF scatter. Here, we introduce a new 
approach to estimate RF size using spatial frequency selectivity to checkerboard patterns. This 
method allowed us to obtain non-invasive, single-unit, RF estimates in human V1 for the first 
time. These estimates were significantly smaller compared to prior pRF methods. Further, 
fMRI and electrophysiological experiments in non-human primates demonstrated an 
exceptional match validating the approach. 
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Introduction 
 

An important contribution of functional magnetic resonance imaging (fMRI) in human 
neuroscience is the non-invasive in-vivo measurement of the voxel-by-voxel organization of 
several cortical areas1. Recent studies substantially advanced this field of research by using 
novel neuro-computational methods that can uncover neuronal properties previously only 
accessible by invasive electrophysiological techniques2,3. Estimating neuronal properties in 
vivo by fMRI is of great significance for understanding the functional organization of the 
cortex as well as cortical reorganization and plasticity in patients with diseases afflicting the 
brain4.  

A prime example of such methods is the estimation of population receptive fields (pRFs) in 
retinotopically organized visual areas5-7. However, pRFs are only estimates of aggregate voxel-
based averages of ten to hundreds of thousands of neurons within fMRI voxels and are a 
function of: a) the receptive field properties of single units belonging to a voxel, b) the scatter 
in the location of receptive field centers across units, and c) the interactions between nearby 
connected units. Here, we present a novel approach to estimate, for the first time, the average 
single-neuron receptive field sizes in human primary visual cortex. To this end, we exploit the 
spatial-frequency dependent fMRI responses of visual RFs modeled as Gabor functions. 
Furthermore, we validate non-invasive RF size estimates obtained using the same fMRI 
method in non-human primates by comparing them directly with RF sizes obtained via 
intracranial electrophysiological recordings. 

The retinotopic organization of visual cortex has been extensively studied in primates. Very 
early on, studies indicated that a key property of early striate and extrastriate areas is the 
expanded cortical representation of the central visual field often called magnification factor8-

10. More recently, this led to the development of analytical formulations to describe the 
projection from the visual field (retina) to the cortical space11-13. Typically, the spatial sampling 
of fMRI happens uniformly in cortical space with voxel sizes of the order of 13-33 mm3. This, 
in combination to the non-linear mapping of visual to cortical space, has direct implications for 
estimating population receptive field sizes. To demonstrate that, we used the inverse of the 
simple k×log(z+a) model described by Schwartz (1977) to transform the coordinates of square 
pixels from cortical space to visual space (Fig. 1 A-B). Figure 1B shows the expected RF sizes 
of neurons whose RF centers lie along the edges of the transformed fMRI voxels (red circles) 
given no random scatter14. Dashed circles represent the envelopes of each voxel’s expected 
pRF size. Note that expected pRF size, strongly depends on the non-linear transformation from 
cortical to visual space, clearly overestimating individual neuron RF size. 
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Receptive fields of neurons in primary visual cortex are thought to act as spatial frequency 
filters15 and can be approximated by 2D-Gabor functions16 (see Fig. S1). The spatial frequency 
selectivity of these filters can be analytically estimated depending on Gabor function 
parameters including its Gaussian envelope’s standard deviation, which is proportional to the 
RF size (Fig. 1 C). We hypothesized that fMRI responses to stimuli with different spatial 
frequency contents could be used to estimate the underlying neuronal Gabor function standard 
deviations based on their spatial frequency selectivity and thus independent of spatial position 
and scatter. To this end, we chose to use binary white noise checkerboard patterns as stimuli, 

 

Figure 1. Visual field back-projection of fMRI voxels, RF modeling approach, and example of GLM fit of 
stimulus predictors. (A-B) Transformation of the fMRI-voxels (squares) from the cortical space (A) to the 
visual field (B) by using the inverse-Schwartz model 11. In (B) we plot estimated RF sizes along voxel boarders 
at different eccentricities (red circles). Population RF size (pRF) depends not only on RF size but also on the 
non-linear transformation from cortical to visual field. (C) We modeled suRFs as 2D-Gabor functions 
assuming that voxels contain an approximately homogenous representation of all orientations. Thus, voxel 
spatial frequency selectivity becomes independent of orientation and can be estimated according to the s of 
the Gabor envelope (see Fig S1). (D) Full-field checkerboard patterns were presented in blocks of 10 seconds 
ON, 20 seconds OFF. Blocks were pseudo-randomly interleaved across six different spatial frequency 
conditions (checker sizes; see Fig S2). (E) Raw BOLD-signal timecourse from a sample region of interest in 
area V1 of one subject (black) overlaid by the GLM-fit of the six predictors (checker sizes) in different colors. 
(F) The GLM β-weights corresponding to each checker size predictor. 
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modulating their spatial frequency content by changing the checker size across conditions 
(Fig. 1 D). We note that our Gabor based modeling approach would also be valid, if we used 
other stimuli with manipulated or selected spatial frequency content like sinewave gratings or 
filtered natural images. Here we used checkerboard patterns since their frequency content could 
be estimated analytically allowing easier computational modeling (Fig. S2). 

Results 

Responses in human primary visual cortex were nicely modulated by our stimuli (Fig. 2). On 
average, V1 responded more strongly to blocks with smaller checkers (Fig. 2 B-C). More 

 
Figure 2. Example of paradigm and V1 responses. (A) An example of the fMRI response in V1 of a subject is 
shown on top of a cartoon of the stimulus presentation with different conditions in colored blocks (10 seconds) 
and the inter-stimulus interval (20 seconds) in gray. (B-C) The event related time courses for each condition 
are shown for left (B) and right V1 (C). (D-E) Similarly, the event-related time courses of selected single voxels 
in foveal (D) and peripheral (E) V1 are shown. (F-G) represent the mean amplitude of the BOLD signals during 
a window around the peak (red horizontal bar in D and E). 
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specifically, as expected from our hypothesis, voxels selected from anatomical and functionally 
defined areas close to the fovea were biased to the smallest checker sizes while gradually more 
peripheral voxels showed stronger responses to larger sizes (Fig. 2 D-G). 

