1

- 1 Phylogenomics reveals dynamic evolution of fungal nitric oxide reductases and their
- 2 relationship to secondary metabolism
- 3 Running title:
- 4 Phylogenomics link *p450nor* to secondary metabolism
- 5
- 6 Authors:
- Steven A. Higgins^{1,3}, Christopher W. Schadt^{1,2,3}, Patrick B. Matheny⁴, and Frank E.
 Löffler^{1,2,3,5,6,7}*
- 9 Author Affiliations:
- ¹Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA.

²University of Tennessee and Oak Ridge National Laboratory (UT-ORNL) Joint Institute for

- 12 Biological Sciences (JIBS), Oak Ridge, Tennessee, USA.
- ³Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
- ⁴Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville,
 Tennessee, USA.
- ⁵Department of Civil and Environmental Engineering, University of Tennessee, Knoxville,
- 17 Tennessee, USA.
- ⁶Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville,
- 19 Tennessee, USA.
- ⁷Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA.
- 21

22 *Correspondence to:

- 23 Frank E. Löffler
- 24 706 Science and Engineering Building
- 25 1414 Circle Drive
- 26 Knoxville, TN 37996-2000
- 27 865-974-4933
- 28 frank.loeffler@utk.edu
- 29
- 30 Keywords:
- P450nor, fungi, nitrous oxide, secondary metabolism, nitrogen cycle, nitric oxide, horizontal
- 32 gene transfer
- 33
- 34
- 35

2

36 Abstract

37	Fungi expressing P450nor, an unconventional nitric oxide (NO) reducing cytochrome P450, are
38	thought to be significant contributors to soil nitrous oxide (N2O) emissions. However, fungal
39	contributions to N_2O emissions remain uncertain due to inconsistencies in measurements of N_2O
40	formation by fungi. Much of the N2O emitted from antibiotic-amended soil microcosms is
41	attributed to fungal activity, yet fungal isolates examined in pure culture are poor N2O producers.
42	To assist in reconciling these conflicting observations and produce a benchmark genomic
43	analysis of fungal denitrifiers, genes underlying fungal denitrification were examined in >700
44	fungal genomes. Of 167 p450nor-containing genomes identified, 0, 30, and 48 also harbored the
45	denitrification genes narG, napA or nirK, respectively. Compared to napA and nirK, p450nor
46	was twice as abundant and exhibited two to five-fold more gene duplications, losses, and
47	transfers, indicating a disconnect between <i>p450nor</i> presence and denitrification potential.
48	Furthermore, co-occurrence of <i>p450nor</i> with genes encoding NO-detoxifying flavohemoglobins
49	(Spearman r = 0.87, $p = 1.6e^{-10}$) confounds hypotheses regarding P450nor's primary role in NO
50	detoxification. Instead, ancestral state reconstruction united P450nor with actinobacterial
51	cytochrome P450s (CYP105) involved in secondary metabolism (SM) and 19 (11 %) p450nor-
52	containing genomic regions were predicted to be SM clusters. Another 40 (24 %) genomes
53	harbored genes nearby p450nor predicted to encode hallmark SM functions, providing additional
54	contextual evidence linking p450nor to SM. These findings underscore the potential
55	physiological implications of widespread p450nor gene transfer, support the novel affiliation of
56	<i>p450nor</i> with fungal SM, and challenge the hypothesis of <i>p450nor</i> 's primary role in
57	denitrification.

3

59 Importance

60	Fungi are considered substantial contributors to emissions of the greenhouse gas N ₂ O, owing to
61	the nitric oxide reducing potential of an unusual cytochrome P450 (P450nor). Despite these
62	findings, fungi do not satisfy criteria to be classified as respiratory denitrifiers and
63	methodological biases confound fungal contributions to the N2O budget. Phylogenetic and
64	genomic analyses distanced N2O-forming fungi from denitrification and supported a new link
65	between P450nor and SM. Hence, N ₂ O formed by P450nor activity may be artificially induced
66	or a byproduct of SM. Explorations of P450nor's involvement in SM may facilitate the discovery
67	of new compounds with potential applications in agricultural and pharmaceutical industries.
68	Dissociating p450nor from denitrification also informs climate change models and directs
69	research towards organisms and processes most relevant to in situ N2O production.
70	

70

71 Introduction

72 Increased human reliance on fixed nitrogen (N) from the Haber-Bosch process to meet the 73 demands of sustaining an expanding global population has contributed to a 20 % increase in atmospheric nitrous oxide (N_2O) , a potent greenhouse gas with ozone destruction potential (1, 2). 74 N₂O is primarily formed by denitrifying members of the *Bacteria* and *Archaea* (3), a prevailing 75 view that has been challenged by experiments reporting that abundant soil- and sediment-76 77 inhabiting fungi contribute up to 89 % of the total N₂O emitted from these systems (4–6). Notably, fungi cannot convert N₂O to inert N₂ like many denitrifying bacteria (7), suggesting 78 79 their contributions to greenhouse effects and ozone destruction could be significant. Fungi are considered to be important sources of N_2O emissions from agroecosystems (8, 9), which are 80 81 predicted to contribute up to two-thirds of the total N₂O emissions by 2030 (10). Studies of

model fungi show that N₂O formation is due to P450nor, a heme-containing cytochrome P450, that catalyzes the two electron reduction of nitric oxide (NO) to N₂O (11–13). N₂O formation by P450nor is thought to occur exclusively in fungi and the *p450nor* gene has been exploited as a distinctive biomarker in molecular assays to study fungal denitrifier diversity and abundance in the environment (14–16).

Despite these observations, the fungal contributions to N₂O emissions remain uncertain. 87 For example, fungi do not satisfy criteria set forth to classify microorganisms as respiratory 88 denitrifiers (17). N₂O-producing fungi in pure culture do not exhibit a balance between the 89 90 inorganic N inputs and quantities of N_2O formed (18–20) and possess three to six orders of magnitude lower rates of N_2O production compared to denitrifying bacterial isolates under 91 optimal conditions (4). Fungi also fail to generate anoxic growth yields proportional to the 92 quantity of inorganic N reduced in pure culture (6, 21-23), and no significant relationship was 93 detected between fungal denitrification activity and fungal biomass in anoxic soil incubations 94 95 (24). Above all, partitioning techniques (antibiotic inhibition and isotope site preference) used to estimate fungal and bacterial contributions to N₂O emissions are biased and often lack 96 corroborating evidence in conjunction with their application, suggesting fungal contributions to 97 98 N_2O emissions are substantially inflated (5, 25–27). For example, antibiotics are often criticized for lacking both generality and specificity, but the expected biases resulting from the exclusive 99 use of antibiotic inhibition techniques to assess fungal contributions to N2O emissions remain 100 101 unaccounted for. Bias could be interpreted by concurrently employing culture-independent techniques (i.e., multi-omics approaches); however, these practices are lacking in investigations 102 103 of fungal denitrification, and the singular use of antibiotics to partition microbial activity casts

doubt on the quantitative value of observations derived from this approach regarding fungaldenitrification (25, 26).

106	The capacity for N ₂ O-production conferred by <i>p450nor</i> in fungi is a uniquely eukaryotic
107	trait, yet previous investigations have hypothesized an actinobacterial origin for p450nor based
108	on sequence comparisons (7, 28–30). Of note, Actinobacteria are not considered canonical
109	denitrifying bacteria, and only a few reports of their denitrification capacity exist (31-33). Most
110	members of the Actinobacteria possess a truncated denitrification pathway or lack a canonical
111	nitric oxide reductase gene (nor) (with the exception of Corynebacterium and
112	Propionibacterium) (32, 33). Hence, members of the Fungi and Actinobacteria share an
113	incomplete denitrification pathway with a potentially limited capacity to perform denitrification.
114	Consistent with the horizontal gene transfer (HGT) hypothesis are sequence similarities between
115	fungal P450nor and actinobacterial P450s of the CYP105 family, many of which have been
116	investigated for their contributions to secondary metabolism (SM) (7, 34). Despite these
117	observations, the prevailing hypothesis regarding p450nor's evolution and function was its
118	acquisition from the Actinobacteria and subsequent evolution to fill a novel role in
119	denitrification, specifically the reduction of NO to N_2O (7, 29). The hypothesis that <i>p450nor</i> was
120	acquired from one or more members of the Actinobacteria and retained an ancestral function in
121	SM surprisingly remains unexplored.
122	Efforts associated with the 1.000 Fungal Genomes and Assembling the Fungal Tree of

Efforts associated with the 1,000 Fungal Genomes and Assembling the Fungal Tree of Life (AFTOL) projects have resulted in a steady rise in genomic sequence data for members of the fungal kingdom (35, 36). These large scale sequencing efforts facilitate comprehensive phylogenomic investigations with the potential to uncover the causes and consequences of the genomic architecture of fungi and assist in directing research efforts. Hence, the overarching

127	questions this study addresses are I) what is the breadth of denitrification genes across fungal
128	genomes and what are their evolutionary relationships, and II) can phylogenomic analyses
129	reconcile the conflict in fungal contributions to N_2O formation observed in laboratory and
130	environmental settings? Our comparative genomic and phylogenetic analyses identified a
131	disconnect between p450nor and denitrification gene presence and supported a role for P450nor
132	in SM rather than denitrification. Importantly, these results provide an explanation for the minor,
133	non-respiratory capacity of fungi to form N ₂ O, and suggests N ₂ O is a byproduct of active SM.
134	These findings transform our understanding of the ecological significance and environmental
135	consequences of p450nor presence/absence in fungal genomes.
136	
137	Results
138	Infrequent co-occurrence among denitrification genes in fungi
139	Bioinformatic analyses identified homologs of canonical bacterial and fungal denitrification
140	genes (narG, napA, norB, nirK, nosZ, p450nor) in 712 fungal genomes. Of the denitrification
141	gene set investigated, only narG, napA, nirK, and p450nor were detected (Fig. 1). Genes
142	encoding the membrane bound respiratory nitrate reductase (narG) were detected in only three
143	
	fungal genomes (0.42 %) and were excluded from further analysis due to their low occurrence.
144	fungal genomes (0.42 %) and were excluded from further analysis due to their low occurrence. The genes predicted to encode the periplasmic nitrate reductase (NapA) and the copper-
144 145	
	The genes predicted to encode the periplasmic nitrate reductase (NapA) and the copper-
145	The genes predicted to encode the periplasmic nitrate reductase (NapA) and the copper- containing nitrite reductase (NirK) were detected in 75 (10.5 %) and 82 (11.5 %) of the 712
145 146	The genes predicted to encode the periplasmic nitrate reductase (NapA) and the copper- containing nitrite reductase (NirK) were detected in 75 (10.5 %) and 82 (11.5 %) of the 712 fungal genomes analyzed, respectively (Fig. 1, Table S1). In contrast, P450nor gene sequences

