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ABSTRACT 17 

In order to tackle heterogeneity of cancer samples and high data space dimensionality, we propose a method 18 

NEAmarker for finding sensitive and robust biomarkers at the pathway level. In this method, scores from 19 

network enrichment analysis transform the original space of altered genes into a lower-dimensional space of 20 

pathways, which is then correlated with phenotype variables. The analysis was first done on in vitro anti-21 

cancer drug screen datasets and then on clinical data. In parallel, we tested a panel of state-of-the-art 22 

enrichment methods. In this comparison, our method proved superior in terms of 1) universal applicability to 23 

different data types with a possibility of cross-platform integration, 2) consistency of the discovered correlates 24 

between independent drug screens, and 3) ability to explain differential survival of treated patients. Our new 25 

in vitro screen validated performance of the discovered multivariate models. Finally, NEAmarker was the only 26 

method to discover predictors of both in vitro response and patient survival given administration of the same 27 

drug. 28 

 29 

List of abbreviations 30 

 AGS, altered gene set (gene set characterizing an individual sample/cell line/patient); 31 

 FGS, functional gene set (typically a pathway); 32 

 NEA, network enrichment analysis; 33 

 PWNEA, NEA at pathway level (i.e. by using multi-gene FGS); 34 

 GNEA, NEA by using single-gene FGS (i.e. individual network nodes); 35 

 ORA, overrepresentation analysis of FGS versus AGS; 36 

 GSEA, gene set enrichment analysis of FGS versus full ranked gene lists; 37 

 AGSEA, variant of GSEA  where genes are ranked by absolute value; 38 

 ZGSEA, variant of GSEA where genes are ranked by z-score of deviation from cohort mean. 39 

 40 
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INTRODUCTION 42 

The problem known as the “dimensionality curse” [1],[2] - when a set of few (tens to hundreds) biomedical 43 

samples are described with a much larger number of molecular variables - undermines robustness of 44 

phenotype predictors. This was aggravated further when novel omics platforms expanded the variable space 45 

from thousands to nearly millions of potentially informative molecular features. In addition, profiling of cancer 46 

samples revealed that genomic alterations across tumors of the same type appear disparate and poorly 47 

overlapping [2]. As a result, variability between cancer samples is often higher than is assumed by the 48 

common parametric statistics [3]. Beyond a few success cases [4],[5] molecular cancer signatures have 49 

been hard to corroborate in a novel, independent cohort. Across a number of meta-analyses, conclusions 50 

about practical applicability of the signatures range from entirely negative [6],[7] to mixed or moderately 51 

positive [8]. The common understanding is that seemingly disparate individual events must be confluent to 52 

certain pathways that represent cancer hallmarks and pathways [9]. 53 

When, Modeling  drug response in vitro was questioned by finding that molecular landscapes of cancer cell 54 

lines are be very different from those of original tumors [10]. A later, more comprehensive exploratory 55 

analysis demonstrated overall consistence of molecular aberrations between cell lines and primary tumors 56 

from matching cancer sites [9] – although these authors did not investigate the therapeutic relevance of 57 

discovered in vitro correlates. Haibe-Kains and co-authors published a discouraging comparison [11] 58 

between two large in vitro screens [12],[13]. After  that  conclusion and the following polemics [14], the urgent 59 

need in cross-platform and clinically based validation became even more apparent. It is dictated by both 60 

statistical and biological challenges, such as excessive data dimensionality, imperfect analytical tools, the 61 

heterogeneity of cancer genomes, and the downstream diversity of methylation and expression patterns [15]. 62 

Authors of one of the most up-to-date investigations still admitted that the ability of cancer cell drug screens 63 

"to inform development of new patient-matched therapies... remains to be proven” [16]. On the clinical side, 64 

oncologists expected reports on patient-specific alterations in the light of knowledge available from 65 

computerized support systems [17].  In our view, these challenges could be most systematically addressed 66 

by summarizing sparse, disparate events at the pathway level via the global interaction network. 67 

 Adding omics data to clinical variables has demonstrated the potential for prediction of cancer disease 68 

outcome in a DREAM challenge [18]. One particularly winning strategy was to employ multigenic expression 69 

patterns. Such ‘meta-genes’ [19] were, despite the seemingly 'network-free' definition, nothing other than 70 

modules in a co-expression network, which allowed dimensionality reduction and a biological generalization. 71 
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Another DREAM project revealed efficiency of  summarizing gene expression in cancer cell lines over 72 

pathways [20]. 73 

Further, identifying patient sub-categories responsive to a treatment is more challenging than one-74 

dimensional drug sensitivity or survival analyses. A practical method should profile individuals across the 75 

cohort, so that the profiles can be fit to clinical variables and covariates. Therefore, a crucial feature for 76 

biomarker discovery would be the ability to assign scores to individual samples rather than to derive feature-77 

pathway associations from the whole data collection. In addition, further sample classification in a flow of 78 

new patients should not require re-running the analysis on the whole cohort, i.e. recalculating the data 79 

space, as is often the case.  80 

In this work, we use acronym NEA to refer to a specific approach for network enrichment analysis, which 81 

ascends to the idea of accounting for the node degrees of individual genes [21]. Using that approach of 82 

significance estimation via comparing network connectivity to a null model , NEA [22],[23] can characterize 83 

experimental and clinical samples with pathway scores by accounting for sample-specific gene set 84 

relationships in the global gene interaction network. The pathway-level output is simple, uniform and 85 

statistically sound, so that it could be used in downstream analyses against arbitrary phenotype models. The 86 

ability to summarize rare alterations that cause the recurrent cancer phenotypes into pathway profiles 87 

provides higher statistical power, more information on the underlying biology, and robustness in phenotype 88 

prediction. However neither NEA nor alternative methods of pathway enrichment had been systematically 89 

applied to the task presented above: the discovery of biomarkers suitable for individual outcome prediction.  90 

In the first section of Results, we provide a detailed explanation of the method NEAmarker and an instructive 91 

example, both in comparison with alternative methods. A representative set of such methods, was selected 92 

by investigating a wide range of earlier proposed algorithms and approaches. Since they were mostly 93 

designed for purposes different from ours, their applicability was often limited. In Methods (section 94 

“Alternative Methods of Pathway and/or Enrichment Analysis”), we discuss their principles, consider both 95 

applicability to biomarker discovery and software usability, and motivate our choice of methods presented in 96 

Figure 1 and Table 1. Thereby performance of our method is measured in parallel with using original gene 97 

profiles and those alternative enrichment methods: overrepresentation analysis (ORA), gene set enrichment 98 

analysis (GSEA, in two versions: [24], [25]), and signaling pathway impact analysis (SPIA, [26]). The outline 99 

and details of the comparative performance evaluation are reported in Results. More specifically, we: 1) 100 

assess content of relevant information in  three published experimental in vitro drug screens [12] [13] [27] 101 
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(dubbed CCLE, CGP, and  CTD, respectively), 2) investigate preservation of this content  across drug 102 

screens  and then in one novel dataset, 3) perform a novel, small scale drug screen and demonstrate that 103 

the pathway-level multivariate models withstand the independent validation, and finally 4) validate  the 104 

identified correlations in clinical treatment profiles from TCGA [28] (Table 2).  105 

RESULTS 106 

1. Background  107 

The main principle of NEA can be understood via comparison to gene set enrichment analysis in its simplest 108 

form, the so called overrepresentation analysis, ORA [29] (Fig. 1A). An experimental or clinical sample can 109 

be characterized by a set of altered genes (AGS), such as top ranking differentially expressed genes, or a 110 

set of somatic mutations, or a combination of these. The other component of the analysis is a collection of 111 

functional gene sets (FGS): pathways, ontology terms, or custom sets of biological importance. Importantly, 112 

FGS collections should summarize existing knowledge, being either expert curated or derived from 113 

experimental data. Enrichment scores of the AGSs can thus be used as the samples’ coordinates in the 114 

lower-dimensional FGS space. In ORA, enrichment is measured by the number of genes shared by the FGS 115 

and the AGS, given the sizes of the latter. NEA considers the network environment by counting the network 116 

edges that connect any genes of AGS with any genes of FGS (Fig. 1D). In both ORA and NEA significance 117 

can be evaluated with appropriate statistical tests. For NEA, this evaluation must be additionally normalized 118 

by topological properties of the network nodes. Due to the presence of different interaction mechanisms in 119 

the global network, NEA does not expect FGS genes to be altered themselves and therefore is capable of 120 

detecting enrichment of e.g. transcriptomics-based AGS in a pathway that operates by other mechanisms, 121 

such as trans-membrane signaling, phosphorylation etc. Compared to ORA, NEA holds other key 122 

advantages, such as exceptionally high power to detect enrichment in a global network, given the latter is 123 

sufficiently dense, i.e. when the median number of edges per gene is around 50. Hence, even smaller gene 124 

sets often connect to each other by multiple edges. An ultimately reduced FGS can even appear as an 125 

individual key network node. This gene-level network analysis, GNEA (Fig. 1E) provides a more focused 126 

alternative to the default analysis at the pathway level, PWNEA (Fig. 1D) and we therefore separately 127 

evaluated performance of PWNEA and GNEA in the present work. 128 

  129 
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Figure 1. Rendering biological samples into pathway space with alternative enrichment methods. 130 

The placement of three cancer cell lines HuH-7, NCI-H684, and RT-112 in a 2-dimensional space of pathways 'PPAR signaling' 131 

and 'WNT signaling' (KEGG#03320 and KEGG#04310) (A, B, C, and D) or, alternatively, in a space of two key genes from these 132 

pathways (E) was done by using cell line-specific altered gene sets, AGS, which originated from transcriptomics data and 133 

contained 226, 143, and 48 member genes, respectively (AGS of class significant.affymetrix_ccle).  134 

A. ORA: enrichment of the three AGSs was analyzed against the two pathways (or, more generally, functional gene sets, FGS) 135 

using the overrepresentation analysis. The pathway enrichment scores were calculated from overlap between the gene sets. 136 