To estimate the average single-unit RF (suRF) size in a voxel we used model-types of the form: 

   (1), 

where  is the GLM beta parameter that reflects the response to the stimulus block 

with checker size ,  is a static non-linearity, a gain parameter and the estimated 

neural response as a function of stimulus condition  and the Gabor filter parameters. R is 

given by: 

   (2), 

where  represents the spatial frequency content of the stimulus (see Fig. S2), 

and  the spatial frequency selectivity of a voxel (see Fig. S1). We considered 

RF-size to be equal to 2s, as this is close to the classical way of mapping RFs by detecting the 
first response to moving stimuli across the RF-edges.  

Several models of the above type were tested and in particular ones using a log-square-root 
compressive (LSC) non-linearity or a power-low compressive non-linearity (PLC); some 
models had divisive (dPLC) or subtractive (sPLC) surround components (Table 1). For a 
qualitative overview of model behaviour across a range of values in parameter space see 
Fig. S3-S6. All models demonstrated exceptionally good fits as reflected in very high median 

  
βBOLD (λchk ) = fNL γ , R(λchk ,σ )( )

  βBOLD (λchk )

 λchk  fNL γ  R

 λchk

  
R(λchk ,σ ) = dωx dω y ⋅ S ωx ,ω y ,λchk( ) ⋅ ΣG ωx ,ω y ,σ( )

ωxω y

∫∫

  
S(ωx ,ω y ,λchk )

  
ΣG(ωx ,ω y ,σ )

Table 1. Models used for fitting the Gabor receptive field parameters by using fMRI responses. The parameters 
β are GLM estimates of the fMRI response amplitude for each stimulus condition, γc and γs are gain parameters 
for center and surround (when applicable) respectively, and similarly R(σc), R(σs) are the estimated neural 
responses of gabor-like neurons with Gaussian envelope with standard deviation σ as given by equation (2) in 
the main manuscript. The exponent parameter n acts as a compressive non-linearity and was estimated to be 
around 0.325 by Kay et al. 201317. For dPLC and sPLC we have set it to this estimate to avoid over-fitting due 
to a high number of parameters. 

Model ID Equation Name 

LSC     Log-Square root-Compressive  

PLC    Power-Law-Compressive 

dPLC    Divisive normalization PLC  

sPLC  Subtractive normalization PLC 

 

β = γ c ⋅ log 1+ R σ c( )( )
β = γ c ⋅R σ c( )( )n

β = γ ⋅
γ c ⋅R σ c( )
1+ γ s ⋅R σ s( )

⎛

⎝⎜
⎞

⎠⎟

0.325

β = γ c ⋅R σ c( )( ) 0.325 − γ s ⋅R σ s( )( ) 0.325

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 15, 2018. ; https://doi.org/10.1101/301648doi: bioRxiv preprint 

https://doi.org/10.1101/301648


 6 

coefficients of determination (CoD) across all subjects (Table 2). To select the best model we 
also calculated Akaike’s information criterion (AIC) and from there derived the relative 
likelihoods of each model per voxel18. Based on the mean AIC values (Table 2), and the 
distributions of relative likelihoods (Fig. S7) we chose the PLC model, which simulates only 
the RF-center, for further reporting our results. Models with divisive or subtractive surround 
components on average only marginally improved CoD or did not show improvements and had 
slightly worse AIC scores due to the higher number of parameters (Table 2). It should be noted, 
however, that a small number of voxels demonstrated clear suppressive effects for intermediate 
checker-size conditions with the center only model not able to account for this suppression. In 
those voxels, models that included the surround and in particular the sPLC were clearly 
outperforming the center only model (Fig. S8). 

Examples of the PLC-suRF model fit for each subject H1-H4 are presented in Fig. 3 A-D 
respectively. On the top row, voxels with eccentricity closer to the fovea were selected based 
on the classical pRF model fit (Methods) and gradually higher eccentricities in the middle and 
bottom rows. As expected from model simulations (see Fig. S3 C), the shape of the model fit 
(solid lines) is predicting small RF sizes for foveal voxels and gradually larger for the more 
peripheral ones. To better demonstrate the relationship between estimated voxel-based RF sizes 
and eccentricity we performed linear regression for each subject (Fig. 3 E-H; black lines). For 
comparison, linear regression was also performed for the pRF model across the same subjects 
(Fig. 3 E-H; gray lines). The results demonstrated a significant linear relationship of suRF as 
well as pRF size with eccentricity for all individual subjects and across the population (see 
Table S1). To test if the suRF estimated RF sizes were smaller than the pRF, as we 
hypothesized (see Fig. 1), we performed analysis of covariance (ancova) and second level 
comparisons (Tukey-Kramer) of the intercepts (suRF: 0.69 ± 0.07 [95%CI], pRF: 0.94 ± 0.19) 
and slopes (suRF: 0.05 ± 0.01, pRF: 0.33 ± 0.02) of the two models across the population 

Table 2. Evaluation of model performance in human subjects. Performance was calculated based on the median 
coefficients of determination (CoD) as well as Akaike’s information criterion (AIC)18. Based on these values 
and relative likelihoods of the models (see Fig. S8) we selected the PLC model (in BOLD font) for presentation 
of the results in the body of the manuscript.  Abbreviations: LSC: Log-Square root-Compressive, PLC: Power-
Law-Compressive, dPLC: devisive normalization PLC, sPLC: subtractive normalization PLC. 

Model ID # params  H1 H2 H3 H4 

LSC 2 CoD 
AIC 

98.4 % 
-3.6754 

97.8 % 
-3.4150 

97.3 %  
-3.0358 

97.7 % 
-3.3004 

PLC 3 CoD 
AIC 

98.9 % 
-3.9078  

98.8 % 
-3.7378 

98.5 % 
-3.4641 

99.1 % 
-3.9815 

dPLC 5 CoD 
AIC 

99.1 % 
-3.4779  

99.1 % 
-3.3309 

98.6 % 
-2.8225 

99.1 % 
-3.3747 

sPLC 4 CoD 
AIC 

98.5 % 
-3.1736 

98.0 % 
-2.8642 

98.0 % 
-2.8409 

98.1 % 
-2.9591 
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(H1-4). We observed a significant difference of the intercepts (P=0.01) as well as the slopes 
(P=1.06×10-10), being smaller for the suRF model as expected.  