150	genomes underscores the disparity in presence/absence of denitrification genes in fungi and is
151	available in Supplemental Information (SI) (Dataset S1, Fig. S1).
152	Our analyses also revealed a low co-occurrence between <i>p450nor</i> and additional fungal
153	denitrification pathway markers. Since $p450nor$ is regarded as the sole trait encoding N ₂ O
154	production in fungi, the co-occurrence of multiple denitrification gene markers would be
155	indicative of a capacity for sequential respiratory denitrification, whereas isolated occurrences
156	could be indicative of alternative processes such as detoxification. The three-gene set
157	narG/nirK/p450nor did not co-occur in any of the fungal genomes examined, whereas co-
158	occurrence of the gene set napA/nirK/p450nor was observed in 18 (10.8 %) of 167 p450nor-
159	containing fungal genomes. Sets of at least two co-occurring denitrification traits (i.e.,

160 *narG/p450nor*, *napA/p450nor*, and *nirK/p450nor*) were found in 0, 18 and 29 % of fungal

161 genomes, respectively. Of the *napA*-containing fungal genomes, 25 (33 %) also contained a *nirK*

162 gene, whereas 30 % of the *nirK*-containing fungal genomes also harbored a *napA* gene.

163 Evolutionary correlation was strongly supported for the gene sets *napA/nirK*, *napA/p450nor*, and

164 *nirK/p450nor*, with average log Bayes Factor values of 31.9 ± 0.60 , 12.2 ± 0.11 , and 31.3 ± 0.04 ,

respectively. Hence, the genes *napA*, *nirK*, and *p450nor* occur in related fungal taxa, but co-

166 occurrences were infrequent within the individual fungal genomes analyzed.

167 Evolutionary forces acting upon denitrification traits within fungi

168 To identify evolutionary forces shaping the observed distribution of denitrification traits within

169 fungi, comparisons between gene and species trees were assessed with phylogenetic tests and

170 parsimony-informed models to quantify evolutionary events. Visual inspection of *p450nor* gene

and species trees indicated potential widespread HGT of *p450nor* within fungi, examples of

172 which included HGT of *p450nor* from the phylum Ascomycota to members of the

8

Basidiomycota and within and among classes of ascomycetes (Fig. S2). Furthermore, the 173 174 monophyly of five fungal classes containing *p450nor* (Dothideomycetes, Eurotiomycetes, Leotiomycetes, Sordariomycetes, and Tremellomycetes) were not supported by approximately 175 176 unbiased (AU) tests ($p \le 0.05$, Table S2), indicative of dynamic evolution of p450nor in most fungal lineages. Although co-phylogeny plots are suggestive of HGT, additional analysis using 177 178 NOTUNG software was performed to model potential gene duplication (GD), gene transfer (GT), and gene loss (GL) events (38). Of the napA, nirK, and p450nor genes analyzed, the 179 p450nor phylogenies had the greatest number of predicted GT events, ranging from 4 to 15 GT 180 181 events despite applying stringent GT costs within NOTUNG software (Table S3). At GT costs 182 below 9, no temporally consistent optimal solutions were reached, suggesting that GD and GL alone are insufficient to describe the evolutionary dynamics of *p450nor* in fungi. Using the same 183 184 stringent GT costs, the predicted number of GT events detected for *napA* and *nirK* were much lower, and ranged from 1 to 3 and 0 to 1 GT events for each gene, respectively (Table S3). The 185 reduced number of GT events detected in *napA* and *nirK* phylogenies were also apparent from 186 187 co-phylogeny plots of each gene (Fig. S3, S4) compared to co-phylogenetic plots for p450nor (Fig. S2). Although GT events detected for *napA* were lower than *p450nor* at high GT costs, GT 188 189 may still represent a significant evolutionary force contributing to the observed *napA* distribution in extant fungal lineages (Table S3). For example, AU tests rejected the monophyly of three 190 Ascomycota (Dothideomycetes, Leotiomycetes, and Sordariomycetes) and one Basidiomycota 191 192 (Pucciniomycetes) lineage within the *napA* phylogeny (Table S2, $P \le 0.05$). Specific instances of predicted HGT events are outlined in Supplemental Information (SI) for each gene (Table S4, 193 194 Fig. S5).

195 Fungal P450nor evolved from actinobacterial P450s involved in SM

196	Previous investigations have hypothesized an actinobacterial origin for p450nor based on amino
197	acid sequence alignments (7, 28, 30), but rigorous phylogenetic tests of p450nor's origins were
198	lacking to support this hypothesis. Alignment of fungal P450nor amino acid sequences to the
199	NCBI RefSeq protein database identified 230 bacterial sequences with significant sequence
200	alignment (≥ 65 % query coverage, ≥ 35 % amino acid identity) to P450nor. Of note, <i>p450nor</i>
201	homologs were also detected within the genomes of three freshwater inhabiting green algae,
202	Chlorella variabilis, Chlamydomonas reinhardtii, and Monoraphidium neglectum, expanding the
203	known distribution of $p450nor$ to photosynthetic eukaryotic microbes. Additional $p450nor$
204	homologs were not detected in archaea, plant, protist, or other lineages housed within the RefSeq
205	database. Of the bacterial cytochrome P450 (hereafter P450) sequences identified, approximately
206	6 % (n = 13) were proteobacterial in origin, whereas the remaining sequences belonged to
207	members of the bacterial phylum Actinobacteria (Fig. S6). Ancestral character state
208	reconstruction of select P450 families on a subset of these sequences supported the monophyly
209	of <i>p450nor</i> and bacterial P450 gene sequences of the P450 family CYP105 (Fig. 2) (39). The
210	same relationships were preserved when phylogenetic reconstruction was performed using the
211	complete set of 408 P450 amino acid sequences (Fig. S7). Importantly, NO-utilizing P450
212	sequences from the CYP107 family belonging to members of the Streptomyces formed a larger
213	monophyletic clade containing P450nor and other CYP105 sequences (Fig S7). The CYP107
214	family includes <i>txtE</i> genes encoding nitrating enzymes that use NO as a substrate for the
215	production of secondary metabolites and have no known role in respiratory denitrification or
216	detoxification (40, 41). Thus, P450nor and TxtE are related (40, 41), yet TxtE is involved in SM
217	and is the only other P450 observed to directly utilize NO as a substrate.

218	Sequences of the bacterial CYP105 family of P450s include diverse actinobacterial
219	genera such as <i>Streptomyces</i> (n = 159), <i>Amycolatopsis</i> (n = 12), <i>Saccharothrix</i> (n = 5),
220	Streptacidiphilus (n = 4), Frankia (n = 4), Kutzneria (n = 4), Nocardia (n = 3), and members
221	from 17 additional actinobacterial genera ($n = 39$). The proteobacterial sequences were affiliated
222	with members of the genera <i>Burkholderia</i> $(n = 5)$, <i>Paracoccus</i> $(n = 3)$, <i>Bradyrhizobium</i> $(n=3)$,
223	<i>Pseudomonas</i> $(n = 1)$, and <i>Halomonas</i> $(n = 1)$. Bacterial P450 gene and species tree comparisons
224	of 60% identity clustered P450 amino acid sequences ($n = 57$) and cognate 16S rRNA genes ($n = 57$)
225	55) supported HGT of one or more actinobacterial P450 genes to members of the Alpha-, Beta-,
226	and Gammaproteobacteria (Fig. S6). Furthermore, ancestral character state reconstruction
227	overwhelmingly supported Actinobacteria as the root state (root probability = 0.99 ± 0.06) of the
228	bacterial CYP105 family P450 phylogeny. When forcing the root state of the P450 phylogeny to
229	be Proteobacteria (simple model) and comparing to the complex model where the root is
230	allowed to vary, the simple model with a proteobacterial root was not supported (average log
231	Bayes Factor = 0.03 ± 0.18). Therefore, <i>p450nor</i> likely evolved from one or more CYP105
232	family P450 genes found in members of the Actinobacteria. This finding underscores p450nor's
233	distinct origin compared to the fungal denitrification traits <i>napA</i> and <i>nirK</i> , which have a distinct
234	proteobacterial ancestry consistent with the majority of bacterial denitrifiers (Fig. S8).
235	Widespread co-occurrence of <i>p450nor</i> and NO-detoxifying flavohemoglobins
236	Poor conversion of inorganic N-oxides to N ₂ O by fungal isolates supports the hypothesis that
237	P450nor is involved in NO detoxification (7, 42). However, fungi also possess NO-detoxifying
238	flavohemoglobins responsible for detoxification of NO to NO ₃ ⁻ under oxic conditions or NO to
239	N_2O under anoxic conditions (42–44). Flavohemoglobins were detected in 450 (63 %) fungal
240	genomes investigated and were widespread within ascomycete and basidiomycete fungi. Within