For clarity we here denote the pathway size NPW  which corresponds to NFGS elsewhere in the article. Due to the relatively small 137 

gene sets sizes (NPW and NAGS), a noticeable (N∩ > 1) and significant overlap was observed in just one out of six cases, which 138 

could limit the ORA sensitivity.  139 

B. GSEA was calculated using the full ranked gene lists from each cell line sample [24]. 140 

C. SPIA accounted for topological relationships of altered genes within the pathways. More weight was assigned to patterns of 141 

consistent up/down-regulation, i.e. where deregulated genes adjoined in regulatory cascades. Relatively disjoint regulatory 142 

events contributed with lower weights. The gene set submitted to SPIA can be of arbitrary size, up to full length, as in GSEA. 143 

The fold change values determine relative influence of the pathway genes.  144 

D. NEA: the coordinates of the three AGSs in the space of two pathways were determined via network enrichment analysis. The 145 

NEA z-scores (on the axes and in yellow boxes) were calculated via network connectivity rates between corresponding AGS and 146 

FGS by taking into account the numbers of AGS-FGS links (Nedges in yellow boxes) and the node topology of the member genes 147 

(Fig. 1 and Methods). The summarized connections between AGSs and FGSs are shown by blue compound edges that 148 

represent multiple individual gene-gene edges in the global network (Nedges ~ line width). Individual edges within AGSs and 149 

within FGSs are not used in the analysis. 150 

E. GNEA: since the power of NEA to detect network enrichment was high, it was possible to apply NEA to the cell line AGSs 151 

versus individual gene network nodes WNT2B and APOC3 in the same way as it was done versus pathways in D. Even though 152 

the Nedges values were expectedly smaller than in B, four out of six Z-scores appeared rather high.  153 
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Table 1. Characteristic features of the alternative methods. 156 

Method Type of 
input data 

Allows 
data type 

integration  

Level of input 
(samples) 

Network 
analysis 

Level of output 
(features) 

original data Any - All genes - [same as input] 

ORA Any + Altered gene sets - Functional gene sets 

AGSEA Expression - All genes - Functional gene sets 

ZGSEA Expression - All genes - Functional gene sets 

SPIA Expression - All genes + Functional gene sets 

PWNEA Any + Altered gene sets + Functional gene sets 

GNEA Any + Altered gene sets + Network gene nodes 

 157 

The methods in Figure 1 implied different input, processing and output (Table 1). Accordingly, our data 158 

analysis procedure included the method-specific steps for sample/patient characterization, enrichment 159 

analysis, and phenotype modeling. In order to maximally adapt GSEA to our applications, we tested two 160 

different ways of ranking gene lists, AGSEA and ZGSEA (Methods) and present respective results 161 

separately. In sections 3...5 of Results, we report the results of systematic analyses of the experimental 162 

datasets with the alternative methods in order of increasing   complexity (Table 2).  163 

Table 2. Steps of analysis using alternative methods from Table 1. 164 
 165 

Step What was evaluated Figure Scheme 

1 Statistical power to detect correlates of drug sensitivity  
(fraction of significant correlates per dataset) 

3 Within 3 published in 
vitro screens; 
within TCGA clinical 
datasets 

2 Consistency of the discovered correlates between drug 
screens: cross-validation 

4 Between 3 published in 
vitro screens 

3 Consistency of multivariate models between drug screens: 
independent validation 

5 From CTD in vitro 
screen to the novel ACT 
screen 

4 Agreement between in vitro screens and clinical data 6 From 3 published in vitro 
screens to TCGA clinical 
datasets 

 166 
We begin by introducing an example of data analysis and interpretation (Fig. 2). Using data from the CGP in 167 

vitro screen, we observed a negative correlation between the PWNEA scores for pathway KEGG#00670 168 

“One carbon pool by folate”  for cell line AGS features significant.affymetrix_ccle, on the one hand, 169 

and sensitivity to methotrexate on the other hand (Spearman rank R = -0.248; p(H0) = 2.37e-06). The 170 

relatively low magnitude of the correlation is typical of such analyses and was explained by minor fractions of 171 

responders among all tested genotypes [14]. We compared cell lines which combined lowest sensitivity to 172 

methotrexate with highest PWNEA scores for KEGG#00670 (dubbed here Drug-/PW+) versus those 173 

possessing highest sensitivity and lowest PWNEA scores (Drug+/PW-) (ten cell lines in each set). Figure 2 174 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 21, 2018. ; https://doi.org/10.1101/301838doi: bioRxiv preprint 

https://doi.org/10.1101/301838


(A,B,D,E) displays the network connectivity of the FGS KEGG#00670 “One carbon pool by folate” with AGSs 175 

for two cell lines (MPP89, ECGI10) of group Drug-/PW+ and two cell lines (RS411, A2780) of group 176 

Drug+/PW-. As an example, MPP89 obtained an NEA score of Z=8.09 (NEA FDR=4.3e-10; see details in 177 

Methods) because there were             edges in the network between its AGS and the FGS, against  178 

                 edges expected by chance. For comparison, the NEA Z-score for A2780 was as low as -179 

0.77 and insignificant. The negative sign indicated that the number of network edges             between 180 

the AGS and FGS was lower than the value expected by chance,                . The expected numbers 181 

            differed between MPP89 and A2780 due to the difference in the cumulative AGS degrees 182 

NAGS=2268 and NAGS=5823, respectively (shown in Fig. 2F). The high score for MPP89 (Fig. 2A) was likely 183 

influenced by the network node of formimidoyltransferase cyclodeaminase FTCD, which provided 14 out of 184 

the 19 edges. Although enrichment against the same FGS might have been enabled via entirely different 185 

AGS member genes, we note that it was not the case here: FTCD was a member of four out of the ten AGS 186 

of the group Drug-/PW+. Methotrexate is a cytostatic drug that inhibits dihydrofolate reductase, thereby 187 

blocking synthesis of tetrahydrofolate, the downstream production of folic acid, and finally that of thymidine. 188 

We can therefore hypothesize that overexpression of FTCD, an enzyme controlling the interconversion 189 

between formimidoyltetrahydrofolate and tetrahydrofolate [30], might have rescued the thymidine production 190 

by supplying extra tetrahydrofolate [31]. Since FDCD itself is a member of the “One carbon pool by folate”, 191 

the pathway could be, in principle, detected by another enrichment algorithm. But how have the alternative 192 

tested enrichment methods dealt with this pattern? Any noticeable correlations were absent. This might be 193 

explained by the fact that FDCD was the only consistently deregulated gene out of the whole pathway, which 194 

was a challenging situation for each of these methods. ORA is not well fit for cases of such an overlap (N=1). 195 

In GSEA, enrichment via a single highly ranked list member is usually not detectable. In its turn, SPIA could 196 

not gain enough statistical power in absence of consistent (adjoining) patterns of dysregulation in multiple 197 

genes. Finally, expression of FTCD itself did not significantly correlate with methotrexate sensitivity in CCLE 198 

and CGP transcriptomics datasets. More broadly, we did not find any genes of the “One carbon pool by 199 

folate” and the adjoining pathway KEGG#00790 “Folate biosynthesis” which would significantly (by requiring 200 

q-value <0.05) correlate with methotrexate sensitivity at either gene expression or somatic mutation levels.  201 

For comparison, AGS of the other resistant cell line, ECGI10, did not share any genes with the target 202 

pathway (Fig. 2B), although still received a higher NEA score. In this case, the summarized connectivity was 203 

not dominated by a single network node of the AGS or of the FGS. Here the drug resistance could potentially 204 

have been mediated by the DNA repair protein XRCC5 or by the adenosylhomocysteine hydrolase  AHCY, 205 
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which were earlier reported to be implicated in methotrexate resistance [32] and folate metabolism [33], 206 

respectively. Unlike the upregulated FTCD in MPP89, both these genes were strongly downregulated in 207 

ECGI10. This emphasizes another feature of NEA: genes may be included into AGS due to alterations in an 208 

arbitrary direction, i.e. both over- and under-expression, hyper- and hypo-methylation, increased and 209 

decreased copy number etc. Therefore higher and, respectively, lower NEA scores cannot be traditionally 210 

interpreted as activation or suppression of the given pathway (FGS) but rather indicate a general 'pathway 211 

perturbation’. Hence the pathway “One carbon pool by folate” was unperturbed in the low-scoring cell lines 212 

A2780 and RS411, i.e. the latter did not exhibit features that could connect specifically to the pathway.  213 

  214 
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Figure 2 Network enrichment analysis of four cell line AGSs with differential response to methotrexate. 215 

While using AGSs of class significant.affymetrix_ccle, the response of cancer cell lines to methotrexate in 216 

CGP screen correlated with NEA scores (pane F) in regard to FGS “One carbon pool by folate” (pane C). The 217 
methotrexate-resistant cell lines MPP89 and ECGI10 (panes A and B) received higher NEA scores since the numbers 218 

of edges          connecting them to the FGS significantly exceeded those expected by chance,           (52 vs 219 
26.02 and 19 vs. 4.89, respectively; pane F). For comparison, the sensitive lines RS411 and A2780 (panes D and E) 220 
had fewer edges than expected (15 vs 19.93 and 10 vs. 12.54, respectively) and therefore received lower, negative 221 
scores.  222 

The table in F and the sub-networks in A, B, D, and E were created via the web-site for interactive NEA 223 
https://www.evinet.org/.  224 

 225 
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2. Construction of sample-specific AGS  227 

In order to analyze data from the in vitro cancer cell screens and the primary tumor samples (TCGA) in the 228 

same manner, we constructed AGSs by following the same platform-specific approaches. Intuitively, having 229 

an AGS that is too big or too small could deteriorate specificity or sensitivity of NEA. Therefore, in order to 230 

prove that differences are not due to selecting AGS genes in a specific way, we tested and compared a 231 

number of options for AGS compilation. Mutation-based AGSs were created by first listing all point-mutated 232 

genes in each given sample (which might include hundreds and even thousands of passenger mutations) 233 

and then retaining only those with significant network enrichment against the rest of the set. This approach 234 

[34] had been proposed for distinguishing between driver and passenger mutations - hence the filtering 235 

should reduce noise by enriching AGSs in driver genes. Next, AGSs from gene copy number and expression 236 

data included genes most deviating from the cohort means. This was achieved by using one of the three 237 

alternative algorithms (see Methods). Again, even such deviant gene sets could still be too large, e.g. due to 238 

listing copy number-alterations over extended chromosomal regions. In order to compact these, alternative 239 