To better understand the relationship between our proposed suRF model and 
electrophysiological measurements of RF sizes, we performed additional experiments in rhesus 
macaques. During anesthetized fMRI experiments monkeys were presented with identical 
stimuli as human subjects. Further, pRF as well as suRF models were estimated with the same 

 
Figure 3. Comparison of suRF with pRF. (A-D) Examples of suRF voxel fits for subjects H1-H4. Each column 
presents example voxel responses (β-weights per condition; dots) from gradually increasing eccentricity (top 
to bottom). Solid lines represent PLC-suRF model fits. (E-H) suRF size (black) and pRF size (gray) as function 
of eccentricity for subjects H1-H4. Lines respectively represent linear regression fits. 
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 8 

methodology as used for the humans (Methods). As shown in the example voxels in 
Fig. 4 A-D, the responses and suRF-model fits for monkeys were very similar to humans with 
lower eccentricity voxels demonstrating smaller RF sizes in comparison to voxels located at 
more peripheral locations. Linear regression analyses of the eccentricity versus suRF and pRF 
sizes demonstrated identical results as the in humans (Fig. 4 E-F; Fig. S10) with all subjects 
showing significant linear relationships for both models (see Table S2). Furthermore, we 
performed ancova followed by the comparison (Tukey-Kramer test) of intercepts (suRF: 0.42 
± 0.05, pRF: 1.39 ± 0.15) and slopes (suRF: 0.06 ± 0.01, pRF: 0.19 ± 0.02). As in humans, we 
observed significant differences of both intercepts (P=9.56×10-10) and slopes (P=9.56×10-10). 
Importantly, the estimated suRF sizes approximated previously reported electrophysiological 
measurements of single unit RFs10,19,20.  

To more directly investigate how suRF-fMRI estimates compare with single neuron 
electrophysiological RF sizes, we then performed electrophysiological RF measurements in 

 
Figure 4. Validating suRF with electrophysiology in Rhesus Macaques. (A-D) Example voxel responses (β-
weights) and respective suRF fits (solid lines) for monkeys M1-M2. (E-F) pRF (gray) and suRF (black) size as 
a function of eccentricity for monkeys M1-M2 (see also Fig. S10). Each dot represents a voxel. Dashed lines: 
linear regression fits (see Table S4 for statistics). (G) pRF and suRF fits across both monkeys M1&M2 
compared to electrophysiology obtained from two other animals (M3&M4; red). For parameter estimates and 
statistics see Table S4. (H) Example of electrophysiology RF estimate by reverse correlation (see also Fig. S11-
S16). Abbreviations: *** p<10-9, NS p>0.05 
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 9 

two other monkeys (M3-M4). To this end, we have used the method of reverse correlation that 
has been extensively used in previous RF-mapping experiments in visual cortex21-25. In 
addition, we also used a moving bar method that closely resembles the pRF mapping we used 
in fMRI (Methods). Examples of the recorded RFs are presented in Fig. 4 H and Fig. S11-S16. 
Since the electrophysiology data from both monkeys and methods were consistent we have 
collapsed them and performed linear regression for RF size versus eccentricity like we did for 
the fMRI measurements, which are presented in the same figure (Fig. 4 G). Comparison of the 
suRF intercept and slope with electrophysiology (intercept=0.16 ± 0.05, slope=0.08 ± 0.02) 
showed no significant difference (intercepts: P=0.47, slopes: P=0.98; See Fig. 4 G and 
Table S4). 

To absolutely settle the correspondence between the suRF model and electrophysiology, we 
performed fMRI pRF and suRF experiments in monkey M3 that had MRI compatible implants 
(Fig. 5). To be able to coregister the physiology and MRI estimates we have inserted an MRI 
compatible guide (Fig. 5 B) on top of the grid in the chamber and filled it with an MRI contrast 
agent (MION). In this way, a reference frame was reconstructed and we could use it to estimate 
the voxel corresponding to our recording electrode. In Fig. 5 C-E, we show estimates of the 
RF size based on all three methods (pRF, suRF, electrophysiology). As one can appreciate 

 
Figure 5. Comparison of suRF with pRF and electrophysiology in the same animal. (A) Anatomical slice from 
the recording location with overlaid pRF eccentricity map. To localize the recording location, we used an MRI 
compatible insert (B; left) in the implanted recording chamber on top of the already present recording grid (B; 
right). The chamber including the grid and holes of insert were filled with MRI contrast agent so we could 
reconstruct their position (B; middle) and localize the position of the electrode recordings that happened in 
separate sessions outside the scanner (light blue arrow) to avoid artifact. (C) The pRF model fit and parameters 
are plotted on the fMRI signal timecourse from a voxel under the electrode tip (white circle). (D) suRF model 
fit for the same voxel. (E) Electrophysiology RF from the same location using the moving bar method (see 
Methods). (F) Relative RF size for all three methods. Note suRF closely approximates the “ground truth” of the 
electrophysiology RF size. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 15, 2018. ; https://doi.org/10.1101/301648doi: bioRxiv preprint 

https://doi.org/10.1101/301648


 10 

there is a direct close correspondence between the electrophysiology and suRF estimates that 
are both much smaller in comparison to the pRF (Fig. 5 F).  

Discussion 

To date, only a couple of studies attempted to report measurements of receptive field sizes in 
human visual cortex either with invasive intractranial electrophysiology (potentially 1-2 
cells)26 or surface electrocorticography in patients27. Here, we reported and validated by 
electrophysiology in macaques, estimates of single unit RF sizes in human primary visual 
cortex by using in-vivo fMRI. To the best of our knowledge, our study provides the first 
comprehensive measurements over the whole primary visual cortex using a simple technique 
that can be easily used in the wide population. 