241	p450nor-containing genomes, 125 (75 %) also possessed a flavohemoglobin gene (Fig. 1, Table
242	S1). The number of genomes in fungal families containing <i>p450nor</i> and NO-detoxifying
243	flavohemoglobin genes were significantly correlated (Spearman $r = 0.87$, $p = 1.6e^{-10}$), and
244	suggests <i>p450nor</i> 's primary function is not NO detoxification.
245	Evidence of a role for <i>p450nor</i> in secondary metabolism
246	p450nor is actinobacterial in origin, yet Actinobacteria are not considered canonical denitrifiers
247	and evidence for their role in denitrification was lacking when p450nor was initially identified
248	(29, 45). Subsequent investigations did not posit a role for <i>p450nor</i> in SM despite the affiliation
249	of <i>p450nor</i> and CYP105 P450s with documented roles in SM (34, 46). To assess genomic
250	evidence linking p450nor to SM, we queried genes encoded within genomic regions
251	approximately 50 kb on either side of $p450nor$ for functions related to SM. The biosynthetic
252	gene cluster (BGC) prediction tool antiSMASH detected putative BGCs containing p450nor in
253	19 (11 %) of the 167 p450nor-containing genomes analyzed (Dataset S2). The number of open
254	reading frames in a predicted SM cluster ranged from 34 to 97, spanning 21,086 to 55,473
255	nucleotides in length. Inspection of protein-coding genes surrounding p450nor using curated
256	antiSMASH profile Hidden Markov Models (pHHMs) resulted in the identification of hallmark
257	SM features (e.g., polyketide synthases (PKS), non-ribosomal peptide synthases (NRPS), terpene
258	cyclases, dimethylallyl tryptophan synthases) in an additional 40 (24 %) of the 167 p450nor-
259	containing genomes analyzed (Dataset S2) (see Materials and Methods for details). The
260	distribution of automatic and manually curated protein-coding genes surrounding a subset of 32
261	p450nor-containing fungi suggests that p450nor-containing BGCs are structurally and
262	functionally diverse (Fig. 3). An additional BGC prediction tool, CASSIS, which detects BGCs
263	based on shared transcription factor binding sites upstream and downstream of a user specified

264	anchor gene (47), predicted as many as 105 (63 %) p450nor-containing gene regions to be BGCs
265	(Dataset S3). Furthermore, CASSIS analysis corroborated 74 % of the 19 BGCs predicted by
266	antiSMASH (Dataset S3). A detailed accounting of antiSMASH and CASSIS predictions, gene
267	annotations, and gene organization surrounding p450nor in all 167 p450nor-containing genomes
268	is available in the SI (Fig. S9, Dataset S2).
269	A diversity of secondary metabolite biosynthesis pathways were predicted to be encoded
270	by <i>p450nor</i> -containing BGCs, including nonribosomal peptides ($n = 7$), polyketides ($n = 5$),
271	terpenes $(n = 2)$, hybrid terpene-polyketide-indoles $(n = 2)$, indoles $(n = 1)$, or currently
272	unclassifiable compounds ($n = 2$). Phylogenetic reconstruction of C-type and ketosynthase
273	domains encoded by NRPS and PKS genes surrounding p450nor enabled the prediction of
274	potential secondary metabolites encoded by fungal p450nor-containing BGCs (Fig. 4). For
275	example, domains from NRPS and PKS sequences encoded nearby p450nor are affiliated with
276	reference NRPS and PKS sequences known to produce cyclic tetrapeptides (HC-toxins) (n=7),
277	aflatoxins (n=5), fumonisins (n=4), calcium-dependent antibiotics (n=1), and statins (n=1),
278	suggesting a large variety of secondary metabolites are encoded by gene regions containing
279	p450nor.
280	The formation of N_2O has previously been reported as highly variable among closely
281	related fungi (37, 48), yet evidence suggesting a role for <i>p450nor</i> in this phenomenon is lacking.
282	Of the 94 fungal genera harboring p450nor, 21 (22 %) contained species with and without a copy
283	of p450nor (Table S5). For example, 15 out of 16 (94 %) Pseudogymnoascus genomes contained
284	p450nor, whereas only 1 out of 7 (14 %) Exophiala genomes contained a p450nor gene.
285	Nucleotide alignments of <i>p450nor</i> -containing genomic regions (81.3 ± 27.8 kb in length) against
286	other fungal genomes revealed a disproportionately high nucleotide identity and alignment

287	length between genomes with and without p450nor from the same genus (Fig. 5A-C). For
288	example, genomic regions surrounding p450nor in Exophiala xenobiotica are highly similar to
289	other Exophiala species without p450nor (Fig. 5D), and additional examples of large, high
290	identity regions between closely related fungal genomes with and without p450nor are abundant
291	(Fig. 5A-C, Dataset S4).
292	
293	Discussion
294	An evaluation of hypotheses regarding the biological role of <i>p450nor</i>
295	The three leading hypotheses regarding the biological role of fungal <i>p450nor</i> are respiratory
296	denitrification (7), NO detoxification (42), and now secondary metabolism. The respiratory
297	denitrification hypothesis is dubious since evidence is lacking to classify fungi as respiratory
298	denitrifiers (4, 17–19, 49). Furthermore, unaccounted for methodological biases inherent to
299	partitioning techniques raises substantial concerns over the validity of fungal N2O production in
300	situ (4, 25–27). The ineffectiveness of antibiotics to partition microbial respiration has been
301	previously demonstrated (25, 26), yet antibiotics continue to be used to support the prevalence of
302	fungal respiratory denitrification. In addition to antibiotic inhibition, site preference
303	measurements of the intramolecular distribution of ^{15}N within the linear N2O molecule (i.e., N2O
304	isotopocules) of cultured microorganisms have been increasingly applied to partition microbial
305	sources of N_2O in situ (5, 50). Although promising, the limitations of N_2O isotopocule
306	measurements used in isolation are becoming apparent (27, 51, 52). Of primary concern is the
307	significant overlap in, and difficulty discretizing, site preference measurements of distinct
308	processes or diverse microbial assemblages (51, 53, 54). Therefore, the respiratory denitrification

309 hypothesis is predicated on biased approaches used in isolation that are unable to correctly assess310 fungal contributions to denitrification.

311	Another alternative function suggested for P450nor is NO detoxification, which was
312	initially postulated in experiments using the fungus Fusarium oxysporum strain 11n1 (55). This
313	hypothesis was supported by low growth yields and a poor mass balance between the N-
314	oxyanion inputs and N_2O formed (18, 56, 57). Although plausible, the NO detoxification
315	hypothesis is confounded by extensive co-occurrence between <i>p450nor</i> and genes encoding
316	canonical NO-detoxifying flavohemoglobins, which also produce N_2O (44, 58) (Fig. 1, Table
317	S1). Considering the extensive overlap in <i>p450nor</i> and flavohemoglobin gene presence (Fig.1),
318	the utility of site preference values derived from N_2O formed by fungi in pure culture is
319	questionable. Furthermore, P450nor and flavohemoglobins would likely compete for NO under
320	anoxic conditions, and experiments teasing apart their contributions to N_2O formation are
321	necessary to support the postulated role of P450nor in NO detoxification. The reported Michaelis
322	constant (K_m) of NO binding to P450nor ranges from 0.1 to 0.6 mM (11, 12) and is orders of
323	magnitude higher than the 0.1 to 0.25 μ M K _m reported for flavohemoglobins (59), suggesting
324	flavohemoglobin would outcompete P450nor for NO binding. Hence, the higher affinity of
325	flavohemoglobins for NO and their greater distribution in fungi would suggest a limited role for
326	P450nor in NO detoxification (Table S1). Though fungi certainly detoxify NO, insufficient
327	evidence exists to attribute this activity to P450nor.
328	The SM hypothesis has traction considering that P450nor is derived from CYP105 P450s
329	(Fig. 2), all of which share a functional role in SM (34, 46, 60). Thus, the adaptation of P450nor
330	to a novel niche in NO reduction and denitrification is unlikely. A more parsimonious hypothesis

is that P450nor has maintained a role in SM as observed for related actinobacterial enzymes.

15

332	When <i>p450nor</i> was originally described, members of the Actinobacteria (e.g., Streptomyces)
333	were already well established secondary metabolite producers and their N2O production was
334	attributed to detoxification (45, 61). The monophyly of P450nor with the SM enzyme TxtE, the
335	only other NO-utilizing P450, provides additional a priori support for P450nor's role in SM (Fig.
336	S7). P450nor's role in SM is further corroborated by SM prediction tools where a sizeable
337	proportion (35 %) of gene regions surrounding <i>p450nor</i> contained genes predicted to encode
338	hallmark SM functions, and as many as 105 (63 %) p450nor-containing genomic regions were
339	automatically predicted to be involved in SM (Fig. 3). Moreover, the fact that antiSMASH
340	flagged 11% of p450nor-containing genomic regions as putative BGCs suggests their
341	organization and gene content is highly similar to other characterized BGCs. Although
342	phylogenomic evidence supports a role for P450nor in the biosynthesis of secondary metabolites,
343	direct physiological evidence should be a target for future research efforts. Emerging
344	technologies enabling the expression of full length BGCs and metabolite identification should
345	enable robust experimentation to test the SM hypothesis (62). Regardless, p450nor-containing
346	genomic regions were predicted to be BGCs encoding diverse metabolites including terpenoids,
347	nonribosomal peptides, polyketides, indoles, and other complex metabolites (Fig. 4) consistent
348	with its evolutionary origins (Fig. 2).
240	

349 Predicting P450nor's role in secondary metabolism

A variety of metabolites containing nitro functional groups have been detected in fungal genera known to harbor denitrifying representatives (63), yet mechanistic explanations for nitration reactions in fungi remain elusive. The addition of a nitro functional group to a metabolite represents a potential mechanism for enhancing its toxicity or functional specificity (64). The hypothesis of a role for P450nor in nitration, or possibly nitrosylation, of fungal metabolites is