AGS versions were derived by retaining only genes with significant network enrichment for signaling and 240 

cancer pathways or for the mutation-based AGS of the same sample, which reduced the AGS lists 3-10 fold. 241 

An alternative to using gene copy number data would be to account for respective mRNA expression levels. 242 

While this approach is subject of ongoing discussion, we have observed [34] that many known copy 243 

number drivers did not exhibit this correlation and therefore we decided not to filter copy number data by the 244 

gene expression feature. Finally and as an extra option, we merged platform-specific AGSs into combined 245 

AGSs.  246 

3. Statistical power to detect correlates of drug sensitivity 247 

The goal of this first, exploratory analysis was to compare the different methods and feature classes in their 248 

ability to explain the differential drug sensitivity. To this end, we counted features significantly associated with 249 

a phenotype after adjusting the respective p-values for multiple testing. For example (Suppl. Fig. 1), we 250 

analyzed associations between  point mutation profiles of cancer cell lines [35]  and cell lines’ sensitivity to 251 

each of the 203 anti-cancer drugs from Basu et al. [27]. The fraction of low p-values (e.g. p(H0) < 0.001)  in 252 

the total number of statistical tests did not exceed that expected in absence of any associations and 253 

therefore no genes received q-values (adjusted p-values) [36] below 0.05. On the contrary, the correlation 254 

analysis of gene expression [12] against the same drug sensitivity profiles discovered nearly 15,000 patterns 255 

of association between gene expression and drug sensitivity (out of in total 18,900 x 203 = 3,836,700 tests)  256 
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with p(H0) < 0.001. After the adjustment, more than 2500 of these gene-drug pairs remained significant at q < 257 

0.001. These two examples demonstrate how dramatically the information content could vary depending on 258 

the feature type and data origin.  259 

Applying this approach to the in vitro drug screen data, we evaluated features of different types and classes. 260 

Respectively, in TCGA data we measured correlations of features with survival of patients who received one 261 

of the 42 frequently used drugs in any of the eight cohorts. We systematically compared different feature 262 

types, i.e. original data from high-throughput platforms and NEA scores as well as classes within the types 263 

(e.g. transcriptomics data from Affymetrix vs. Agilent vs. RNA sequencing). We also analyzed the relative 264 

performance of different AGS classes.  265 

Overall, the NEA scores at both pathway level (PWNEA) and individual gene node level (GNEA) contained 266 

either approximately the same or larger amounts of information on drug sensitivity compared to the original 267 

gene profiles (Fig. 3). In the drug screen data analysis, the ORA, PWNEA, and GNEA features performed 268 

apparently better than the respective original point mutation, gene copy number, and gene expression data. 269 

In the TCGA data analysis, the advantage of PWNEA and GNEA over both ORA and original gene profiles 270 

for particular drugs was even more pronounced, although not always overall significant. Among the platforms 271 

for the in vitro screens, Affymetrix data by far outperformed mutation data, copy number, and combined 272 

AGSs. In TCGA datasets, RNA sequencing performed better than Affymetrix (the former data was not 273 

available for the cell lines). In general, transcriptomics datasets much more frequently manifested 274 

correlations with drug sensitivity than gene mutations and copy number datasets (Suppl. Fig. 3). While this 275 

observation is not new [9], the most obvious explanation should be that most of the genome alterations 276 

were insufficiently frequent for the statistical tests. As an example, less than 10% of the genes in the BRCA 277 

cohort had point mutations in more than 1% of the tumors and therefore the analysis did not gain enough 278 

statistical power. mRNA expression profiles were, on the contrary, available for most of the genes.We also 279 

assessed relative performance of the different AGS classes. From each dataset with continuous values we 280 

created AGSs of fixed size (top.200 and top.400) as well as sets of variable size where genes were 281 

included based on significance as referred to the cohort mean (significant) and, in addition to the latter, 282 

tested for network enrichment toward cancer gene sets (significant.filtered.mini) or any signaling 283 

pathways (significant.filtered.maxi). As illustrated in Supplementary Figure 3, the different classes 284 

yielded variable results. We evaluated consistency and significance of these differences using the same 285 

Kolmogorov-Smirnov test as in Figure 3 on the gene copy number and expression datasets for cell lines and 286 

TCGA samples (Suppl. Table 1). This evaluation, however, did not lead to an unequivocal conclusion. In the 287 
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cell line datasets, the fixed size AGSs performed significantly better, while in the TCGA datasets the situation 288 

was rather opposite.  289 

Figure 3. Comparison of the potential performance of different features, methods, and data types.  290 

The top 5 boxplot rows (labeled “.kegg”) present results obtained using the limited set of 197 KEGG pathways using gene 291 

expression data (label “GE”). Next, since ORA, PWNEA, and GNEA did not require intra-pathway topology and could 292 

accept any data type, the rest of boxplots present tests on the full set of 328 FGS (the respective PWNEA and ORA values 293 

for GE might differ, since the KGML gene sets were somewhat different from the core KEGG version). 294 

Each boxplot element combines correlation values between either features for a given class (labeled at the vertical axis) 295 

and for either the in vitro response to drugs in the three screens (left pane; in total 365 tests of 320 distinct drugs) or for the 296 

survival of patients who had been treated with drugs (right pane; 42 drugs in the eight TCGA cohorts). As an example, we 297 

calculated Spearman rank correlations between sensitivity of cell lines to drug RITA and transcriptomics features of these 298 

cell lines: either original Affymetrix (CCLE) gene expression profiles (18900 genes) or enrichment profiles of cell line 299 

specific AGSs of class top.400.affymetirx_ccle produced by GSEA (328 FGS features), pathway-level NEA 300 

(PWNEA; the same 328 features), and gene-level NEA (GNEA, in which 19027 nodes in the global network were treated 301 

as single-gene FGSs). The p-values of Spearman correlations between features and the drug sensitivity were then 302 

adjusted for multiple testing. The fractions of adjusted p-values below 0.1 became X-coordinates for the plot. The four 303 

examples (indicated by the blue markers), respectively, gave fractions 1837/18900=0.097; 23/328=0.070; 78/328=0.236; 304 

and 2090/19027=0.110. Each boxplot element combined such fraction values for each drug from each screen or TCGA 305 

cohort as well as all alternative AGSs classes for ORA, PWNEA, and GNEA. The features are grouped by type of profiling 306 

(original data, ORA, PWNEA, and GNEA as grey, brown, dark green and bright green, respectively) and by data type (point 307 

mutations, PM; copy number alterations, CN; and gene expression, GE). The p-value is shown when a category produced 308 

significantly (p<0.001 by Kolmogorov-Smirnov test) more non-zero patterns (i.e. fractions with FDR<0.1) than the 309 

respective baseline category (labeled “BL”). The boxes contain data points within 25-75th percentile intervals (i.e. between 310 

quartiles Q1 and Q3). The maximal whisker length, MWL, is defined as 1.5 times the Q1-Q3 interquartile range (i.e. the box 311 

length). Whiskers can extend to either the MWL or the maximal available data point when the latter is below MWL. Markers 312 

thus correspond to data points that extend off the box by more than the MWL value.  313 
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While the original features manifested considerable correlations in a number of classes, fractions of 316 

significant correlations were largely inferior when compared to NEA classes. In general, the different 317 

methods could be ranked by potential sensitivity in the following order: original gene profiles < [either ORA or 318 

ZGSEA] < [either AGSEA or SPIA]< [either PWNEA or GNEA]. However even upon adjustment for multiple 319 

testing, we did not draw ultimate conclusions from significance of these correlations. This exploratory 320 

analysis only informed us on the relative Type II error rates (i.e. sensitivity, or statistical power to detect 321 

correlation), suggesting that multiple alternative methods and data types were potentially predictive of drug 322 

sensitivity. In order to evaluate robustness of these predictions we proceeded to the validation step as 323 

described below. We also note that only ORA, PWNEA, and GNEA could provide means for integrating 324 

omics data from different platform (by simple merging of AGS lists), where ORA was apparently inferior. 325 
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4. Consistency of the discovered correlates in different drug screens 327 

In order to test reproducibility of the drug-feature associations in alternative experimental settings, we used 328 

data from three in vitro drug screens: CCLE [12], CGP [13], and CTD [27].  A comparison between CCLE 329 

and CGP screens was earlier presented in [11]. The CTD drug screen was published later and provided 330 

additional shared compounds for our cross-screen analysis (31 in addition to the 16 available to Haibe-Kains 331 

and colleagues). Similarly to these authors, we found that the association values between drug sensitivity 332 

and original features only weakly agreed between the drug screens.  333 

Albeit weak, these correlates were still significantly concordant across screens. Fig. 4A presents examples of 334 

between-screen rank correlations when using original gene expression profiles, ORA, PWNEA, and GNEA 335 

features. When comparing results from screens by CGP [13] and CTD [27], the correlation values 336 

between Affymetrix expression data and sensitivity to navitoclax ranged from R=0.31 (original gene profiles) 337 

to R=0.81 (GNEA). More systematic analyses demonstrated (Fig. 4, B and C) that using AGS features in 338 

PWNEA and GNEA considerably strengthened the concordance compared to the original gene profiles and 339 

AGSs in ORA. For example, by requiring across-screen rank correlations above 0.6, four NEA feature 340 

classes based on gene copy number performed better than any original copy number class. Under the same 341 

rank correlation threshold, eight out of ten transcriptomics NEA classes and all those based on point 342 

mutations were superior to the respective original data classes. Results obtained with ORA were, again, 343 

inferior to those from NEA and the summarized ranking appeared as: [original gene profiles and ORA] < 344 

PWNEA < GNEA. In the tests using 197 KGML-KEGG pathways and gene expression data, SPIA and 345 

AGSEA were somewhat superior over PWNEA.  346 
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Figure 4. Consistency of drug-feature associations between drug screens. 348 