The non-invasive fMRI suRF method provides exceptionally good estimates of V1 RF sizes 
that closely match invasive electrophysiological measurements. Further, the results in humans 
were closely matched with those in rhesus macaques in which we validated the methodology. 
Thus, the use of fMRI in both species provides a necessary bridge for human fMRI research to 
the gold standard and allows further non-invasive studies of human cortical reorganization in 
the case of injury or disease. 
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Methods 

Human Experiments 

Subjects 

Four healthy human subjects (H1-H4, 24-44, 2 females) with normal or corrected-to-normal 
visual acuity participated in the fMRI experiments. Before each session subjects provided 
written informed consent. The local ethics committee of the University Hospital Tübingen 
approved the study. 

MRI data acquisition and preprocessing 

MRI experiments were performed at the Max Planck Institute for Biological Cybernetics, 
Tübingen, Germany. Functional and anatomical images were acquired in a 3.0 Tesla Tim Trio 
Scanner (Siemens Ltd., Erlangen, Germany) using a 12-channel coil. At least two T1-weighted 
anatomical volumes were acquired for each subject with a 3D magnetization prepared rapid 
acquisition gradient echo (T1 MPRAGE scan) and averaged following alignment to increase 
signal to noise ratio (matrix size=256×256, voxel size=1×1×1 mm3, 176 partitions, flip 
angle=9°, TR=1900 ms, TE=2.26 ms, TI=900 ms). Blood oxygen level dependent (BOLD) 
image volumes were acquired using gradient echo sequences of 28 contiguous 3 mm-thick 
slices covering the entire brain (TR=2000 ms, TE=40 ms, matrix size=64×64, voxel 
size=3×3×3 mm3, flip angle=90°). 

At least 5 functional scans were acquired for each subject, consisting of 195 image volumes, 
the first 3 of which were discarded. The functional images were corrected for motion between 
and within scans28 and were aligned to the high-resolution anatomical volume using a mutual 
information method29. The high-resolution anatomical data were used to segment the white-
gray matter boundary in itkGray software, and 3D cortical surface and flat mesh models were 
created and realigned with the functional data. The functional time-series were spatially 
resampled in the volume space using nearest neighbor interpolation. This preserves the original 
signals but up-samples them in space leading to some voxels with the same time-courses. 
Analysis was accelerated by analyzing a single voxel corresponding to the original fMRI 
resolution and assigning the results to the corresponding anatomical voxels. All subsequent 
analysis was performed in the segmented volume space restricted in the gray-matter voxels. 
The above preprocessing steps were performed in MATLAB using the mrVista software 
package that can be found at https://github.com/vistalab/vistasoft. 

Population receptive field (pRF) mapping 

For retinotopic mapping we used the population receptive field (pRF) method5. Shortly, the 
pRF model estimates the region of the visual field that effectively elicits a response in a small 
region of visual cortex (voxel). The implementation of the pRF model is a circularly symmetric 
Gaussian receptive field in visual space, whose center and radius are estimated by fitting actual 
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BOLD signal responses to estimated responses elicited by convolving the model with the 
moving bar stimuli. We retained only those voxels in the visual area, for which the pRF model 
explained more than 15% of the variance. This threshold was set after measuring the mean 
explained variance in a non-visually responsive area and setting the threshold at six standard 
deviations above the mean. This method derived reliable and reproducible retinotopic and pRF 
size maps. 

Stimuli 

Stimulus presentation: 

Subjects were presented with visual stimuli in the scanner by using MRI compatible digital 
goggles (VisuaStim, Resonance Technology Company, Inc, Northridge, CA, USA; 30° 
horizontal and 22.5° vertical field of view, 800x600 resolution, minimum luminance = 0.3 
cd/m2 and maximum luminance = 12.2 cd/m2). 

Population RF (pRF) mapping: 

Moving square-checkerboard bars (100% contrast) were presented within a circular aperture 
with a radius of 11.25° (full vertical extent of screen) around the fixation point. The bar width 
was 1.875° and travelled sequentially in 8 different directions, moving by a step half of its size 
(0.9375°) every image volume acquisition (TR=2 seconds). Stimuli were generated using 
Psychtoolbox-330 and an open toolbox (VISTADISP) in MATLAB (The Mathworks, Inc.). The 
subjects’ task was to fixate a small dot in the center of the screen (radius: 0.0375°; 2 pixels) 
and respond to the color change by pressing a button. The color was changing randomly with 
average frequency of one every 6.25 seconds. An infrared eye tracker was used to record eye 
movements inside the scanner (iView XTM, SensoMotoric Instruments GmbH). 

Single unit RF (suRF) mapping: 

Binary full-field checkerboards (black/white; 100% contrast) with a frame rate of 30 Hz were 
presented in a block design (10 seconds ON, 20 seconds OFF). For each block the size (side) 
of the checkers was chosen to be one of six possible conditions [0.25°, 1°, 2°, 3.75°, 7.5°, 
22.5°]. 

Monkey Experiments 

Subjects 

Four healthy adult rhesus monkeys (macaca mulatta; M1-M4, 5-11 kg, 1 female) were used in 
MRI (N=3, M1-3) and electrophysiology experiments (N=2, M3-4). The experimental and 
surgical procedures were performed with great care and in full compliance with the German 
Law for the Protection of Animals, the European Community guidelines for the care and use 
of laboratory animals (EUVS 86/609/EEC), and the recommendations of the Weatherall report 
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for the use of non- human primates in research. The regional authorities approved our 
experimental protocols and the institutional representatives for animal protection supervised 
all procedures. Animals were kept in large cages located adjacent to the training and 
experimental facilities. Space in these cages allows swinging and jumping, and enrichment 
equipment such as toys was changed frequently. Group housing was maintained to increase the 
quality of life by rich visual, olfactory, auditory and social interaction and stimulation for play. 
Balanced nutrition and regular veterinary care and monitoring, were provided. Recording 
chamber implantations were performed in two animals while the animals were under general 
anesthesia and aseptic conditions. To alleviate post-surgical pain, we administered analgesics 
for a week after the surgery (see surgical procedures below). MRI experiments were also 
performed under anesthesia (see anesthesia below). Animals were not sacrificed after the 
experiments. 