355 attractive given P450nor's affiliation with the nitrating enzyme TxtE. The inclusion of p450nor 356 within BGCs may be adaptive in fungal lineages in which this gene was acquired due to the augmenting effects that nitro or nitroso groups impart on their substrates (64). Support for this 357 hypothesis stems from the widespread distribution of *p450nor* within secondary metabolite 358 359 producing members of the Ascomycota (65, 66), and previous reports of HGT between members 360 of Actinobacteria and fungi in enhancing fungal SM (67). Furthermore, the high nucleotide identity shared between *p450nor*-containing genomic regions from closely related fungal species 361 suggests *p450nor* gain or loss may have important consequences for the secondary metabolites 362 363 potentially produced by p450nor-containing BGCs (Fig. 5D). Considering that 22 p450nor 364 containing fungal genera display variability in *p450nor* presence/absence (Table S5), investigations regarding the impact of p450nor presence/absence on the secondary metabolite 365 366 pool, fungal fitness, competition, or infectivity within closely related fungi is readily testable. Additional unknowns related to P450nor's role in SM are the identification of putative 367 substrates and sources of NO required to fuel the hypothesized nitration or nitrosylation 368 369 reactions. To date, P450nor is solely reported to bind the electron donors NADH or NADPH and 370 the electron acceptor NO (7). However, N₂O formation by P450nor is oxygen dependent (8, 22), 371 suggesting O_2 may be an additional substrate as observed for TxtE (40). TxtE and NovI, both P450s affiliated with P450nor, bind to and transform L-tryptophan and L-tyrosine to produce the 372 secondary metabolites that to and novobiocin, respectively (40, 68). It is conceivable that 373 374 P450nor might also bind O_2 and aromatic amino acids, but direct experimental evidence is required to support this hypothesis. A potential source of NO in fungi could result from nitrite 375 376 reductase activity of the copper containing nitrite reductase, NirK. The NO synthase (TxtD) from 377 Streptomyces turgidiscables produces NO to fuel TxtE nitration of L-tryptophan (40), but txtD

17

homologs were not detected in the fungal genomes examined. Although evidence of NO

synthases in fungi exist, knowledge regarding their distribution is limited (69, 70). Given the

- functional redundancy between NO synthases and NirK, it is conceivable that one of NirK's
- functions in fungi is to generate NO for use by P450nor in SM.
- 382 Causes and consequences of *p450nor* evolution in fungi

A limited understanding of *p450nor* evolution represented an impediment to our knowledge of

fungal N_2O formation. For example, closely related fungi vary in their ability to produce N_2O

(16, 37, 48, 56), and the evolutionary forces (e.g., HGT, gene gain/loss, and incomplete lineage

sorting) contributing to this observation were unexplored. For *p450nor*, many HGT events were

387 observed between distantly related fungal lineages using gene and species tree comparisons (Fig.

S2). Although HGT events are challenging to precisely quantify given the level of uncertainty in

deeply branching nodes of the functional gene trees reported here, a signal of potentially double

digit HGT events were observed using gene tree-species tree reconciliation (Table S3).

391 Moreover, genetic elements encoding *pogo* family transposases (N = 9), retrotransposons (N =

4), and reverse transcriptases (N = 1) were in some cases detected adjacent to p450nor and may

act as vehicles for dissemination of p450nor within fungi and between fungal chromosomes

394 (Dataset S2).

N₂O production was previously coined a widespread trait in fungi (37), yet genomic
analysis suggests fortuitous N₂O formation by fungi is largely restricted to members of the
Ascomycota. For example, of the167 *p450nor*-containing fungal genomes identified, 163 were
affiliated with members of the Ascomycota and only four with members of the Basidiomycota.
N₂O production has been reported for fungal isolates assigned to the recently revised phylum
Mucoromycota (4, 71), yet no evidence of genes underlying denitrification were detected in

401 available genomes from members of this phylum (Fig. 1). Denitrification markers were also 402 absent from ascomycete yeast genomes (i.e., Candida, Yarrowia), though a number of N₂Oproducing ascomycete yeasts have been reported (56). Even within the Basidiomycota, N_2O 403 formation is restricted to a few taxa within the Tremellomycetes and Agaricomycetes (4), and at 404 least for members of the Tremellomycetes, was likely the result of HGT from one or more 405 406 members of the Ascomycota (Fig S2). The finding that genomes from fungi (e.g., ascomycete yeasts) previously observed to produce N₂O did not possess denitrification traits was unexpected 407 and suggests that experimental artifacts or other mechanisms, such as the NO-detoxifying 408 409 activity of flavohemoglobins, may also contribute to N_2O formation in fungi. In addition to fungi, species of green algae have been reported to produce small quantities of N_2O , the 410 production of which could, at least in part, be attributed to the presence of p450nor within this 411 lineage (72–74). Despite these findings, green algae lack a mass balance between the inorganic N 412 added and the N₂O formed (74) and display low rates and quantities of N₂O production on par 413 with fungi (72), suggesting that N_2O formation is not a respiratory process in these organisms. 414 415 Considering the lack of evidence of respiratory denitrification in green algae and genomic evidence linking *p450nor* to SM in fungi, the SM hypothesis is an attractive explanation for the 416 417 presence of *p450nor* in green algae as well.

418 *p450nor* genes within fungi also have implications for fungal pathogenesis (4). At least 419 for some bacteria (e.g., *Neisseria*, *Brucella*, *Mycobacterium*), the presence of denitrification 420 genes has been demonstrated to enhance virulence or detoxification of N-oxides produced by the 421 host (75). Although the impact of denitrification gene acquisition on fungal pathogenesis is not 422 well established, there is growing evidence for P450nor involvement in fungal virulence (4, 7). 423 For example, *p450nor* gene expression is linked to *Fusarium* wilt in banana and cotton plants,

19

424 yet mechanistic explanations of P450nor's function during plant infection are lacking (76, 77). 425 Notably, more than half of all *p450nor*-containing fungal species are known plant pathogens (4), and the involvement of *p450nor* in SM is consistent with and would support the plant pathogenic 426 427 life history strategies of many *p450nor*-containing fungi. 428 The diversity of denitrifying microorganisms and the modularity of the pathway has led 429 to the view of denitrification as a community function (78–80). Therefore, limited co-occurrence and correlated evolution between napA, nirK, and p450nor might suggest mutualistic 430 interactions occur between fungal or bacterial species performing denitrification. However, gene 431 432 co-occurrences and evolutionary correlations should be interpreted with caution as additional factors (e.g., shared ecological niche, selection pressures) related to fungal life history strategies 433 may explain their distribution equally well. For example, N₂O-producing fungi are frequently 434 detected in, and cultivated from, highly disturbed, N-amended agricultural soils (4, 9, 16) and 435 detoxification or N-oxide utilization traits may merely co-occur more frequently due to selection 436 imposed by episodic N addition. Fungi also contain genes homologous to bacterial denitrifiers, 437 438 but their presence does not guarantee a role in respiratory denitrification. For example, the presence of genes homologous to the bacterial NO reductase (norB) is not sufficient evidence for 439 440 respiratory denitrification potential in bacteria (17, 75). The same is true of the abundant *napA* gene homologs detected in fungal genomes, which would suggest a robust capacity of fungi to 441 442 perform dissimilatory nitrate reduction. Yet this is not the case, and many fungi only produce 443 N_2O when NO_2^- is present (4, 18, 56). 444

In summary, fungi often produce little or no gaseous N from reduction of N-oxyanions and do not grow proportionally to the quantity of N-oxyanions consumed; thus, fungi cannot be classified as respiratory denitrifiers (17). Given the limited accounting of methodological bias in

447	the study of N_2O production by fungi (25–27), alternative explanations for the biological
448	function of <i>p450nor</i> in fungi are likely and raises concerns over the validity of these techniques
449	in estimating fungal contributions to N_2O emissions. Although the P450nor NO detoxification
450	hypothesis is plausible, available data are insufficient at present to definitively support a role for
451	P450nor in this process. Considering that many canonical denitrifying fungi are also plant
452	disease causing secondary metabolite producers and agricultural pests, the affiliation of p450nor
453	with non-denitrifying actinobacterial sequences involved in SM and their inclusion in BGCs
454	strongly endorses a biological role for <i>p450nor</i> in SM.
455	Materials and Methods
456	Datasets
457	Draft and complete fungal, algal, and bacterial genomes were accessed from the National Center
458	for Biotechnology Information and the Joint Genome Institute on March 16th, 2016 and
459	downloaded from their respective database utilities. A list of fungal, algal, and bacterial genomes
460	and their taxonomic and database affiliations can be found in the Supplemental Information (SI)
461	(Dataset S5).
462	Gene marker identification
463	To identify gene markers within fungal genomes suitable for phylogenetic analysis, a database of
464	1,438 amino acid sequences of fungal single copy orthologs from the BUSCO tool v1.1b (81)
465	were provided as queries to the genblastG search tool v1.0.138 (82). The genblastG tool
466	performs amino acid alignment of protein queries against a six frame translated nucleotide
467	subject sequence (genome) to find significant alignments and uses heuristic analysis to piece the
468	appropriate gene models back together from high-scoring segment pairs identified using BLAST
469	(83). Of the BUSCO gene models queried, 238 were used for phylogenetic tree reconstruction

470	and were annotated using PfamScan against the Pfam A database and blastp against the uniprot
471	database with default settings (84-87) (Dataset S6). The genblastG tool was also used to detect
472	gene sequences involved in denitrification (NapA, NarG, NirK/NirS, NorB, P450nor, NosZ)
473	from curated bacterial proteins in the FunGene repository (88) or proteins involved in NO
474	detoxification (flavohemoglobins) identified in the literature (44). Denitrification gene models
475	used in downstream phylogenetic analysis were manually curated against full length fungal
476	reference sequences to ensure that accurate gene models were predicted for each organism in
477	which the gene was detected. After identification of these genes in fungal genomes, alignment of
478	the fungal NapA, NirK, NarG, and P450nor amino acid sequences with blastp against the plant,
479	archaea, bacteria, protozoa, and fungi RefSeq protein databases (89) was performed to identify
480	similar sequences in each taxonomic group. Protein sequences demonstrating significant
481	alignment (≥ 60 % query coverage and ≥ 35 % amino acid identity) to fungal proteins were used
482	in subsequent phylogenetic reconstructions.
483	Gene prediction for comparative genomic analyses
484	The <i>ab initio</i> gene predictor SNAP (90) was used to predict gene models in fungal genomes
485	where no such information was available (e.g., some draft genomes). In this case, one or several
486	closely related fungal genomes containing gene models were selected based on phylogenetic
487	affiliation to train SNAP for gene prediction. Although this methodology is limiting when
488	closely related genomes are unavailable, gene models from close relatives were available for
489	p450nor-containing genomes lacking gene predictions.
490	Alien index calculations
491	The alien index (AI) was calculated as previously described and modified for use with a single