For each drug shared by any two of the three in vitro drug screens (in total 47 cases), we calculated rank correlation 349 

between drug-feature rank correlation coefficients in the two screens.  350 

A.  Agreement of  drug-feature rank correlation coefficients between CGP and CTD screens of sensitivity to navitoclax 351 

using Affymetrix data as original gene expression values Affymetrix_CCLE (left pane) and AGS features of class 352 

significant.affymetrix_ccle profiled with ORA, PWNEA, and GNEA (other panes). The agreement in this case 353 

was worst upon using ORA profiles (rank R=0.32), whereas GNEA profiles performed best (rank R=0.81). The red lines 354 

indicate the levels of false discovery rate (the correlation p-value adjusted by Benjamini-Hochberg) FDR=0.1. The grey 355 

diagonal line is the linear regression fit. 356 

B. Fractions of cases with rank correlation value above each of the five specified thresholds on example AGS classes. The 357 

features are grouped by type of profiling and by data type identically to Fig. 3. Four example values from A are mapped to 358 

the gene expression plot in B. In order to characterize sensitivity to each of the 47 shared drugs, we used here, in parallel 359 

with respective original gene profiles, AGS features of one class of each type: significant.filtered.exome.mini 360 

(PM),  significant.filtered.snp6.mini (CN), and significant.affymetrix_ccle (GE), and 361 

significant.filtered.combined.maxi (‘combined’)  . The advantage of GNEA (with the exception of “Point 362 

mutations” and “Gene copy number”) and PWNEA became apparent at the highest cutoffs R>0.60 and R>0.75.  363 

C. Similarly to B, fractions of values above each of the five specified thresholds were calculated for all classes and 364 

combined for all data types. For certain AGS classes, PWNEA and GNEA produced correlates highly conserved across 365 

screens (R>0.6) in as many as 5-10% of cases.  366 
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 368 

We validated drug sensitivity profiles of four anti-cancer compounds, tested previously in the CTD screen - 369 

RITA, PRIMA-1
MET

/Apr-246, nutlin and JQ1 - in a new in vitro screen, named ACT. The activities of these 370 

compounds were re-tested in a panel of 20 cancer cell lines (the ACT set) for which the CCLE gene 371 

expression and point mutation profiles data were available. The wide response ranges indicated sufficient 372 

differential response across the ACT set. Similarly to the results in Fig. 3, both original gene profiles and NEA 373 

features showed significant, moderately strong correlation with drug sensitivity, which demonstrated the 374 

potential of multivariate models for drug sensitivity prediction.    375 

As shown above, the original gene profiles were poorly preserved across drug screens. Therefore, we 376 

compared the CTD results with those from ACT screen in a more relevant multivariate approach using the 377 

"elastic net" method [37]. Starting from all available features, each model was finally reduced to a much 378 

smaller subset. Multi-variate models are notoriously prone to over-fitting when the number of variables 379 

exceeds the number of samples. For this reason, validation on independent sets has become an essential 380 

requirement in such studies [38]. We thus created CTD-based models using cell lines not found in the ACT 381 

screen. The comparison was also streamlined by using only the data from CCLE Affymetrix and point 382 

mutation datasets versus two respective feature AGS classes mutations.mgs and 383 

significant.affymetrix_ccle. Using other classes produced similar results (data not shown).  384 

Figure 5 demonstrates that by applying the same set of elastic net parameters, in every case it was possible 385 

to obtain a descriptive model from CTD drug screen data with a number (4…129) of non-zero terms and then 386 

substantiate the model (possibly with a poorer performance) using the ACT data in a smaller cell line set. For 387 

each modeled case, we compared observed and predicted drug sensitivity values. The most important 388 

observation was that in all instances without exception the signs of these correlations were consistent 389 

between CTD model and ACT validation, i.e. negative correlations in the training set remained negative upon 390 

validation.  391 
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Figure 5. Predicted versus observed drug sensitivity across cancer cell lines in discovery versus validation 393 

screens. 394 

The predictive models for four compounds tested in the published CTD screen were validated in our ACT screen. 395 

Elastic net models were built under multiple cross-validation inside the training set (columns 1 and 3, blue) and then 396 

tested on non-overlapping sets of cell lines of the ACT screen (columns 2 and 4, green). Input variables were either 397 

original gene point mutation and expression profiles (columns 1 and 2, crosses) or PWNEA scores derived from these 398 

datasets for each cell line (columns 3 and 4, circles).  399 

Legends in each plot display the values of Spearman rank correlation between observed and predicted values ('Rank 400 

r') and the number of non-zero terms in the model ('N'). Parameter alpha for the shown plots was set to 0.9. Since 401 

the drug sensitivity values from CTD screen were inverted compared to the other screens, the correlations are 402 

presented as negative values (see also inverted vertical scales for “observed in Basu et al.”). Detailed plots for 403 

models built under different alpha parameters are found in Supplementary Files glmnetModels.Basu_vs_new.raw.pdf  404 

and glmnetModels.Basu_vs_new.pwnea.pdf. 405 

 406 
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Overall, the performance of the original profile models on the validation sets appeared comparable to that of 408 

PWNEA. However importantly, the former had much more freedom in model term selection since the initial 409 

feature space was around two orders of magnitude larger than that in PWNEA. Consequently, despite the 410 

rigorous cross-validation and feature selection implemented in the glmnet algorithm, using the original 411 

profiles generated more complex models (see the number of terms per model, N) which fit the training sets 412 

better (and were clearly overfitting in the case of nutlin). At the validation step however, the performance of 413 

the models based on original data significantly worsened - whereas the performance of PWNEA-based 414 

models remained at roughly the same level (all results obtained under variable parameters can be found in 415 

Supplementary Files glmnetModels.Basu_vs_new.raw.pdf and glmnetModels.Basu_vs_new.pwnea.pdf). This 416 

result essentially corroborated the previous conclusion about lower robustness of the original gene profiles 417 

compared to NEA.  418 

 419 

5. Agreement between in vitro screens and clinical data 420 

A more challenging task was to identify a conservation of associated features between the in vitro drug 421 

screens and clinical application of the same drugs. Any trustworthy setup of such an analysis would be very 422 

complex, so that even cross-validation and adjustment for multiple testing could not guarantee unbiased 423 

probabilistic estimation. Thus, the final judgment should had been made after a biologically independent ad 424 

hoc validation from the in vitro to the clinical domain. Even though the TCGA collection did not provide 425 

correctly balanced, randomized cohorts for estimation of relative risks, error rates etc., our task was 426 

simplified by only needing to compare the methods’ performance. In the eight largest TCGA cohorts, we 427 

counted how many  significant in vitro-detected features correlated with survival of patients who received 428 

same drug [28], (https://tcga-data.nci.nih.gov/docs/publications/tcga/; Suppl. Table 4), 429 

[39]. More specifically, molecular features of each class that were significantly correlated with sensitivity to a 430 

drug in cell lines were required to be also significantly correlated with patient survival in a TCGA cohort.Our 431 

survival analysis accounted for clinical covariates available from TCGA (Suppl. Table 4), which enabled 432 

estimating the 'net' effects of molecular features. 433 

We matched correlates of same data types in CCLE and TCGA (although possibly obtained using different 434 

omics platforms, e.g. Affymetrix microarray from CCLE could be matched to RNA-seq from TCGA etc.). Then 435 

we determined whether correlation p-values of individual features, in their turn, correlated between in vitro 436 

and TCGA data, i.e. if genes or FGSs with high (respectively low) correlation with drug response in vitro 437 
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tended to correlate in the same manner with the patients’ response. Due to the testing of alternative AGS 438 

classes, respective numbers of matching pairs in ORA, PWNEA, or GNEA were an order of magnitude 439 

higher than in raw data (column 2 in Table 3). Therefore we coupled this calculation with a significance test 440 

by randomly permuting feature and sample labels. Altogether, the permutation tests indicated that point 441 

mutation and copy number data had zero true discovery rates (TDR), i.e. their correlation p-values were 442 

preserved not more than expected by chance (see column 3 in Table 3). On the contrary, the TDR levels 443 

were substantial (0.02…0.805) for gene expression data and for AGSs processed with each of the 444 

enrichment analyses.  445 

At the next step (remaining columns of Table 3) we calculated the numbers of significant cases that would 446 

also be practically usable, i.e. had both lower p-values (<0.001) and rank correlation values higher than 0.2. 447 

No such cases were identified in the gene expression data. ORA, PWNEA, and GNEA yielded 0.8%, 3.5%, 448 

and 5.9% of practically usable cases, respectively. Interestingly, most (56 out of 78) of the ORA cases were 449 

identified in the breast cancer cohort, whereas the preserved PWNEA and GNEA correlations distributed 450 

uniformly across all the TCGA cohorts, except prostate cancer which cohort shared only one drug with one in 451 

vitro screen. Remarkably, the separate test using the 197 KGML KEGG pathways also demonstrated 452 

superiority of PWNEA over ORA, ZGSEA,  AGSEA, and SPIA - despite the reasonably good performance of 453 

the latter two in the in vitro analyses presented above. Thus at this crucial validation stage, robustness of the 454 

data types while translating drug sensitivity correlates between in vitro and clinical applications increased in 455 

the following order: [point mutations and gene copy number changes] < [gene expression] < [ORA, ZGSEA, 456 

AGSEA, and SPIA] < PWNEA < GNEA.  457 

458 
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Table 3. Conservation of drug sensitivity correlates between the in vitro drug screens and clinical 459 

applications. 460 
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The purpose of this analysis was to prove systematically significance of the produced correlates, and we 464 

reiterate that using the original data did not seem efficient: although many transcriptomics profiles correlated 465 

with drug sensitivity, those patterns could not be traced back to the in vitro screens.  466 

Most of the consistent NEA features were obtained for AGS based on gene expression data (Suppl. Table 2). 467 

They were identified for docetaxel, gemcitabine, and paclitaxel in BRCA (see the cancer cohort notation in 468 

Table 3); for dexamethasone, erlotinib, and topotecan in GBM; for gemcitabine in LUAD; and for 469 

gemcitabine, paclitaxel, tamoxifen, and topotecan in OV. While using gene copy number data, consistent 470 

PWNEA and GNEA features were found only for GBM (dexamethasone and topotecan). Consistent features 471 

that correlated with the response to cisplatin (LUSC) belonged to the combined, multi-platform types. Only 472 

one consistent GNEA feature was based on somatic mutation analysis (gemcitabine in LUSC), although it did 473 

not match all the criteria. Below we present promising features found in the drug screens, which were also 474 

predictive of survival if the drug was administered in a TCGA cohort.  475 

The cancer emergence and progression were earlier linked to tissue inflammation through the NOD-like 476 

receptor signaling [40]  . We found that the corresponding pathway score correlated with survival in ovarian 477 

carcinoma patients treated with topotecan (Fig. 6A).  478 
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Figure 6. Clinical performance of NEA features discovered in drug screens. 480 