Anesthesia 

Details on the anesthesia protocol have been given previously31. Briefly, the animals were 
premedicated with glycopyrolate (0.01 mg/kg, intramuscular (IM)) and ketamine (15 mg/kg, 
(IM)) and then deep anesthesia was induced by fentanyl (3 µg/kg), thiopental (5 mg/kg), and 
succinyl chloride (3 mg/kg). Anesthesia was maintained with remifentanyl (0.5-2 µg/kg/min) 
under paralysis with mivacurium chloride (3-6 mg/kg/h) to ensure the suppression of eye 
movements. Heart rate and blood oxygen saturation were monitored continuously with a pulse-
oxymeter. Body temperature was kept constant at 37-38 °C. 

Surgical procedures 

Recording chambers were positioned over the operculum in area V1 according to stereotaxic 
coordinates. This was aided by high-resolution magnetic resonance anatomical imaging. The 
anatomical scan and recording chamber implantation were done while the animals where under 
general anesthesia. Details of the procedure can be found in our previous work31. 

MRI data acquisition and preprocessing 

FMRI experiments were performed in a 4.7T or 7.0T vertical scanner (Bruker Biospec, Bruker 
Biospin GmbH, Ettlingen, Germany). Multislice fMRI was performed using 8-segmented 
gradient-recalled echo-planar imaging (EPI). Volumes of 17 slices of 0.756x0.756x2 mm3 were 
collected, each with a field of view (FOV) of 96 × 96 mm on a 128 × 128 matrix and 2 mm 
slice thickness, flip angle (FA) 40º for 4.7T and 47.6º for 7T, echo time (TE) 20 ms and a 
repetition time (TR) of 750 ms per segment resulting in a volume acquisition time of 6 seconds. 
For anatomical measurements, we used a FLASH sequence with the same FOV 96 × 96 mm2, 
matrix 256x256, slice thickness 2 mm, flip angle=70º, TE=10 ms and TR=2000 ms. A high-
resolution 3D-MDEFT anatomical scan with an isotropic resolution of 0.5 mm3 was acquired 
for co-registration with the FLASH and EPI images. For more details on the fMRI acquisition 
methods see previously published papers31,32. Then, fMRI data were reconstructed and 
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imported into a MATLAB based toolbox (mrVista). The high-resolution 3D-MDEFT 
anatomical data were used to manually segment the white-gray matter boundary in itkGray 
software, and 3D cortical surface and flat mesh models were created and realigned with the 
functional data by using mrVista. The functional images were corrected for motion in between 
and within scans28. 

Population receptive field (pRF) mapping 

For retinotopic mapping we used the population receptive field (pRF) method. The threshold 
of the explained variance (EV) was set to 15%, same with our human experiments and in 
agreement with previous studies33,34. 

MRI Stimuli 

Stimulus presentation: 

Visual stimuli were displayed using a custom-made fiber-optic projection system at a 
resolution of 800 × 600 pixels (30 º × 22.5 º) with a 60 Hz frame rate and mean luminance ~50 
cd/m2. Stimuli were centered on the approximate location of the fovea by using a modified 
fundus camera (Zeiss RC250). Animal eyes were fitted with appropriate contact lenses to 
ensure the stimulus remained in focus. At the beginning of each experiment a polar pattern 
with radius five degrees was presented monocularly to the left and right eyes in a block design 
(40 seconds ON – 40 seconds OFF) and the results were analysed online to select the eye with 
best alignment and the strongest responses. Further stimulus presentation was restricted to this 
eye. 

Population RF (pRF) mapping: 

Moving square-checkerboard bars (100% contrast) with width 1º were moving in 0.5º steps 
every volume acquisition on the full screen extent sequentially in four different directions 
(Left-Right, Up-Down, Right-Left, Down-Up). Outside the bar aperture an isoluminant gray 
background was presented. Stimuli were generated using custom-made stimulus generation 
and presentation software (MRIstim). Each direction was presented twice for each scanning 
acquisition of 204 images. This was repeated 2-3 times. 

Single unit RF (suRF) mapping: 

The suRF mapping binary checkerboard stimuli were generated with the same program 
creating the stimuli for the human subjects using Psychtoolbox-330 in MATLAB (The 
Mathworks, Inc.). The only difference was that the block design ON-OFF periods were 24 and 
36 seconds respectively and we used eight possible checker size conditions [0.25°, 0.5°, 1°, 2°, 
4°, 6.5°, 13.0°, 22.5°]. Since the animals were under anesthesia no fixation spot was presented. 
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Electrophysiology data acquisition and preprocessing 

Electrophysiological recordings were acquired from area V1 in two monkeys (M3, M4). 
Recording chambers were positioned stereotactically over the operculum with the aid of T1-
weighted high-resolution 3D-MDEFT anatomical MRI images (0.5 mm isotropic). These 
images were used for targeting the region of interest, 3D-skull reconstruction and design of the 
implants to accurately fit the contours of the skull. A 5-axis CNC machine (Willemin- Macodel 
W428) was used to build these form-specific implants that resulted in an excellent fit between 
the implants and the underlying skull surface. In one animal (M4) the implant was constructed 
from medical-grade titanium, which precluded MRI measurements. In the second animal (M3), 
the chamber was constructed from polyether ether ketone plastic (TECAPEEK; Ensinger 
GmbH), which is MRI compatible and we could thus also acquire pRF and suRF 
measurements. 