492 gene (44). Briefly, pairwise amino acid sequence alignments were performed using blastp for

493	fungal NapA, NirK, and P450nor sequences. The in group was defined as the aligned sequence
494	with the highest bitscore (excluding the query) belonging to the same taxonomic class as the
495	query sequence. Accordingly, the out group was defined as the aligned sequence with the highest
496	bitscore not belonging to the same taxonomic class as the query. The maximum bitscore was the
497	bitscore derived from the alignment of the query to itself. Therefore, AI is calculated as follows:
498	AI = (out group bitscore/max bitscore) – (in group bitscore/max bitscore)
499	AI values range from 1 to -1. Values greater than zero are indicative of HGT or contamination of
500	foreign DNA within the genome sequence being queried.
501	Analysis of SM gene clusters in fungi
502	Genomic regions 50 kb up- and downstream of a p450nor gene in each genome were subjected
503	to gene cluster prediction with the antiSMASH and CASSIS tools with default settings (47, 91).
504	Additionally, genes encoded +/- 10 genes up and downstream of p450nor were evaluated using
505	PfamScan searches with default settings against the pHHMs of curated SM genes identified by
506	antiSMASH (Dataset S2) (91). Protein sequences with significant alignment to antiSMASH
507	pHMMs were given an "automatic" SM function status and were colored blue. In order to
508	supplement the automated SM annotation, additional functional annotation was performed by
509	hmmscan searches with HMMER3 (92) against the eggNOG database (93). These functional
510	annotations were manually flagged as related to SM if they possessed literature entries
511	suggesting an involvement in SM or had functions related to methyl transfer, oxidation-reduction
512	reactions, glycosyl transferases, fungal specific transcription factors, and other protein functions
513	that may be important for SM outlined by antiSMASH (91). All manual SM annotations were
514	colored light blue to indicate potential involvement in SM. All other annotations were colored
515	grey when no evidence connecting the function to SM could be identified.

516	Additionally, ortholog clustering of protein-coding genes surrounding p450nor was
517	performed using OrthoFinder (94) with default settings. Ortholog clustering was performed using
518	only a representative <i>p450nor</i> loci in each fungal genome if multiple gene copies were present. A
519	Shannon-like diversity index of fungal classes detected in each orthologous group was calculated
520	as $H' = -\sum (P_i * \ln(P_i))$, where P_i is the fraction of fungal class <i>i</i> present in an orthologous
521	group. Pairwise nucleotide alignments of p450nor-containing genomic regions were performed
522	as previously described (95). Briefly, the <i>nucmer</i> utility of MUMmer $v3.0$ (96) was used to align
523	p450nor-containing genomic regions (~100 kb) against whole genomes of fungi with and
524	without <i>p450nor</i> . The average nucleotide identity (reported as ANIm) of the alignment was
525	calculated from the resulting delta output file. The resulting data was plotted using Matplotlib
526	(97) available for the python programming language (http://www.python.org).
527	Phylogenetic analysis
528	Phylogenetic reconstruction of the fungal species tree was performed using concatenated amino
529	acid sequences from 238 single copy orthologs found in \ge 90 % of all genomes (Dataset S6). The
530	genomes of Puccinia arachidis and Microbotryum lychnidis-dioicae strain p1A1 Lamole were
531	excluded from further analysis due to an insufficient number of informative sites and
532	inconsistent placement within the fungal tree. Alignment of amino acid sequences were
533	performed individually on all 238 individual BUSCO gene models present within each organism
534	using MAFFT v7.130b (98) with linsi alignment tuning parameters (maxiterate 1000 and
535	localpair settings used). Individual alignments were concatenated using in-house python scripts,
536	resulting in a 65,897 column alignment. Tree reconstruction was performed using FastTree2 (99)
537	with refined tree reconstruction settings for slower, more exhaustive search of the tree space than
538	default settings (-bionj -slow -gamma -spr 4 -lg -mlacc 2 and -slownni settings). For comparison

539 to tree reconstruction using a concatenated alignment, individual trees from each BUSCO 540 alignment were also constructed using FastTree2 with identical settings as above. The resultant alignments and trees were subjected to coalescent tree reconstruction using ASTRAL-II software 541 542 (100). Overall, both phylogenies largely agreed except for branching patterns of some lineages 543 (e.g., Zoopagomycota and Mucoromycota) and are available online in a figshare repository (see 544 *Data Sharing* below) The predicted amino acid and intronless nucleotide sequences of fungal *napA*, *nirK*, and 545 *p450nor* gene models were aligned using the MAFFT settings described above and manually 546

refined in JalView and SeaView software (101, 102). Maximum-likelihood (ML) and Bayesian
phylogenetic tree reconstruction was performed on both nucleotide and amino acid alignments
using RAxML and MrBayes, respectively (103, 104). Selection of the optimal evolutionary
model for ML tree reconstruction was performed using prottest (105) (amino acid alignment) and
jmodeltest (106) (nucleotide alignment) software prior to ML tree reconstruction. Please refer to

552 SI for additional details about evolutionary models used in phylogenetic analysis.

553 Phylogenetic analysis with RAxML was performed by sampling 20 starting trees and performing 1,000 replicate bootstrap analyses. The tree with the maximal negative log likelihood 554 555 score was compared to 1,000 replicates in RAxML to generate the final tree. Bayesian tree construction was performed using 3 independent runs with 6 chains for 5,000,000 generations. 556 Output from MrBayes was evaluated with the sump and sumt commands within the software to 557 558 ensure Markov Chain Monte Carlo chain mixing and convergence (potential scale reduction 559 factor of 1.0) and standard deviation of split frequencies ~ 0.01 or lower. MrBayes output was 560 further visualized in the program Tracer (http://tree.bio.ed.ac.uk/software/tracer/) to ensure 561 convergence was reached.

h	E.
Z	Э

562	BayesTraits software was used to perform phylogenetically informed correlations		
563	between binary traits (i.e., the presence or absence of two denitrification markers) and ancestral		
564	state reconstruction (107). Please refer to SI for additional details on BayesTraits analyses.		
565	Approximately unbiased (AU) tests were performed in the program CONSEL (108) using		
566	default settings. The negative log likelihood values from the observed nucleotide phylogenies		
567	input into CONSEL were -140,261, -37,782, -111,531 for <i>napA</i> , <i>nirK</i> and <i>p450nor</i> , respectively.		
568	The observed negative log likelihood scores for amino acid phylogenies of NapA, NirK, and		
569	P450nor were -65,158, -14,197, and -44,171, respectively. Species-tree gene-tree reconciliation		
570	was performed using NOTUNG software v2.9 (38, 109). Please see SI for further details on		
571	NOTUNG parameters.		
572	Statistical analysis		
573	All statistical analyses were carried out in R programming language (110) and significance of		
574	statistical tests were assessed using a p value cutoff ≤ 0.05 .		
575	Data sharing		
576	All gene models, alignments, and trees discussed in the manuscript are made available in a		
577	figshare repository prepared by S.A.H. (https://doi.org/10.6084/m9.figshare.c.3845692).		
578	Acknowledgements		
579	We thank Gerald Bills, Gregory Bonito, Pedro Crous, Kathryn Bushley, Colleen Hansel, Patrik		
580	Inderbitzin, Gabor Kovacs, Bjorn Lindahl, Jon Magnuson, Francis Martin, Kerry O'Donnell,		
581	Nancy Nichols, Minou Nowrousian, and Joseph Spatafora for providing access to unpublished		
582	genome data produced by the U.S. Department of Energy Joint Genome Institute. The authors		
583	thank A. Frank for assistance with manuscript revisions. S.A.H. would like to acknowledge a		
584	Department of Energy Office of Science Graduate Student Research fellowship for support		

585	during preparation of the manuscript. Participation of C.W.S and F.E.L. was partially sponsored		
586	by the Laboratory Directed Research and Development Program of Oak Ridge National		
587	Labor	atory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. This research	
588	was p	artially supported by the US Department of Energy, Office of Biological and	
589	Environmental Research, Genomic Science Program, Award DE-SC0006662.		
590			
591 592	Refer	rences	
593 594 595	1.	Canfield DE , Glazer AN , Falkowski PG . 2010. The evolution and future of Earth's nitrogen cycle. Science 330 :192–6.	
596 597 598 599	2.	Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli L a, Seitzinger SP, Sutton M a. 2008. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science (80). 320 :889–892.	
600 601 602	3.	Zumft WG . 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61 :533–616.	
603 604 605 606	4.	Mothapo N, Chen H, Cubeta MA, Grossman JM, Fuller F, Shi W . 2015. Phylogenetic, taxonomic and functional diversity of fungal denitrifiers and associated N ₂ O production efficacy. Soil Biol. Biochem. 83 :160–175.	
607 608 609 610	5.	Wankel SD, Ziebis W, Buchwald C, Charoenpong C, de Beer D, Dentinger J, Xu Z, Zengler K. 2017. Evidence for fungal and chemodenitrification based N ₂ O flux from nitrogen impacted coastal sediments 8:15595.	
611 612 613	6.	Cathrine SJ, Raghukumar C . 2009. Anaerobic denitrification in fungi from the coastal marine sediments off Goa, India. Mycol. Res. 113 :100–109.	
614 615 616 617	7.	Shoun H, Fushinobu S, Jiang L, Kim S-W, Wakagi T. 2012. Fungal denitrification and nitric oxide reductase cytochrome P450nor. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367 :1186–94.	
618 619	8.	Mothapo N V, Chen H, Cubeta MA, Shi W. 2013. Nitrous oxide producing activity of diverse fungi from distinct agroecosystems. Soil Biol. Biochem. 66 :94–101.	