Each TCGA cohort was split into four categories by two factors: 1) administration of the specific drug and 2) predictive 481 

feature value (pathway or individual gene score, indicated in the plot header), each above and below a threshold. The 482 

primary feature evaluation employed p-values calculated in the continuous score space, i.e. without splitting the 483 

patient cohort into binary classes by factor (2). Then the binary classifications by the both factors were used for 484 

visualization (as “treated/untreated” for the drug and at the quantile “optimal threshold” value for the quantitative NEA 485 

feature). The p-values are shown for the both alternatives. The plots present differential survival upon treatment with 486 

topotecan in ovarian carcinoma (A and C), gemcitabine in lung adenocarcinoma (B), and vinorelbine in lung 487 

squamous cell carcinoma (D).  488 

 489 

 490 
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 Carboxylesterases (CESs) are capable of hydrolyzing gemcitabine [41] -  for instance, CES2 slows down 492 

hydrolysis of the gemcitabine pro-drug LY2334737 [42]. We identified as many as 31 gene-wise NEA 493 

features which correlated with relapse-free survival in lung adenocarcinomas treated with gemcitabine. This 494 

list of network nodes from GNEA included CES1 (Fig. 6B), CES2, CES7, and a number of cytochromes with 495 

possible involvement in the catabolism of xenobiotics. Many of these genes were AGS members in both the 496 

gemcitabine-sensitive cell lines and in patients who responded to the gemcitabine treatment and – at the 497 

same time - they themselves were members of KEGG pathways 00980 “Metabolism of xenobiotics by 498 

cytochrome p450”, 00983 "Drug metabolism – other enzymes", and 00982 “Drug metabolism – cytochrome 499 

p450”. Consequently, the ORA and PWNEA analyses detected enrichment of these pathways in the same 500 

patients. However the pathway scores correlated with response to gemcitabine neither in the CCLE and CTD 501 

screens nor in the LUAD cohort) and therefore would be useless as biomarkers. The gene expression 502 

profiles of carboxylesterases and cytochromes in cell lines and primary tumors did not correlate with 503 

gemcitabine response either. EBAG9 had been implicated previously in ovarian cancer progression [43], 504 

but it has not been shown to affect response to topotecan. Indeed, in the datasets of our study the 505 

expression of the gene itself correlated neither with cell line sensitivity to topotecan nor with patient survival. 506 

However, the GNEA features for EBAG9 as a network node did correlate with sensitivity to topotecan in vitro 507 

(top.200.affymetrix_ccle; p(H0)=4.2×10
-11

) and  with overall survival of OV patients (Fig. 6C) 508 

(top.200.illuminahiseq_rnaseq;  509 

p(H0)=4.4×10
-4

 during the 3-year follow-up time while accounting for "clinical stage" as a covariate). 510 

The intestinal-type alkaline phosphatase ALPI is known to be a modulator of cancer cell differentiation [44] 511 

and cytoprotection [45], [46]. In our analysis its GNEA feature was, in parallel with eleven others, 512 

negatively correlated with sensitivity to vinorelbine in vitro (gnea.significant.affymetrix1; 513 

p(H0)=1.1×10
-07

) and with overall survival of OV patients (p(H0)=0.003; Fig. 6D). 514 

This setup could not eliminate possible confounding effects from multi-drug treatment history and clinical 515 

factors that might determine administration of specific drugs. Nonetheless, the NEA scores apparently 516 

explained the differential sensitivity to anti-cancer drugs in a much more robust and efficient manner than the 517 

original data. 518 

A visual inspection of the survival curves in Fig. 6 sheds light on usefulness of these tentative biomarkers in 519 

a clinical setting. As an example, in a 1-year survival perspective, relative risks (RR) would either increase 520 

(Fig. 6A,C) or decrease (Fig. 6B,D) given higher NEA scores of the patient samples. By using this fixed 521 

follow-up interval and the cohorts of limited size, the confidence intervals at the 95% level would be rather 522 
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broad:  ln(RR) = 0.405 (95%  CI: [-0.07...0.88]); ln(RR) = -2.061 (95% CI: [-3.99...-0.13]); ln(RR) = 2.211 523 

(95% CI: [-0.70...5.12]); ln(RR) = -2.181 (95% [CI: -5.15...0.78]) for Fig. 6A…D, respectively. The fractions of 524 

patients who might benefit from using these predictors could be estimated in terms of absolute risk reduction 525 

as 0.17, 0.62, 0.08, and 0.25. Inversely, the “number needed to treat”, i.e. how many patients should be 526 

treated for one individual to benefit from the new test would have been 6.00, 1.60, 12.91, and 3.94, 527 

respectively [47]. However, additional responders could be detected by using other markers, used in 528 

parallel. As an example, beyond the “NOD−like receptor signaling pathway” at Fig. 6A, the response to 529 

topotecan in ovarian cancers similarly correlated with KEGG pathways “One carbon pool by folate” and 530 

“Bacterial invasion of epithelial cells” as well as with the GO term “Cytokine activity” (not shown). Predictions 531 

made with these markers would overlap only partially and therefore can complement each other. We 532 

presume that such discoveries should ultimately be evaluated by independent validation and careful clinical 533 

development. In fact, our combined analysis of independent cell screen and clinical results gave a first 534 

example of such validation.  535 
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DISCUSSION 537 

We have presented a way of using network enrichment scores for prediction of drug response and 538 

demonstrated its advantage compared to the conventional analyses of original gene profiles and alternative 539 

enrichment methods. In comparison to the latter, the NEA scores correlated stronger with drug sensitivity and 540 

were preserved better between independent screens. Multivariate models using NEA scores proved more 541 

compact and, at the same time, robust when re-tested on newly obtained data. Finally, corroborating in vitro 542 

phenotypes in corresponding clinical applications was possible by using the method NEAmarker but not by 543 

original profiles or alternative methods.  544 

In our view, the advantages of our approach are due to the following features of network-based data 545 

interpretation: 1) combining major types of molecular interactions in a biologically relevant way, 2) 546 

summarizing seemingly disparate molecular alterations at the level of pathways and processes, and 3) 547 

enabling lower-dimensional statistical analysis. In addition, network views provide better grounds for 548 

biological interpretation and mechanistic studies. The types of evidence behind the edges (such as protein-549 

protein interactions, mRNA co-expression, sub-cellular co-localization) might contribute to the integrated 550 

network differently. We refer to the previously published comparative analyses of the contributions [48], 551 

[34], [49]. The poor performance of the individual gene analysis and ORA could be explained by the 552 

excessive dimensionality of the former and poorer sensitivity of the latter (Fig. 1A). In addition, the ability to 553 

use smaller and hence more specific AGS could have provided extra advantage of NEA over ORA and 554 

GSEA. On the other hand, NEA could also deteriorate on AGS of insufficient size when using sparser 555 

networks (around 10
4
…10

5
 edges) and networks with many missing nodes. These potential limitations were 556 

established earlier [34] and we tried to avoid them in the present work by using e.g. the dense network 557 

from data integration. Also there could be no edges connecting an AGS to a specific FGS (even though such 558 

cases would still have certain variability of NEA scores due to variable values of          . We admit that a 559 

future, more comprehensive version of NEA might adopt advantages of the alternative enrichment methods 560 

by employing full gene lists (as in GSEA) and intra-pathway topology (as in SPIA). Indeed, at two steps of 561 

our analysis these methods demonstrated performance comparable to that of NEA (Fig. 3 and 4).  562 

A common problem of method benchmarking is the unavailability of ground truth. In our case, too, we did not 563 

possess a set of truly existing molecular correlates of drug sensitivity. Comparing alternatives by the total 564 

number (fraction) of positives would not enable a proper control of the false positive rate. In similar situations, 565 

when it was impossible to distinguish between true and false positives, authors often chose to present 566 
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biologically sensible examples, such as enrichment of a pathway pertinent to the problem [22], [50] or 567 

correlation with a known drug target [15]. In the present work, we evaluated concordance of phenotype 568 

correlations between different, independently collected datasets. This allowed us to circumvent the problem 569 

of false positives via a more compelling prove: the methods were compared by the fractions of corroborated 570 

findings, which would be extremely unlikely by chance.  571 

We started with analysis of drug screens using samples from The Cancer Cell Line Encyclopedia [12] 572 

profiled for somatic point mutations, gene copy number changes, and gene transcription [35],[13],[12]. 573 

Consequently, in TCGA cohorts we focused on the same data types. The individual molecular phenotypes 574 

were characterized with AGSs compiled using a number of alternative methods. The analysis provided a 575 

primary comparison of their relative performance but – at the current stage – did not enable definite 576 

conclusions about performance of the different AGS classes. Indeed, AGS of fixed size (top.N) versus 577 

variable size (significant) compared differently in the cell lines versus the TCGA data (Suppl. Table 1). 578 

Further in the analysis of consistency in vitro versus clinical results, these classes were almost equally 579 

represented (Suppl. Table 2). We have also seen differences between different filtering approaches in AGSs 580 

of classes significant.mini and significant.maxi (Suppl. Fig. 2). Therefore an issue to be 581 

investigated further is the comparative performance and robustness of different feature classes, platforms 582 

etc. Importantly, multiple platforms’ data can be integrated into combined AGSs. Although in our analysis 583 

such AGSs did not perform much better than platform-specific ones (most likely due to the domination of 584 

transcriptomics data), a more detailed evaluation should be done, including new platforms from TCGA and 585 

elsewhere, such as DNA methylation, protein phosphorylation etc. Given the diversity of carcinogenesis 586 

routes and the multiplicity of respective molecular mechanisms, combining platforms appears essential and 587 

most promising. Incorporation of approaches from sparse linear regression modeling, SPIA, GSEA, and 588 

PARADIGM certainly represent promising ways in this direction.  589 

The statistical power of NEA was obviously far from full. As an example, there were 13 drugs for which the 590 

numbers of tested cell lines and patients treated in TCGA cohorts were sufficient for a significant estimation. 591 

For four drugs out of these 13, no reliable correlates could be found. One instructive example could be 592 

irinotecan, prescribed to 25 and 22 patients in COAD and GBM cohorts, respectively. The interesting feature 593 

of irinotecan is that its pharmacokinetic pathway involves the same enzymes as that of gemcitabine (Fig. 594 