In M3 recordings were conducted primarily using custom made tetrodes (see previous work 
for detais35; N=42 experiments) and in some (N=4) a custom-made multi-channel linear probe 
with 10 platinum/iridium channels with inter-distance ~150µm was used in parallel. After 
eliminating noisy channels with none or very little spiking activity and channels recorded from 
area V2 this resulted in N=35 datasets from area V1. In M4 recordings were conducted using 
either single-channel tungsten electrodes (FHC, Inc., Bowdoin, ME USA; N=8 experiments) 
or custom made multi-channel probes made with platinum/iridium wire (9 linearly arranged 
recording locations with inter-distances of ~150µm, the 8th location was consisting of three 
nearby channels; N=10 experiments). After eliminating noisy channels with none or very little 
spiking activity and channels recorded from areas V2 and V4 this resulted in N=38 datasets 
that were classified as recordings from V1. 

The electrodes were guided into the brain manually by custom designed adjustable micro-
drives. Electrophysiological activity was sampled at 32 kHz, digitized (16 bits), and stored 
using the Digital Lynx data acquisition system (Neuralynx). Multiunit activity was defined as 
the events that exceeded a predefined threshold (25 V) of the filtered, digitized signal (digital 
bandpass 600 Hz to 6 kHz). One animal (M4), was implanted with a scleral search coil36,37 and 
its eye movements were monitored on-line. In the second animal (M3), eye movements were 
monitored by an infrared eye-tracker (IView XTM Hi-Speed Primate, SMI). The behavioral 
aspects of the experiment were controlled using the QNX real-time operating system (QNX 
Software Systems Ltd). 

Electrophysiology Stimuli 

Stimulus Presentation: 

Visual stimuli were displayed using a dedicated graphics workstation (TDZ 2000; Intergraph 
Systems) running an OpenGL-based stimulation program (STIM). Stimuli were presented on 
a LCD monitor positioned at 1 m distance from the animals’ eyes (width: 60 cm, height: 34 
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cm) with a resolution of 1920 ×1080 and a refresh rate set to 100 Hz. The monitor was gamma 
corrected with a mean luminance of 22.2 cd/m2. 

Reverse correlation RF mapping: 

To map the multiunit neuronal RFs we used the reverse correlation technique21-25. Stimuli were 
small square dots (black or white) presented on a gray background while the monkey fixated a 
small red spot with 0.2° diameter at the center of the monitor. The dots were positioned inside 
a rectangular grid with side dimensions of 0.5°-2.5° and location depending on a preliminary 
manual mapping of the RF location that was placed approximately in the center of the grid. 
Each dot was presented for 20 ms at pseudorandomized locations to have approximately equal 
number of presentations in each position inside the grid for each luminance (black and white). 

Moving bar RF mapping: 

In one of the animals (M3), in parallel to the reverse correlation mapping, we also performed 
RF mapping with moving bars; this was similar to the pRF mapping performed in humans with 
the bars moving in eight different directions across the monitor in steps of 45°. The bar width 
was 0.5° and was moving by steps of 0.25° every 10 ms. 

Electrophysiology Analysis 

Eye-movement analysis: 

First, we calculated the time series of eye-velocities by differentiation of the position signals. 
Then, the horizontal and vertical angular velocities were independently thresholded at seven 
times their median-based SD to detect putative microsaccadic events. An event was classified 
as a microsaccade if the following additional criteria were satisfied: (1) it had a minimum 
duration of 8 ms, (2) it had an amplitude between 1 and 60 min of a degree, and (3) it had a 
maximum peak-velocity of 110° per second38. These parameters provided accurate detection 
of the microsaccades. In addition, the extracted microsaccades satisfied the main-sequence 
criterion and showed high correlation of amplitude and velocities. Fixation locations were 
extracted as the mean positions between saccades. 

Reverse correlation RF mapping: 

The multiunit RFs at each recording location were reconstructed by iterative construction of 
spike histograms for each stimulus position. Each bin had a time span of 10 ms and in total we 
considered 12 bins (120 ms) post stimulus presentation. For each presentation of a dot 
(separately for black and white dots) the spikes following were binned according to the eye-
movement corrected position of the dot. Eye-movement correction improved substantially the 
estimation of RFs in M4 that had an eye-coil. In contrast, in M3 (infrared eye-tracker) this 
procedure did not demonstrate improvements or even worsened RF reconstruction and thus it 
was not applied. Receptive field sizes with or without the correction in M3 were very similar 
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with some changes in RF position that could reflect drifts of the infrared eye-tracker. From the 
visual field position histograms, we then created spatial maps for each time-bin. Separate maps 
for the dark and bright dots as well as the average of the two were created. These maps were 
converted to z-scores by subtracting the mean and dividing with the standard deviation of the 
first three time-bin maps (i.e. < 30 ms where no substantial response is expected or was 
observed). Then, the bin with maximal responses was identified and used for fitting a 2D-
isometric Gaussian with its parameters reflecting RF position (x,y) and size (2σ). This 
procedure was performed for each map type (i.e. dark, bright, mean) and we selected the 
parameters of the model providing the best fit based on the coefficient of determination (R2). 
Examples of RF data and fits are presented in Fig. S10-S15. 

Moving bar RF mapping: 

For the analysis of the moving bar RF mapping we have used a procedure similar to the pRF 
topographic mapping approach we proposed earlier for fMRI data7. For the analysis of the 
electrophysiological data an additional step was required before estimation of the RF. 
Specifically, a time delay reflecting the neuronal response latency was estimated so that the 
peaks of the responses when the bar was running in opposite directions were aligned. Also, in 
contrast to the fMRI analysis pipeline no hemodynamic deconvolution was necessary. All other 
steps of analysis were identical to the fMRI. 

Modeling and Analysis 

Single unit receptive field (suRF) modeling 

In order to estimate the suRF size, the amplitudes of the responses (bBOLD) to the block design 
of checkerboard stimuli with different checker sizes lchk presented in each block were 
estimated using a Generalized Linear Model (GLM). Only voxels that demonstrated GLM 
explained variance (EV) greater than 15% were further considered.  The b’s for all conditions 
were then used to fit models of the general form of Eq. 1 (see main manuscript) by using non-
linear least squares (lsqcurvefit function in Matlab; range of suRF-size between 0-10 degrees). 
These models use a static-nonlinearity to transform estimated neural responses (Eq. 2 in the 
main manuscript) to BOLD signal. We considered several models (see Table 1). 