620		
621 622 623	9.	Chen H , Mothapo N V , Shi W . 2014. The significant contribution of fungi to soil N ₂ O production across diverse ecosystems. Appl. Soil Ecol. 73 :70–77.
624 625 626 627	10.	Hu H-W , Chen D , He J-Z . 2015. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 39 :729–749.
628 629 630 631	11.	Shiro Y, Fujii M, Iizuka T, Adachi S, Tsukamoto K, Nakahara K, Shoun H. 1995. Spectroscopic and kinetic studies on reaction of cytochrome P450nor with nitric oxide: Implication for its nitric oxide reduction mechanism. J. Biol. Chem. 270 :1617–1623.
632 633 634 635	12.	Nakahara K, Tanimoto T, Hatano K, Usuda K, Shoun H. 1993. Cytochrome P-450 55A1 (P-450dNIR) acts as nitric oxide reductase employing NADH as the direct electron donor. J. Biol. Chem. 268 :8350–8355.
636 637 638	13.	Shimizu H, Park S-Y, Shiro Y, Adachi S. 2002. X-ray structure of nitric oxide reductase (cytochrome P450nor) at atomic resolution. Acta Crystallogr. Sect. D 58:81–89.
639 640 641 642	14.	Novinscak A, Goyer C, Zebarth BJ, Burton DL, Chantigny MH, Filion M. 2016. Novel <i>P450nor</i> gene detection assay used to characterize the prevalence and diversity of soil fungal denitrifiers. Appl. Environ. Microbiol. 82 :4560–4569.
643 644 645 646	15.	Li Y, Liu Q, Liang X, Xiao Q, Fang Y, Wu Y. 2016. A new fluorescence biosensor for nitric oxide detection based on cytochrome P450 55B1. Sensors Actuators B Chem. 230:405–410.
647 648 649 650	16.	Higgins SA, Welsh A, Orellana LH, Konstantinidis KT, Chee-Sanford JC, Sanford RA, Schadt CW, Löffler FE . 2016. Detection and diversity of fungal nitric oxide reductase genes (<i>p450nor</i>) in agricultural soils. Appl. Environ. Microbiol. 82 :2919–2928.
651 652 653	17.	Mahne I, Tiedje JM. 1995. Criteria and methodology for identifying respiratory denitrifiers. Appl. Environ. Microbiol. 61 :1110–1115.
654 655	18.	Shoun H. 1992. Denitrification by fungi. FEMS Microbiol. Lett. 94:277–281.
656 657 658	19.	Tsuruta S, Takaya N, Zhang L, Shoun H, Kimura K, Hamamoto M, Nakase T . 1998. Denitrification by yeasts and occurrence of cytochrome P450nor in <i>Trichosporon</i> <i>cutaneum</i> . FEMS Microbiol. Lett. 168 :105–110.

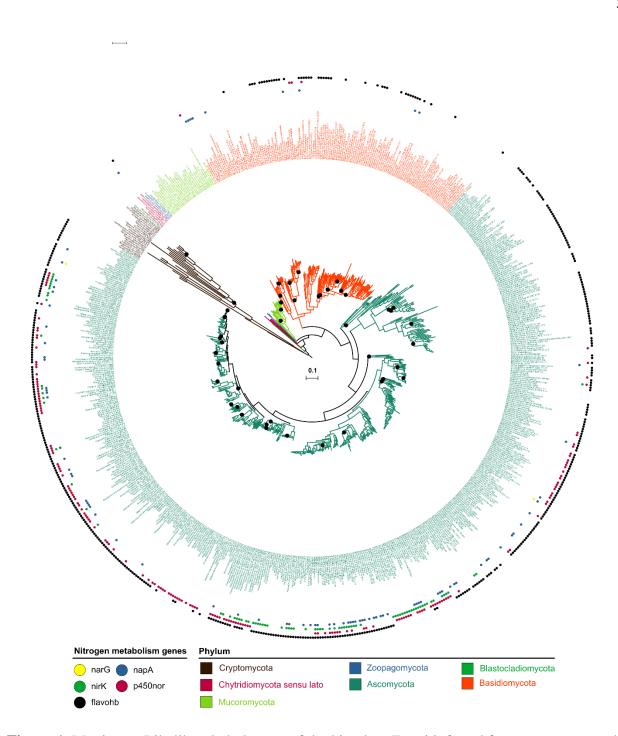
659		
660 661 662	20.	Bleakley BH , Tiedje JM . 1982. Nitrous oxide production by organisms other than nitrifiers or denitrifiers. Appl. Environ. Microbiol. 44 :1342–1348.
663 664 665 666	21.	Stief P, Fuchs-Ocklenburg S, Kamp A, Manohar C-S, Houbraken J, Boekhout T, de Beer D, Stoeck T . 2014. Dissimilatory nitrate reduction by <i>Aspergillus terreus</i> isolated from the seasonal oxygen minimum zone in the Arabian Sea. BMC Microbiol. 14 :35.
667 668 669	22.	Zhou Z, Takaya N, Sakairi MAC, Shoun H . 2001. Oxygen requirement for denitrification by the fungus <i>Fusarium oxysporum</i> . Arch. Microbiol. 175 :19–25.
670 671 672 673	23.	Shoun H , Tanimoto T . 1991. Denitrification by the fungus <i>Fusarium oxysporum</i> and involvement of cytochrome P-450 in the respiratory nitrite reduction. J. Biol. Chem. 266 :11078–11082.
674 675 676 677	24.	Herold MB , Baggs EM , Daniell TJ . 2012. Fungal and bacterial denitrification are differently affected by long-term pH amendment and cultivation of arable soil. Soil Biol. Biochem. 54 :25–35.
678 679 680 681	25.	Rousk J, Demoling LA, Bååth E . 2009. Contrasting short-term antibiotic effects on respiration and bacterial growth compromises the validity of the selective respiratory inhibition technique to distinguish fungi and bacteria. Microb. Ecol. 58 :75–85.
682 683 684	26.	Ladan S, Jacinthe P-A. 2016. Evaluation of antibacterial and antifungal compounds for selective inhibition of denitrification in soils. Environ. Sci. Process. Impacts.
685 686 687 688	27.	Phillips RL, Song B, McMillan AMS, Grelet G, Weir BS, Palmada T, Tobias C . 2016. Chemical formation of hybrid di-nitrogen calls fungal codenitrification into question. Sci. Rep. 6 :39077.
689 690 691 692	28.	Moktali V, Park J, Fedorova-Abrams N, Park B, Choi J, Lee Y-H, Kang S. 2012. Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes. BMC Genomics 13 :525.
693 694 695 696	29.	Kizawa H, Tomura D, Oda M, Fukamizu A, Hoshino T, Gotoh O, Yasui T, Shoun H . 1991. Nucleotide sequence of the unique nitrate/nitrite-inducible cytochrome P-450 cDNA from <i>Fusarium oxysporum</i> . J. Biol. Chem. 266 :10632–10637.
697	30.	Chen W, Lee M-K, Jefcoate C, Kim S-C, Chen F, Yu J-H. 2014. Fungal cytochrome

698 699 700		P450 monooxygenases: their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biol. Evol. 6 :1620–1634.
701 702 703 704	31.	Shoun H, Kano M, Baba I, Takaya N, Matsuo M. 1998. Denitrification by actinomycetes and purification of dissimilatory nitrite reductase and azurin from <i>Streptomyces thioluteus</i> . J. Bacteriol. 180 :4413–4415.
705 706 707 708	32.	Shapleigh JP . 2013. Denitrifying prokaryotes, p. 405–425. <i>In</i> Rosenberg, E, DeLong, EF, Lory, S, Stackebrandt, E, Thompson, F (eds.), The prokaryotes: Prokaryotic physiology and biochemistry. Springer Berlin Heidelberg, Berlin, Heidelberg.
709 710 711 712	33.	Kumon Y, Sasaki Y, Kato I, Takaya N, Shoun H, Beppu T. 2002. Codenitrification and denitrification are dual metabolic pathways through which dinitrogen evolves from nitrate in <i>Streptomyces antibioticus</i> . J. Bacteriol. 184 :2963–2968.
713 714 715	34.	Moody SC , Loveridge EJ . 2014. CYP105—diverse structures, functions and roles in an intriguing family of enzymes in <i>Streptomyces</i> . J. Appl. Microbiol. 117 :1549–1563.
716 717 718	35.	Blackwell M , Hibbett DS , Taylor JW , Spatafora JW . 2006. Research coordination networks: a phylogeny for kingdom Fungi (Deep Hypha). Mycologia 98 :829–837.
719 720 721	36.	Martin F, Cullen D, Hibbett D, Pisabarro A, Spatafora JW, Baker SE, Grigoriev I V. 2011. Sequencing the fungal tree of life. New Phytol. 190 :818–821.
722 723 724 725	37.	Maeda K, Spor A, Edel-Hermann V, Heraud C, Breuil M-C, Bizouard F, Toyoda S, Yoshida N, Steinberg C, Philippot L. 2015. N ₂ O production, a widespread trait in fungi. Sci. Rep. 5 .
726 727 728 729	38.	 Stolzer M, Lai H, Xu M, Sathaye D, Vernot B, Durand D. 2012. Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinforma. 28 :i409–i415.
730 731	39.	Nelson DR. 2009. The cytochrome P450 homepage. Hum. Genomics 4:59–65.
732 733 734 735	40.	Barry SM, Kers JA, Johnson EG, Song L, Aston PR, Patel B, Krasnoff SB, Crane BR, Gibson DM, Loria R, Challis GL. 2012. Cytochrome P450–catalyzed L-tryptophan nitration in thaxtomin phytotoxin biosynthesis. Nat Chem Biol 8:814–816.
736	41.	Dodani SC, Cahn JKB, Heinisch T, Brinkmann-Chen S, McIntosh JA, Arnold FH.