6B), namely CES1, CES2, CYP3A4, CYP3A5 and some others 595 

(https://en.wikipedia.org/wiki/Irinotecan#Interactive_pathway_map) – although the enzymes here work in an 596 
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opposite direction: they activate irinotecan rather than degrade as they do to gemcitabine. Nonetheless, 597 

relevant GNEA scores might have been informative for response to irinotecan. The patients’ response was 598 

sufficiently differential, too: while all the irinotecan-treated patients relapsed, the time to relapse varied from 599 

78 to 1265 days. However, we did not observe almost any sensible correlation of the pathway genes neither 600 

as GNEA features nor as raw gene expression profiles. In the GNEA framework, this elucidated a lack of 601 

network linkage between the AGSs of responders (or non-responders) to the irinotecan pathway.  602 

Further, our FGSs were created by third-party sources and never meant to be used in NEA. Thus, another 603 

step for NEA-based biomarker discovery would be the compilation of novel, specifically optimized FGSs. 604 

Ultimately, one could compile de novo pathways - similarly to the approach by [51] - but specifically 605 

informative of the drug response or disease prognosis. An example of such a functional set could be the 606 

presented above combination of the ten carboxylesterases and cytochromes.   607 

Finally, given the low overlap of member genes between individual AGS, it is important to establish how 608 

AGS-level biomarker panels would practically summarize gene-level information and organize the 609 

accompanying statistical framework. Ways to compile and employ multi-platform AGSs, optimal FGS design, 610 

and construction of NEA-based biomarker panels should therefore become the topics of future studies.  611 

  612 
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MATERIALS AND METHODS 613 

Drug screens 614 

Cell lines used in ACT screen 615 

In this analysis, we used 20 cancer cell lines for which molecular data could be found in the CCLE Affymetrix 616 

set as well as in both CCLE and COSMIC point mutation sets: A375, HCT116, HDLM2, HT29, JVM2, K562, 617 

L428, MCF7, MDAMB231, MV411, NB4, PL21, RAJI, RKO, SJSA1, SKBR3, SKNAS, SW480, T47D, and 618 

U2OS. Eight of these cell lines had also been included in the CTD screen (A375, HCT116, HT29, MCF7, 619 

PL21, RKO, SW480, and U2OS). In order to avoid overlap in the multivariate models, we excluded these 620 

eight cell lines while training the original models from the CTD data and only used them in the validation set. 621 

Assay for cell proliferation used in ACT screen 622 

Cell proliferation was estimated with the WST-1 assay (water soluble tetrazolium). Briefly, cells were 623 

incubated with each drug for 72 hours in a 96-well plate. At the end of this period, they were incubated with 624 

WST-1 reagent (Roche) for 2 hours. Absorbance at 450nm was measured following the instructions from the 625 

manufacturer. The cell proliferation rate compared to that in the control was calculated.  626 

For adherent cultures, cells were attached overnight before adding the compounds. For hematological 627 

malignancies, the compounds were added simultaneously with seeding cells. The initial cell density was 628 

chosen so as to avoid confluence at the end of the assay. Each compound was applied in six consecutive 3-629 

fold dilutions. In all cases except JQ1, the stock for each drug was established at the concentration based on 630 

efficacy determined individually for each drug.  Final concentrations were for RITA:  0.01, 0.04, 0.12, 0.37, 631 

1.11, 3.33 µM; for Apr-246/PRIMA-1-met: 0.3, 1, 3, 9, 28, 83 µM; for Nutlin-3a:  0.14, 0.41, 1.23, 3.7, 11.11, 632 

33.33 µM. For JQ1 the cell lines HDLM2, HT29, MCF7, RAJI, RKO, SJSA1, SKBR3, and SW480 were 633 

tested using the final concentration range 1.66...0.007 µM in 1:3 serial dilutions. However later we found it 634 

necessary to raise the concentration by one order of magnitude, so that the final concentrations for the rest 635 

of the cell lines were 16.66, 5.55, 1.85, 0.61, 0.20 µM. Then we respectively adjusted IC50 values for the first 636 

group as if they were tested under the final concentrations. This was done by incrementing the initial-stock 637 

IC50 values of HDLM2, HT29, RKO, and SW480 by log3(10) ≈ 2.09. The cell lines MCF7, RAJI, SJSA1, 638 

SKBR3 did not show any sensitivity while using the initial stock (IC50 = 0), so that their IC50 values upon 639 

JQ1 treatment were declared missing.   640 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 21, 2018. ; https://doi.org/10.1101/301838doi: bioRxiv preprint 

https://doi.org/10.1101/301838


IC50 was defined as the drug concentration inducing a 50% reduction in cell proliferation compared to the 641 

control. In the quantitative analysis, we used a universal scale for all the four drugs where units 1...6 stood 642 

for dilution steps (1=1:300; 2=1:900; 3=1:2700; 4=1:8100; 5=1:24300 and 6=1:72900). Sensitivity to 643 

compounds was expressed in IC50 values varying from 0 (insensitive to compound) to 6 (fully sensitive to 644 

compound). 645 

IC50 values and p-values of the model parameters were calculated using function drm from R package drc 646 

[46]. The model form (argument fct) was chosen as LL.4, where model parameters Lowest and Highest 647 

were fixed at cell proliferation rates 0% and 100%, respectively, while parameters slope and IC50 were left 648 

unfixed.  649 

The IC50 values are provided as Supplementary File IC50values.ACTscreen.xlsx. 650 

CCLE screen 651 

Barretina et al. [12]analyzed cell line sensitivity to 24 drugs in 504 cell lines. These authors considered a 652 

range of numeric sensitivity metrics for their analysis and finally preferred 'normalized activity areas'. These 653 

original units were calculated as areas under compound response curves where higher values corresponded 654 

to higher sensitivity so that 0 stood for 'insensitive to compound' and 8 corresponded to 'full sensitivity'. 655 

Further, the activity area values were normalized for unequal luminescence in the assay. We rendered them 656 

normally distributed by log-transformation. Thus the values in our analysis range from -3.00 meaning 657 

'insensitive to compound' to +2.31 meaning 'maximal sensitivity'. 658 

CGP screen 659 

Garnett et al. (2012) [13] analyzed 138 drugs in 714 cell lines. They used a combination of IC50 and the 660 

slope parameter to achieve the most complete description of responses. We decided to use the AUC as a 661 

single feature that reflects the both values. AUC was originally provided in the same table and ranged from 662 

0% (fully sensitive) to 100% (insensitive). To approach the normal distribution, we transformed the values as 663 

log(1 - AUC), so that now they ranged from -8.11 meaning 'insensitive to compound' to 0 meaning 'maximal 664 

sensitivity'.  665 

CTD screen 666 
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The authors (Basu et al., 2013) [27] mainly used areas under curve (AUC) for their quantitative analysis of 667 

203 drugs in 242 cell lines. We reproduced this approach in our study. In completely insensitive cases, the 668 

full area under eight experimental points reached 8, whereas 0 stood for full sensitivity. Thus, the scale of 669 

this screen was inverted compared to the other screens, which was considered in all calculations.  670 

Molecular data 671 

Gene expression  672 

The profiling was performed in CCLE study using Affymetrix GeneChip® Human Genome U133 Plus 2.0 673 

Array and in CGP study by Affymetrix GeneChip® HT Human Genome U133 Array plate. The expression 674 

datasets were normalized as described by the authors and made public. Expression profiles in the CTD 675 

study were from CCLE. It has been shown earlier [11] that disagreement between CGP and CCLE could be 676 

attributed to the usage of  different transcriptomics datasets only to a minor extent. We checked both the 677 

CCLE and CGP expression profiles and concluded that the latter provided poorer statistical power in regard 678 

to drug sensitivity as well as lower coverage of both genes (13891 unique mapped gene symbols vs. 18900 679 

in CCLE) and cell lines (622 vs. 1034). For these reasons, we used the CCLE dataset in all the presented 680 

analyses. Expression values x of the downloaded datasets were transformed to log2(x). 681 

Gene Copy Number 682 

CCLE, CGP, and CTD all employed Affymetrix SNP 6.0 microarrays for gene copy number detection. We 683 

downloaded the CCLE dataset [12] for 994 cell lines. In addition, we downloaded COSMIC data [35] 684 

independently produced by the same platform and then post-processed in three different ways to provide 685 

total, absolute copy number per gene, number of copies of the minor allele, and a binary classification of 686 

gene copy number values into "gain" vs. "loss". All datasets were used as downloaded, without further 687 

processing or normalization.  688 

Point mutations 689 

CCLE provided point mutation data on sequencing of 1667 genes in 904 cell lines. In addition, we 690 

downloaded COSMIC data from exome sequencing of 1023 cell line genomes, which mapped to 19759 gene 691 

symbols. Mutation data from the both screens were used in the binary form, i.e. all specifying attributes were 692 

neglected. 693 
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Following the same approach, we employed TCGA data on somatic point mutations reported in MAF files. 694 

The column 'Variant_Classification' contained a number (more than 15) different codes, most frequent being 695 

Missense_Mutation, Nonsense_Mutation, and Silent. Since the latter constituted around 25% of the total 696 

number of somatic mutations reported in the eight cancers - which would not significantly affect the false 697 

positive and true discovery rates - we analyzed records with any such codes as potentially associate ed with 698 

drug response.  699 

Alternative Methods of Pathway and/or Enrichment Analysis 700 

We evaluated a number of existing multivariate, enrichment-based, and/or network analysis methods that 701 

could be potentially useful in the proposed analysis, accounting for their complexity, applicability to different 702 

experimental designs, and the ability to analyze individual samples rather than the whole cohort. Various 703 

statistical algorithms have been proposed to quantify functional relevance of pathways and other gene sets 704 

by accounting for gene network topology.  705 

A number of methods can generate sparse regression models via network-based regularization, i.e. account 706 

for topological relations between potential predictors (typically gene expression variables). The regularization 707 

is based on certain assumptions, such as that e.g. term coefficients of neighbor nodes should be zeroes or 708 

non-zeroes simultaneously [52], that edge confidence weights should influence penalties on the model 709 

coefficients [53], or that there exists equivalence (or at least parallelism) between connectivity of nodes and 710 

covariance of model terms [54],  [55]. Advanced regularization of linear models in these methods often 711 

demonstrated promising efficiency [56]. However being very sophisticated, these models proved hard to 712 

tailor to novel, specific experimental designs. Notably, it was not feasible to include additional covariates or 713 

interaction terms which would be necessary for e.g. analyses similar to the one described in the present work 714 