For the purpose of modeling the receptive fields, we assume that neurons in primary visual 

cortex (V1) can be modeled as linear combinations of even ( ) and odd ( ) 2D-Gabor 
functions , described respectively with the following two equations: 
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  (2.2) 

with x and y the Cartesian coordinates in the visual field,  and  defining the ellipsoid 2D 

Gaussian envelope and ,  defining the center frequency and orientation. The spatial 

frequency sensitivities ,  of these Gabor filters can then be described by the respective 

Fourier transforms: 

  (3.1) 

  (3.2) 

Further, we assume that the distribution of orientation selective cells within an fMRI voxel is 
approximately homogeneous, thus the spatial frequency sensitivity of voxels can be described 
relative to a single center frequency  independent of orientation as follows: 

   (4.1) 

   (4.2) 

Thus, the spatial frequency sensitivity of the population of cells within a voxel can be estimated 
according to a linear combination of the equations 3.1 and 3.2. For simplicity, we take the 
average of the even and odd parts as follows:  (see also 

Fig. S1). 

Then, for estimating the neural responses R (see Eq. 2 in the main manuscript), we integrated 
the product of SG with an analytical form of the stimulus frequency content S (see Fig. S2). 
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Supplementary Materials 

Table S1. 
Parameter estimates [±95%CI] and statistics of linear regression on the relationship of 
receptive field sizes vs. eccentricity in human subjects as shown in Fig. 3 E-H. To test if 
intercept and slope are different for suRF and pRF we also performed analysis of covariance 
(ancova) on the population (last row H1-4). Second level comparisons (Tukey-Kramer) showed 
a significant difference of the intercepts (P=1.33×10-2) as well as the slopes (P=1.06×10-10). 

 
Subject Model Intercept Slope F-statistic p-value 

H1 
suRF 

pRF 

0.42 ± 0.05 

0.43 ± 0.17 

0.06 ± 0.01 

0.24 ± 0.02 

312.18 

578.05 

8.28 × 10-52 

3.88 × 10-79 

H2 
suRF 

pRF 

0.60 ± 0.12 

1.22 ± 0.41 

0.05 ± 0.01 

0.45 ± 0.05 

44.85 

330.96 

1.02 × 10-10 

1.22 × 10-50 

H3 
suRF 

pRF 

0.81 ± 0.24 

1.01 ± 0.49 

0.15 ± 0.04 

0.44 ± 0.09 

46.82 

91.25 

1.03 × 10-10 

6.37 × 10-18 

H4 
suRF 

pRF 

0.63 ± 0.13 

0.72 ± 0.36 

0.07 ± 0.02 

0.38 ± 0.05 

60.28 

255.00 

2.49 × 10-13 

2.05 × 10-39 

H1-4 
suRF 

pRF 

0.69 ± 0.07 

0.94 ± 0.19 

0.05 ± 0.01 

0.33 ± 0.02 

139.47 

727.71 

1.96 × 10-30 

3.73 × 10-124 
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Table S2. 
Parameter estimates [±95%CI] and statistics of linear regression on the relationship of 
receptive field sizes vs. eccentricity in monkey subjects as shown in Fig. 4 E-G. To test if 
intercept and slope are different for suRF and pRF we also performed analysis of covariance 
(ancova) on the population (last row M1-2). Second level comparisons (Tukey-Kramer) 
between the pRF and suRF showed a significant difference of the intercepts (P=9.56×10-10) as 
well as the slopes (P=9.56×10-10). In contrast, the difference of the suRF with 
electrophysiology was not-significant for the intercepts (P=0.47) or the slopes (P=0.98). 

 
Subject Model Intercept Slope F-statistic p-value 

M1 
suRF 

pRF 

0.69 ± 0.17 

1.97 ± 0.46 

0.03 ± 0.02 

0.13 ± 0.05 

13.66 

25.13 

2.52 × 10-4 

8.27 × 10-7 

M2 
suRF 

pRF 

0.39 ± 0.04 

1.29 ± 0.16 

0.06 ± 0.01 

0.20 ± 0.03 

365.00 

241.35 

4.05 × 10-63 

1.44 × 10-45 

M1-2 
suRF 

pRF 

0.42 ± 0.05 

1.39 ± 0.15 

0.06 ± 0.01 

0.19 ± 0.02 

325.61 

319.08 

9.37 × 10-63 

1.07 × 10-61 

M3-4 ephys 0.16 ± 0.05 0.08 ± 0.02 63.36 1.99 × 10-11 
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Fig. S1.  

Voxel spatial frequency selectivity based on Gabor-like receptive fields36,37. (A) Examples of even (ge) and odd 
(go) symmetric 2D-Gabor pairs in Cartesian x-y space (top) and their respective spatial frequency selectivity in 
frequency space (bottom) for different values of parameter nx that controls the shape of the Gabor (number of 
subunits) by the relationship between the frequency of the sinusoid and the standard deviation of the Gaussian 
envelope. (B) We chose to use nx = ny = 0.25 that represents a central tendency of data recorded from cats38 and 
monkeys24. (C) Equations of the Gabors (ge, go) and their spatial frequency selectivity (Ge, G0) as shown in A. (D) 
Assuming a homogeneous representation of Gabor orientations within a voxel we can estimate the spatial 
frequency selectivity of the voxel independent of orientation (SGe, SGo). (E) Equations that estimate the spatial 
frequency selectivity of the voxel depending on the envelope standard deviation σ (note that ω0 is also depending 
on σ based on nx).  
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Fig. S2 