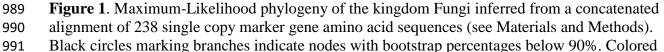
737 738 739		2014. Structural, functional, and spectroscopic characterization of the substrate scope of the novel nitrating cytochrome P450 TxtE. Chembiochem 15 :2259–2267.
740 741 742	42.	Morozkina E V. , Kurakov A V. 2007. Dissimilatory nitrate reduction in fungi under conditions of hypoxia and anoxia: A review. Appl. Biochem. Microbiol. 43 :544–549.
743 744 745	43.	Poole RK , Hughes MN . 2000. New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol. Microbiol. 36 :775–783.
746 747 748 749	44.	Wisecaver JH , Alexander WG , King SB , Todd Hittinger C , Rokas A . 2016. Dynamic evolution of nitric oxide detoxifying flavohemoglobins, a family of single-protein metabolic modules in <i>Bacteria</i> and Eukaryotes. Mol. Biol. Evol.
750 751 752	45.	Kaspar HF . 1982. Nitrite reduction to nitrous oxide by propionibacteria: Detoxification mechanism. Arch. Microbiol. 133 :126–130.
753 754 755	46.	O'Keefe DP , Harder PA . 1991. Occurrence and biological function of cytochrome P450 monooxygenases in the actinomycetes. Mol. Microbiol. 5 :2099–2105.
756 757 758 759	47.	Wolf T, Shelest V, Nath N, Shelest E. 2016. CASSIS and SMIPS: promoter-based prediction of secondary metabolite gene clusters in eukaryotic genomes. Bioinforma. 32 :1138–1143.
760 761 762	48.	Shoun H . 1992. Fungal denitrification and cytochrome P-450. J. Agric. Chem. Soc. Japan 66 :154–157.
763 764 765	49.	Guengerich FP , Munro AW . 2013. Unusual cytochrome P450 enzymes and reactions. J. Biol. Chem. 288 :17065–17073.
766 767 768	50.	Toyoda S, Yoshida N, Koba K . 2017. Isotopocule analysis of biologically produced nitrous oxide in various environments. Mass Spectrom. Rev. 36 :135–160.
769 770 771 772	51.	Yang H, Gandhi H, Ostrom NE, Hegg EL . 2014. Isotopic fractionation by a fungal P450 nitric oxide reductase during the production of N ₂ O. Environ. Sci. Technol. 48 :10707–10715.
773 774 775	52.	Decock C , Six J . 2013. How reliable is the intramolecular distribution of 15 N in N ₂ O to source partition N ₂ O emitted from soil? Soil Biol. Biochem. 65 :114–127.

776 777 778 779	53.	Baggs EM . 2008. A review of stable isotope techniques for N ₂ O source partitioning in soils: recent progress, remaining challenges and future considerations. Rapid Commun. Mass Spectrom. 22 :1664–1672.
780 781 782 783	54.	Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S. 2013. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos. Trans. Biol. Sci. 368:1–13.
784 785 786 787	55.	Kurakov A V , Nosikov AN , Skrynnikova E V , L'vov NP . 2000. Nitrate reductase and nitrous oxide production by <i>Fusarium oxysporum</i> 11dn1 under aerobic and anaerobic conditions. Curr. Microbiol. 41 :114–119.
788 789 790 791	56.	Tsuruta S, Takaya N, Zhang L, Shoun H, Kimura K, Hamamoto M, Nakase T . 1998. Denitrification by yeasts and occurrence of cytochrome P450nor in <i>Trichosporon cutaneum</i> . FEMS Microbiol. Lett. 168 :105–110.
792 793 794 795 796	57.	Rohe L, Anderson T, Braker G, Flessa H, Giesemann A, Lewicka-Szczebak D, Wrage-Monnig N, Well R. 2014. Dual isotope and isotopomer signatures of nitrous oxide from fungal denitrification - a pure culture study. Rapid Commun. Mass Spectrom. 28 :1893–1903.
797 798 799	58.	Zumft WG . 2005. Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme–copper oxidase type. J. Inorg. Biochem. 99 :194–215.
800 801 802 803	59.	Gardner PR, Gardner AM, Martin LA, Dou Y, Li T, Olson JS, Zhu H, Riggs AF. 2000. Nitric-oxide dioxygenase activity and function of flavohemoglobins: Sensitivity to nitric oxide and carbon monoxide inhibition. J. Biol. Chem. 275:31581–31587.
804 805 806 807	60.	Yasutake Y, Imoto N, Fujii Y, Fujii T, Arisawa A, Tamura T. 2007. Crystal structure of cytochrome P450 MoxA from <i>Nonomuraea recticatena</i> (CYP105). Biochem. Biophys. Res. Commun. 361 :876–882.
808 809 810 811	61.	Stassi D, Donadio S, Staver MJ, Katz L . 1993. Identification of a <i>Saccharopolyspora erythraea</i> gene required for the final hydroxylation step in erythromycin biosynthesis. J. Bacteriol. 175 :182–189.
812 813 814 815	62.	Clevenger KD, Bok JW, Ye R, Miley GP, Verdan MH, Velk T, Chen C, Yang K, Robey MT, Gao P, Lamprecht M, Thomas PM, Islam MN, Palmer JM, Wu CC, Keller NP, Kelleher NL. 2017. A scalable platform to identify fungal secondary metabolites and their gene clusters. Nat Chem Biol 13 :895–901.

010	8	1	6
-----	---	---	---


817	63.	Chen S, Wang J, Lin X, Zhao B, Wei X, Li G, Kaliaperumal K, Liao S, Yang B,
818 819 820 821		Zhou X, Liu J, Xu S, Liu Y . 2016. Chrysamides A–C, three dimeric nitrophenyl trans- epoxyamides produced by the deep-sea-derived fungus <i>Penicillium chrysogenum</i> SCSIO41001. Org. Lett. 18 :3650–3653.
822 823 824	64.	Kovacic P , Somanathan R . 2014. Nitroaromatic compounds: Environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism. J. Appl. Toxicol. 34 :810–824.
825 826 827	65.	Keller NP . 2015. Translating biosynthetic gene clusters into fungal armor and weaponry. Nat Chem Biol 11 :671–677.
828 829 830 831	66.	Macheleidt J, Mattern DJ, Fischer J, Netzker T, Weber J, Schroeckh V, Valiante V, Brakhage AA. 2016. Regulation and role of fungal secondary metabolites. Annu. Rev. Genet. 50 :371–392.
832 833 834 835 836	67.	Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions <i>Acidobacteria</i> , <i>Actinobacteria</i> , <i>Proteobacteria</i> , and <i>Verrucomicrobia</i> . Appl. Environ. Microbiol. 68 :2391–2396.
837 838 839 840	68.	Chen H, Walsh CT . 2001. Coumarin formation in novobiocin biosynthesis: β -hydroxylation of the aminoacyl enzyme tyrosyl-S-NovH by a cytochrome P450 NovI. Chem. Biol. 8 :301–312.
841 842 843 844	69.	Ninnemann H , Maier J . 1996. Indications for the occurrence of nitric oxide synthases in fungi and plants and the involvement in photoconidiation of <i>Neurospora crassa</i> . Photochem. Photobiol. 64 :393–398.
845 846 847 848	70.	Samalova M, Johnson J, Illes M, Kelly S, Fricker M, Gurr S. 2013. Nitric oxide generated by the rice blast fungus <i>Magnaporthe oryzae</i> drives plant infection. New Phytol. 197 :207–222.
849 850 851 852 853 854	71.	Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O'Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE. 2016. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycol. 108 :1028–1046.

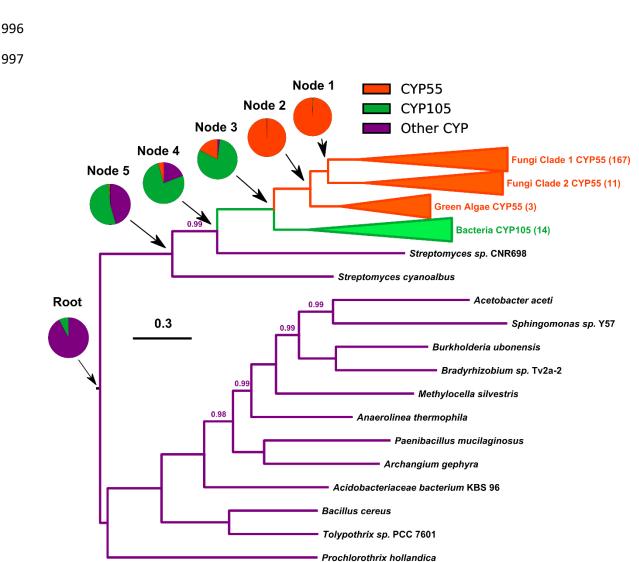
855 856 857	72.	Weathers PJ. 1984. N ₂ O evolution by green algae. Appl. Environ. Microbiol. 48 :1251–1253.
858 859 860 861	73.	Guieysse B, Plouviez M, Coilhac M, Cazali L . 2013. Nitrous oxide (N ₂ O) production in axenic <i>Chlorella vulgaris</i> microalgae cultures: evidence, putative pathways, and potential environmental impacts. Biogeosciences 10 :6737–6746.
862 863 864 865	74.	Plouviez M, Wheeler D, Shilton A, Packer MA, McLenachan PA, Sanz-Luque E, Ocana-Calahorro F, Fernandez E, Guieysse B. 2017. The biosynthesis of nitrous oxide in the green alga <i>Chlamydomonas reinhardtii</i> . Plant J.
866 867 868	75.	Philippot L . 2005. Denitrification in pathogenic bacteria: for better or worst? Trends Microbiol. 13 :191–192.
869 870 871	76.	Myburg AA , den Berg N , Viljoen A . 2013. Pathogenicity associated genes in <i>Fusarium oxysporum</i> f. sp. <i>cubense</i> race 4. S. Afr. J. Sci. 109 :1–10.
872 873 874 875	77.	McFadden HG , Wilson IW , Chapple RM , Dowd C . 2006. Fusarium wilt (<i>Fusarium oxysporum</i> f. sp. <i>vasinfectum</i>) genes expressed during infection of cotton (<i>Gossypium hirsutum</i>) [†] . Mol. Plant Pathol. 7 :87–101.
876 877 878 879	78.	Jones CM , Welsh A , Throbäck IN , Dörsch P , Bakken LR , Hallin S . 2011. Phenotypic and genotypic heterogeneity among closely related soil-borne N ₂ - and N ₂ O-producing <i>Bacillus</i> isolates harboring the <i>nosZ</i> gene. FEMS Microbiol. Ecol. 76 :541–52.
880 881 882 883	79.	Graf DRH , Jones CM , Hallin S . 2014. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N ₂ O emissions. PLoS One 9.
884 885 886	80.	Philippot L . 2002. Denitrifying genes in bacterial and archaeal genomes. Biochim. Biophys. Acta - Gene Struct. Expr. 1577 :355–376.
887 888 889 890	81.	Simão FA, Waterhouse RM, Ioannidis P, Kriventseva E V, Zdobnov EM . 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31 :3210–3212.
891 892 893	82.	She R, Chu JS-C, Uyar B, Wang J, Wang K, Chen N. 2011. genBlastG: using BLAST searches to build homologous gene models. Bioinforma. 27 :2141–2143.