- not even in the dedicated survival analysis method DegreeCox [57].  Using pathway membership 715 

information for summarizing cross-pathway linkage was proposed in [58] - however, adjusting its error rate 716 

model to other purposes has not been straightforward.  717 

Technically, individual scores that estimate samples' uniqueness as compared to the rest of the collection 718 

can be obtained already from ORA , i.e. from the simplest analysis  of dichotomous 2x2 tables applied to 719 

sample-specific gene sets  [59], [60], [61],  [62], also called “class I” in the classification by Huang et 720 

al.[29]. For comparison, the most popular gene set enrichment analysis, GSEA [24] has been usually 721 

applied to finding pathway enrichment in gene lists pre-ranked by cohort-wise statistics. As an example, 722 
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Haibe-Kains et al. [11] analyzed correlations between drug sensitivity and molecular features calculated on 723 

whole in vitro drug screens [12],[13] which are among the datasets re-analyzed in this article. Those pathway 724 

enrichment scores represented correlates of drug sensitivity over the whole screened collections rather than 725 

characterized individual cell lines. Likewise, Iuliano and co-authors [63] matched molecular landscapes to 726 

survival in cancer sample cohorts in order to reverse-engineer relevant pathway and network structures. 727 

Thus, global methods often employ powerful, heavily optimized statistical techniques and are used for 728 

sample exploration or differential expression analysis [27], [64]  but cannot serve features for phenotype 729 

prediction in novel cell lines or tumors. An overview of network applications in cancer studies [65] showed 730 

that, indeed, most of the existing methods enabled exploratory analyses, discovery of driver genes and 731 

pathways as well as splitting a cohort into molecular subtypes, but did not characterize individual cases. 732 

A number of hybrid approaches, such as SPIA [26]  and iPAS [66] were also capable of calculating 733 

sample-specific pathway scores. However, their scores were based on gene expression values, which 734 

excluded the using of other data types. A genuinely integrative multi-omics method PARADIGM [67] (the 735 

program is currently distributed only via a company web portal), on the contrary, accounted for combinations 736 

of events in the chain DNA->mRNA->protein activity. As input, it required well characterized regulatory 737 

relationships – a complete set of which would rarely be available. Also, similarly to the former group of 738 

methods, it relied on comparing cancer to normal samples. Those dramatic alterations between the normal 739 

and cancer tissues encompassing thousands of genes would mask more fine-grained features that 740 

determine between-tumor heterogeneity, differences between sensitive and refractory cases etc. This 741 

requirement also precluded analyzing data where normal matches are missing, such as the widely used in 742 

our analysis cancer cell lines. Finally, EnrichNet [50] has been an algorithm closest in spirit to NEA: by 743 

using random walk with restart (hence not limited to 1-step network distances), it can trace AGS-FGS 744 

relationships via network paths. However it existed only in a single-AGS, web-based implementation and 745 

therefore was also not available for testing it the present analysis. 746 

Even though individual enrichment scores can be correlated with phenotypes, they have still been rarely 747 

used in predictor models. In the case of ORA and GSEA, the major reason was that the enrichment is mostly 748 

detectable for large FGSs (hundreds to thousands genes), but such are unlikely to characterize functional 749 

differences between tumors - while compact,  specific, and discriminatory gene sets tend to escape their 750 

limits of statistical power. Nonetheless, Drier et al. [68] have explored cancer cohorts with pathway-level 751 

sample scores derived from gene expression data in a quantitative way and found that certain sample 752 
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clusters can be associated with patient survival. On the other hand, the network-based methods have been 753 

developed only recently and are therefore ‘too young’ to have been exploited fully. Above, we have also 754 

mentioned the network-based regularization of multiple regression models where inclusion of gene terms into 755 

the models was essentially coupled to their co-expression.  756 

We finally decided to include in our testing, in parallel with PWNEA (pathway level NEA) and GNEA (gene 757 

node level NEA), the following methods: 758 

1) Using original gene profiles from respective omics platforms; 759 

2) ORA, over-representation analysis which was capable of working on exactly the same AGS and FGS 760 
as PWNEA; 761 

3) GSEA on full ranked gene lists, applying two alternative methods: 762 

a. AGSEA, ranking by absolute gene expression value, 763 

b. ZGSEA, ranking by deviation of gene expression from the cohort mean; 764 

4) SPIA, measuring the pathway perturbation via known intra-pathway topology. 765 

Using GSEA and SPIA was restricted to only transcriptomics data. SPIA, in addition, could only be run on 766 

pathways with known topology, which limited the set of available FGS to 197 KEGG pathways available in 767 

KGML format. This created an additional, specific line of testing on a limited collection of input data and 768 

FGSs for the methods ORA, AGSEA, ZGSEA, SPIA, and PWNEA (see Fig. 3,4 and Table 3).  769 

Network Enrichment Analysis (NEA, PWNEA, and GNEA) 770 

Network 771 

The network was based on the FunCoup method [48] with consecutive merging of five more resources as 772 

described and benchmarked previously [34]. The results of that benchmark indicated that FunCoup was 773 

superior to STRING (a method similar to FunCoup in terms of scale and the size of input data collection, 774 

[69]), mostly due to the latter broadly using prokaryotic evidence and therefore less specific in cancer-related 775 

analyses. The second conclusion from the benchmark was that adding to the FunCoup network edges of 776 

curated databases significantly improved its performance. We therefore added the FunCoup-based network 777 

with functional links from  KEGG [70], CORUM [71], and PhosphoSite [72], MSigDB transcription factor-778 

related part, [73]), and an own reverse-engineered network [34].   The resulting network  thus combined a 779 

wide range of molecular mechanisms, functional relations, and metrics from high-throughput data sets: 780 

physical protein-protein interactions, membership in same protein complex, membership in the same 781 
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pathway, correlation of mRNA profiles, correlation of protein abundance values, protein phosphorylation, 782 

coherence of GO annotations, concordance of upstream regulators (transcription factors and miRNAs), co-783 

localization in same sub-cellular compartments, similarity of phylogenetic profiles etc.  It contained 974,427 784 

edges (links) between 19027 nodes (distinct human gene symbols). 785 

Altered gene sets, AGS 786 

Point mutation data (mutation gene sets):  787 

 mutations.mgs:  point-mutated genes that proved to be significantly NEA-enriched to either KEGG 788 

pathway set #05200 "Pathways in cancer"  or to the full set of point-mutated genes annotated in the 789 

given genome (the approach described by Merid et al. [34]). 790 

Gene copy number and expression data:  791 

 top.200 and top.400:  genes with copy number or mRNA expression value that in the given 792 

genome was among top 200 or top 400 most deviating from the gene's cohort mean using the one-793 

sample Z-score. Each AGS thus had a fixed size, regardless of formal significance. 794 

 significant:  most deviating from the gene's cohort mean (same as above), but selected only if 795 

below the formal significance threshold (Benjamini-Hochberg [74] adjusted p-value<0.05). These 796 

AGSs had variable sizes, depending on the significance criterion. 797 

 significant.filtered.mini:  members of the respective significant set had, in addition,  798 

to be also significantly NEA-enriched to either KEGG set #05200 "Pathways in cancer" or to 799 

mutations.mgs set of the same sample (whichever NEA score passed the significance threshold 800 

NEA FDR=0.05). 801 

 significant.filtered.maxi:  members of the respective significant set were required to 802 

be significantly NEA-enriched to any of the signaling pathways (including all cancer ones) or to 803 

mutations.mgs set of the same sample.  804 

Combined (multi-platform) AGS: 805 

 significant.filtered.combined.mini: a merge of all sets of type 806 

significant.filtered.mini. 807 

 significant.filtered.combined.maxi: a merge of all sets of type 808 

significant.filtered.maxi. 809 
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For convenience, AGS labels refer also to the platforms and sources, e.g. top.200.cn_ccle, 810 

significant.filtered.maxi.affymetrix_ccle etc. 811 

FGS 812 

The functional gene sets, FGSs, were AGS counterparts in the analysis. The main collection of 328 FGS was 813 

based on the KEGG pathways, the full collection of which was complemented with a number of separately 814 

published cancer pathways as well as specific GO terms corresponding to cancer-relevant signaling or 815 

hallmarks of cancer (around 70 cancer- and signaling-related gene sets from Reactome, Gene Ontology, 816 

WikiPathways and literature). Another approach was applied to enable   compatibility with GSEA and SPIA.  817 

These methods were designed and are most suitable for analyzing expression data and, apart from that, 818 

SPIA was applicable only to pathways with well characterized intra-pathway topology. We therefore 819 

employed a special set of 197 KEGG pathways for which the topology was available in KGML files and 820 

tested on it SPIA, GSEA, ORA, and PWNEA exclusively gene expression data (these results were separately 821 

labeled as ORA.kegg, SPIA.kegg, AGSEA.kegg, ZGSEA.kegg, and PWNEA.kegg). The analysis on the FGS 822 

collection is referred to as pathway-level NEA (PWNEA). 823 

In the other version of our analysis, called gene-wise NEA (GNEA), we treated each of the 19027 network 824 

nodes, regardless of their pathway or GO annotation, as a single-gene FGS.  825 

 826 

Method 827 

The major principles of NEA were described earlier [22]. In the current implementation, we evaluated 828 

enrichment of AGS versus FGS by the formula:  829 

   
                    

 

           
 

                      
 

           
, 830 

where !n means “complement to n”, i.e. all global network edges that did not belong to NAGS-FGS. The number 831 

of links expected under true null, i.e. by chance, was determined by: 832 

          
         

        

 