Stimulus and its spatial frequency content. Stimuli were full-field binary checkerboard patterns switching 
randomly with a frame rate of 30 Hz in blocks of 10 seconds. We manipulated the average spatial frequency 
content by changing the size of the square checkers with edge lchk. In (A) a cartoon of three stimulus frames is 
shown next to the average spatial frequency content estimated with the fast Fourier-transform (FFT) for four 
example conditions [lchk = 0.1º, 0.2 º, 0.4 º, 0.8 º]. Panel (B) shows the analytical estimation of the same spatial 
frequencies using an adjusted 2D sinc function. Since the 2D sinc function corresponds to the transformation of a 
single checker, we adjusted it by dividing with an additional Gaussian of standard deviation σl (depending on the 
smallest possible checker) to take into account the full checkerboard. (C-D) demonstrate the difference between 
the 2D-sinc and adjusted 2D-sinc estimators along the horizontal axis demonstrating that the adjusted version 
nicely estimates the correct frequency content.  
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Fig. S3 

Transformation of neural responses to BOLD signal using different static non-linearities. In (A) the raw neural 
response (R) is shown. In (B) the LSC model using a log-square root non-linearity is presented for different 
receptive field sizes sc (see legend). (C) similar to B but for the PLC model which incorporates a power-law non-
linearity.  
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Fig. S4 

Demonstration of the effects of the amplitude of divisive normalization (dPLC model with ss=4º) as given by 
changing the gain parameter gs.  
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Fig. S5 

Demonstration of the effects of receptive field size of subtractive normalization (sPLC model with gs=0.2) as 
given by changing ss.   
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Fig. S6 

Demonstration of the effects of the amplitude of subtractive normalization (sPLC model with ss=4º) as given by 
changing the gain parameter gs.   
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Fig. S7 

Model relative likelihood distributions as derived from AIC scores 17 across voxels of four different models: LSC, 
PLC, dPLC, and sPLC (see Table S1 for details on the models) Each panel A-D presents the results of each human 
subject H1-H4 respectively.  
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Fig. S8 

Selected example voxels for which the subtractive normalization model (sPLC) outperforms the no-normalization 
model (PLC) based on Akaike’s information criterion (AIC). Note that the responses as reflected in the normalized 
b-weights demonstrate suppression for intermediate checker sizes and that this could not be fit by the PLC model 
(see Fig. S3 C for PLC model behavior). H1-H4 reflect the different subjects. 
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Fig. S9 

FMRI estimated RF sizes versus eccentricity for explained variance (EV) threshold of 10% instead of 15% used 
throughout the manuscript (see Fig. 4 for the respective plots in the monkeys). (A-B) pRF (gray) and suRF 
(black) size as a function of eccentricity for monkeys M1-M2 respectively. Each dot represents a voxel. Lines 
represent linear regression fits. Note that data points extent more towards the fovea in comparison to Fig. 4 but 
the general relationships remain the same. We conjecture that the limited significance of activation in the fovea 
in monkeys in contrast to humans could be explained: a) by the known difficulty to activate foveal regions in 
anesthetized macaques, b) increased effects of surround suppression observed in the fovea during anesthesia and 
no eye jittering. Importantly, a large proportion of foveal voxels in monkey demonstrated suppression (see Fig. 
4A) and thus could be better fitted with the subtractive normalization model (PLC) like in Fig. S8.  
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Fig. S10 

Example of reverse correlation receptive field recorded by electrophysiological recordings in V1. In panel A, the 
spatiotemporal RF of multi-unit activity is presented using two-dimensional segments of the visual fields that 
reflect time windows of 10 ms. Time zero represents the recording of a spike and positive times run backward so 
that in each panel the average stimulus during a window of time before the spike is presented. In panel B, we 
show the fit of a 2D isometric Gaussian to the data. The parameter s of the Gaussian is assumed to be proportional 
to RF size (2s).   
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Fig. S11 

Example of reverse correlation receptive field recorded by electrophysiological recordings in V1. In panel A, the 
spatiotemporal RF of multi-unit activity is presented using two-dimensional segments of the visual fields that 
reflect time windows of 10 ms. Time zero represents the recording of a spike and positive times run backward so 
that in each panel the average stimulus during a window of time before the spike is presented. In panel B, we 
show the fit of a 2D isometric Gaussian to the data. The parameter s of the Gaussian is assumed to be proportional 
to RF size (2s).   
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Fig. S12 

Example of reverse correlation receptive field recorded by electrophysiological recordings in V1. In panel A, the 
spatiotemporal RF of multi-unit activity is presented using two-dimensional segments of the visual fields that 
reflect time windows of 10 ms. Time zero represents the recording of a spike and positive times run backward so 
that in each panel the average stimulus during a window of time before the spike is presented. In panel B, we 
show the fit of a 2D isometric Gaussian to the data. The parameter s of the Gaussian is assumed to be proportional 
to RF size (2s).   
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Fig. S13 

Example of reverse correlation receptive field recorded by electrophysiological recordings in V1. In panel A, the 
spatiotemporal RF of multi-unit activity is presented using two-dimensional segments of the visual fields that 
reflect time windows of 10 ms. Time zero represents the recording of a spike and positive times run backward so 
that in each panel the average stimulus during a window of time before the spike is presented. In panel B, we 
show the fit of a 2D isometric Gaussian to the data. The parameter s of the Gaussian is assumed to be proportional 
to RF size (2s).   
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Fig. S14 

Example of reverse correlation receptive field recorded by electrophysiological recordings in V1. In panel A, the 
spatiotemporal RF of multi-unit activity is presented using two-dimensional segments of the visual fields that 
reflect time windows of 10 ms. Time zero represents the recording of a spike and positive times run backward so 
that in each panel the average stimulus during a window of time before the spike is presented. In panel B, we 
show the fit of a 2D isometric Gaussian to the data. The parameter s of the Gaussian is assumed to be proportional 
to RF size (2s).   
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Fig. S15 

Example of reverse correlation receptive field recorded by electrophysiological recordings in V1. In panel A, the 
spatiotemporal RF of multi-unit activity is presented using two-dimensional segments of the visual fields that 
reflect time windows of 10 ms. Time zero represents the recording of a spike and positive times run backward so 
that in each panel the average stimulus during a window of time before the spike is presented. In panel B, we 
show the fit of a 2D isometric Gaussian to the data. The parameter s of the Gaussian is assumed to be proportional 
to RF size (2s).  
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