Node connectivity values (numbers of all edges for each given node) were pre-calculated by the algorithm in 833 

advance, given the input network. Then NAGS and NFGS reported the sums of connectivities of member nodes 834 
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of AGS and FGS, respectively, and Ntotal was the number of edges in the whole network. Since it was 835 

desirable to provide normally distributed values for the downstream analyses (linear modeling, correlation, 836 

survival), we calculated p-values from the Χ
2
 statistic p(H0)=f(Χ

2
) using function pchisq available in R 837 

language and then re-calculated corresponding z-scores from the p-values as Z=F(p(H0)) with function 838 

qnorm. Since Χ
2
 is only defined on the non-negative domain, the z-scores were coerced negative in cases of 839 

depletion, i.e. when 840 

                     . 841 

An important feature of GNEA (gene-wise NEA) is that its enrichment estimates are, on average, based on 842 

fewer network edges compared to PWNEA, so that often           . In such cases, the enrichment score 843 

is negative and the difference                        reduces to           , which, in its turn, is a function of 844 

cumulative connectivity values NAGS  and NFGS. In other words, lower NEA scores are then assigned to AGS-845 

FGS pairs with more highly connected member nodes.  846 

The steps of NEA described above can be performed with functions available in R package NEArender 847 

(https://cran.r-project.org/web/packages/NEArender/).  848 

Signaling pathway impact analysis, SPIA 849 

The method by Tarca et al. [26] was implemented as an R package SPIA. The authors presented it as 850 

combination of two p-values: pNDE from common analysis of overrepresentation of differentially expressed 851 

genes in KEGG pathways and pPERT from a perturbation analysis by accounting for topological relations of 852 

the same genes within each KEGG pathway. Since the authors claimed that pNDE values are no different 853 

from p-values from the trivial ORA, we used the pure pPERT values from function spia (while the 854 

performance of ORA was evaluated separately). In order to get normally distributed values for our analyses, 855 

pPERT were transformed to Z-scores and signed according to the SPIA “Activated/inhibited” status as: 856 

Z.spia=qnorm(pPERT/2, lower.tail=F)*ifelse(s1$Status=="Activated", 1, -1); 857 

Gene Set Enrichment Analysis, GSEA 858 

The R implementation of GSEA was downloaded from 859 

http://software.broadinstitute.org/gsea/msigdb/download_file.jsp?filePath=/resources/software/GSEA-P-860 

R.1.0.zip (see also https://software.broadinstitute.org/cancer/software/gsea/wiki/index.php/R-861 
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GSEA_Readme). While GSEA possesses a sophisticated toolbox for significance estimation via permutation 862 

tests, we needed only the enrichment score and therefore calculated only the core ES values via function 863 

GSEA.EnrichmentScore. Normally, GSEA has been used for analyzing gene rankings from multi-sample 864 

analyses with replicates, such as a t-test of an experimental versus control group. The single-sample GSEA 865 

(so called ssGSEA) needed for our analysis was described by Barbie et al. [25]. They produced sample-866 

specific lists by ranking genes by absolute expression values in each given sample. We implemented this 867 

analysis under acronym AGSEA. However this approach might miss sample specificity. As an example, such 868 

ubiquitously expressed genes as GAPDH, RPS16, and RPS11 were found among the top 10 items in more 869 

than 90% of the CCLE cell line transcriptomes. For this reason, we additionally implemented and tested 870 

ranking genes in each sample by z-scores, i.e. by the standardized deviations from the genes’ means across 871 

the whole cohort. Using this option, dubbed ZGSEA, was similar to mode topnorm for calculating AGS in 872 

function samples2ags of our package NEArender.  873 

Overrepresentation analysis, ORA 874 

The overrepresentation analysis, ORA estimated the significance of overlap between AGS and FGS in 2x2 875 

tables. We did it via Fisher's exact test using the function gsea.render in the R package NEArender 876 

described above. In order to get ORA values normally distributed, the ”estimate”  values from function 877 

fisher.test were augmented with  a pseudo-score 0.1 and log-transformed.  878 

Correlation between drug sensitivity and molecular features 879 

In each of the four drug screens, we quantified correlation between the cell line sensitivity to each drug and 880 

each of the molecular features F according to a general model of the form: 881 

        

where ε denotes residual, i.e. unexplained by feature F, variance. The features were either original gene 882 

profiles from the three platforms (point mutations screens, copy number arrays, and expression microarrays) 883 

or scores from GSEA, or scores from the two NEA modes, PWNEA and GNEA, i.e. pathway-level network 884 

enrichment scores and single-gene network enrichment scores, respectively. All data sets, except the point 885 

mutation set, contained continuous variables and were thus analyzed using Spearman rank correlation. The 886 

point mutation data were analyzed using a one-way ANOVA model with two levels of F: "any mutation" 887 
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versus "wild type". P-values of both Spearman and ANOVA were adjusted by Benjamini and Hochberg 888 

method[74]. 889 

Elastic net models 890 

Every tested model was built under 10-fold cross-validation using function cv.glmnet of R package 891 

glmnet (http://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html) with the following parameters: 892 

lambda.min.ratio=0.01 (the default) and nlambda=25 (default was 100). Parameter alpha varied as 893 

{0.1; 0.3; 0.5; 0.9; 1.0}. The reported cross-validated mean error and the number of variables in the model 894 

corresponded to lambda.1se, i.e. largest value of lambda found within 1 standard error of the minimum 895 

lambda. The regression of observed on predicted values was plotted using lambda.min. 896 

Drug sensitivity models in TCGA patients  897 

We used the follow-up time profiles for which both status records “relapse/relapse-free” and “dead/alive” 898 

were available, which allowed creating “relapse-free survival” and “overall survival” variables. Depending on 899 

the cancer aggressiveness and chemotherapy type, different timeframes could become informative in the 900 

analysis of the eight TCGA cohorts. The follow-up timeframes were defined as 1/5
th
, 1/2

nd
, and full available 901 

(up to 18 years) intervals.  902 

For the analysis reported in “Statistical power to detect correlates of drug sensitivity”, we used 42 drugs 903 

which were applied to at least 10 patients in one of the eight cohorts. In Figure 3 we report fractions of 904 

adjusted p-values (FDR) from this analysis calculated by Benjamini and Hochberg. For the analysis of 905 

“agreement between in vitro screen and clinical data” we only considered 14 of the compounds, which were 906 

found in the in vitro sets. The p-values from this analysis were Bonferroni-adjusted in the cross-comparisons 907 

between the in vitro and clinical results.  908 

Matching significance of the drug-feature correlations that had been detected in the cell-line in vitro screens 909 

required accounting for multiple clinical variables. Such phenotype covariates as well as drug treatment data 910 

were obtained from TCGA as biotab files via  911 

  https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumor/*/bcr/biotab/clin/   912 

In order to measure and probabilistically estimate these effects, we fitted Cox proportional hazards 913 

regression models for every feature versus drug combination. Using all covariates available a cohort (such 914 

as “age at diagnosis”,  “year of diagnosis”, “race”, “gender”, “ethnicity”) could result in unrealistically complex 915 
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models. We thus included only covariates most likely associated with the disease prognosis, such as tumor 916 

degree, pathological tumor stage, immunohistochemical statuses in BRCA, Gleason score in PRAD, 917 

Karnofsky score in GBM (Suppl. Table 4). Next, we reasoned that when the association “feature - drug 918 

response” truly exists, we should observe it specifically in the patients who did receive the drug in the given 919 

TCGA cohort. Our survival models of the form 920 

    
              

     
                              

contained, apart from the covariates C1…Ck and the residual term ε, main effects “drug” D and “feature” F as 921 

well as the interaction term D*F. A significant main effect of a drug could be interpreted as patients’ benefit in 922 

total and irrespective of the feature value, e.g. regardless of a gene mutation, or a gene expression, or a 923 

NEA-based pathway score. Conversely, a significant feature effect indicated that the feature correlated with 924 

survival directly, i.e. no matter if the drug was administered or not. Finally, significance of the interaction 925 

indicated efficacy of the drug specifically in patients with feature values either above or below a threshold, so 926 

that respective patterns could be explained by neither of the main effects. The interaction term was thus 927 

central for our purpose of detecting drug-feature correlations, whereas the significance of main effects of 928 

“feature” and "drug" was allowed although not required. As an example, a feature may or may not exhibit a 929 

significant correlation with survival in patients who did not receive the drug.  930 

All survival analysis results were obtained using R package survival(http://dx.doi.org/10.1007/978-1-931 

4757-3294-8). In order to estimate significance of the model terms, we used function coxph with 932 

continuous feature vectors. However, for visualizing the survival curves (Fig. 6) each feature was binarized at 933 

a cutoff that yielded the lowest p-value for the interaction term. Apart from the interaction model, we also 934 

checked if the p-value and FDR distributions preserved their properties under a unifactorial model. To this 935 

end, sub-cohorts of respective drug-treated patients were included in the survival analysis with the single 936 

main factor “feature”: 937 
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SUPPLEMENTARY FILES 1115 

File Description 

SupplementaryTablesAndFigures.docx  Supplementary tables and figures 

IC50values.ACTscreen.xlsx  IC50 values of drug sensitivity over the cancer cell lines 

in the ACT drug screen (see Methods). 

glmnetModels.Basu_vs_new.raw.pdf     Building and validation of multivariate models of drug 
resistance from original point mutation and gene 
expression data. 
As explained in Methods, the multivariate models were 
obtained using the elastic net algorithm under variable 

'alpha' parameters (see values A=0.1; A=0.3; A=0.5; A=0.9; 
A=1 in the top left corners of each page). The 
algorithm tried to minimize the mean−squared error by 
reducing the number of features in the 
model (top legend in upper right plot). The final number of 
features as well as the 'lambda.1se' at which the 
practically best performance was achieved are indicated as 'N=' 
and 'L=' in the top left corner. The right and left 
vertical dotted lines show absolute minimum lambda and 
'lambda.1se' found within 1 standard error of the 
former, respectively. The chosen features with their linear 
coefficients are listed below (sorted by coefficient 
values; the lists are truncated when too long). 
The two bottom plots display model performance by matching 
drug sensitivity predicted for each cell line (X axes) 
on data used for training (blue points, left) and on newly 
obtained data from the ACT screen (green 
points, right). The model performance is measured with 
Spearman rank correlation between predicted and 
observed data points. 

See also the legend to Figure 5. 

glmnetModels.Basu_vs_new.pwnea.pdf   Building and validation of multivariate models of drug 
resistance from PWNEA scores obtained by 
using point mutation and gene expression data. 

See the legend above. 
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