894 895 896	83.	Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215 :403–410.
897 898 899 900	84.	Li W, Cowley A, Uludag M, Gur T, McWilliam H, Squizzato S, Park YM, Buso N, Lopez R. 2015. The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res. 43 :W580–W584.
901 902 903	85.	Mistry J, Bateman A, Finn RD . 2007. Predicting active site residue annotations in the Pfam database. BMC Bioinformatics 8 :298.
904 905 906 907 908	86.	Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer ELL, Eddy SR, Bateman A. 2010. The Pfam protein families database . Nucleic Acids Res. 38 :D211– D222.
909 910	87.	2015. UniProt: a hub for protein information. Nucleic Acids Res. 43:D204–D212.
911 912 913	88.	Fish J, Chai B, Wang Q, Sun Y, Brown CT, Tiedje J, Cole J. 2013. FunGene: the functional gene pipeline and repository. Front. Microbiol. 4 :291.
914 915 916 917	89.	Pruitt KD , Tatusova T , Maglott DR . 2007. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35 :D61–D65.
918 919	90.	Korf I. 2004. Gene finding in novel genomes. BMC Bioinformatics 5:59.
920 921 922 923 924	91.	Inglis D, Binkley J, Skrzypek M, Arnaud M, Cerqueira G, Shah P, Wymore F, Wortman J, Sherlock G . 2013. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of <i>Aspergillus nidulans</i> , <i>A. fumigatus</i> , <i>A. niger</i> and <i>A. oryzae</i> . BMC Microbiol. 13 :91.
925 926 927	92.	Eddy SR . 2009. A new generation of homology search tools based on probabilistic inference. Genome Inform. 23 :205–211.
928 929 930 931 932	93.	Powell S, Szklarczyk D, Trachana K, Roth A, Kuhn M, Muller J, Arnold R, Rattei T, Letunic I, Doerks T, Jensen LJ, von Mering C, Bork P . 2012. eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic Acids Res. 40 :D284–D289.

933 934 935 936	94.	Emms DM , Kelly S . 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 16 :1–14.
937 938 939	95.	Richter M , Rosselló-Móra R . 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. 106 :19126–19131.
940 941 942 943	96.	 Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. 2004. Versatile and open software for comparing large genomes. Genome Biol. 5:R12.
944 945	97.	Hunter JD. 2007. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9:90–95.
946 947 948	98.	Katoh K, Asimenos G, Toh H. 2009. Multiple alignment of DNA sequences with MAFFT. Methods Mol. Biol. 537 :39–64.
949 950 951	99.	Price MN , Dehal PS , Arkin AP . 2010. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490.
952 953 954	100.	Mirarab S , Warnow T . 2015. ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics 31 :i44–i52.
955 956 957 958	101.	Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinforma. 25 :1189–1191.
959 960 961	102.	Galtier N, Gouy M, Gautier C . 1996. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput. Appl. Biosci. 12 :543–548.
962 963 964	103.	Stamatakis A . 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22 :2688–90.
965 966 967 968 969	104.	Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61 :539–542.
970 971	105.	Abascal F, Zardoya R, Posada D. 2005. ProtTest: selection of best-fit models of protein evolution. Bioinforma. 21 :2104–2105.

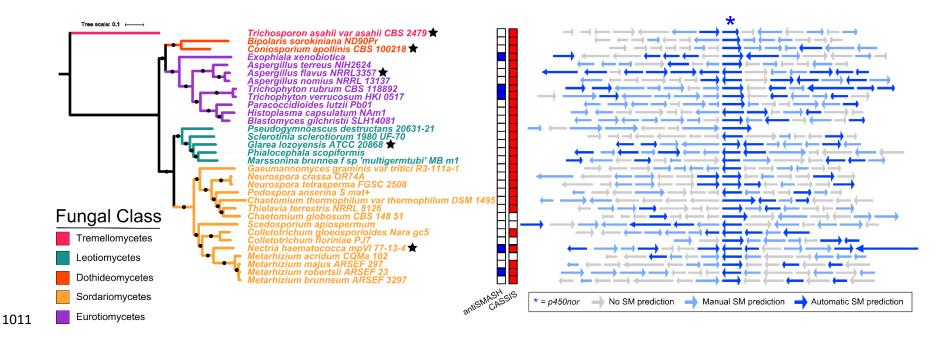
972		
973 974 975	106.	Posada D . 2008. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25 :1253–1256.
976 977 978	107.	Pagel M, Meade A, Barker D . 2004. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53 :673–684.
979 980 981	108.	Shimodaira H, Hasegawa M . 2001. CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17 :1246–1247.
982 983 984	109.	Chen K , Durand D , Farach-Colton M . 2000. NOTUNG: A program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 7:429–447.
985 986 987	110.	Team RDC . 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

988

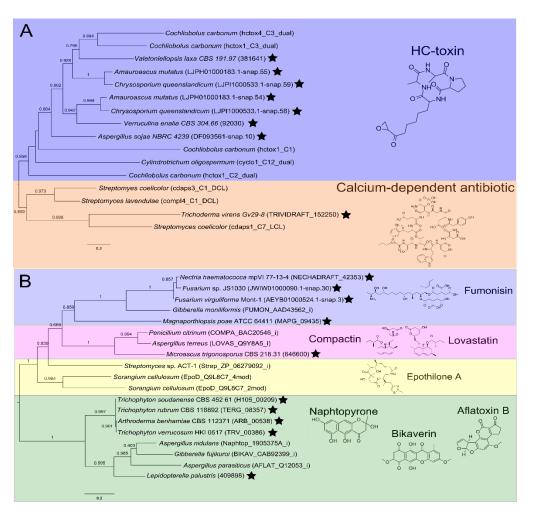


markers outside taxon names specify the presence or absence of each gene (narG, napA, nirK,

p450nor, flavohemoglobin) within a fungal genome. Flavohb, flavohemiglobin genes involved in


994 NO detoxification. The scale bar (center of tree) represents amino acid substitutions per site. A

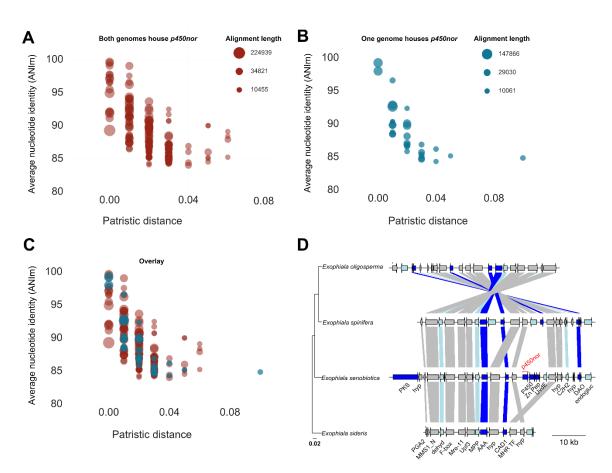
high-resolution file of the tree is available at https://doi.org/10.6084/m9.figshare.c.3845692.


Figure 2. Midpoint-rooted Bayesian phylogeny of select families of cytochrome P450 amino acid sequences from fungi, algae, and bacteria. Ancestral state reconstruction was performed using CYP55 (orange), CYP105 (green), and other CYPs (purple) to uncover the shared ancestry of algal and fungal N₂O-producing cytochrome P450s with their most recent common bacterial ancestor. The scale bar indicates substitutions per site and posterior probability values < 1 are displayed above branches of the Bayesian MCMC analysis. Numbers in parentheses next to collapsed clades indicate the number of sequences in the clade. Values in pie charts are average probabilities of each character state across one representative Bayesian MCMC analysis.

1012Figure 3. SM gene cluster predictions for a subset of 32 (167 total) p450nor-containing fungi. The boxes to the right of the rooted1013Maximum-Likelihood phylogeny indicate whether the p450nor-containing genomic region was predicted by antiSMASH (blue1014squares) or CASSIS (red squares) to be an SM gene cluster. White squares indicate no prediction. Colored arrows indicate protein-1015coding genes surrounding p450nor that were automatically predicted (dark blue arrow), manually predicted (light blue arrow) or not1016predicted (grey arrow) to be involved in SM (see Materials and Methods for details). The black stars next to species names are1017individuals chosen for in depth presentation of the genes surrounding p450nor (Fig. S9).

40

1019



1020

Figure 4. Maximum-Likelihood phylogenetic trees of non-ribosomal peptide synthase and 1021 polyketide synthase domains encoded within p450nor-containing genomic regions. Each 1022 phylogeny displays relationships of C-type condensation (C-type) (A) or ketosynthase (KS) 1023 domains (B) detected in non-ribosomal peptide and polyketide synthase amino acid sequences, 1024 respectively, encoded within p450nor-containing genomic regions. A black star next to taxa 1025 indicates C-type or KS domains identified in fungal genomes nearby p450nor. The NCBI or JGI 1026 accession numbers are shown in parentheses next to taxa with black stars. Taxa without black 1027 stars are reference amino acid sequences of C-type and KS domains curated by the NAPDOS 1028 database, and their NAPDOS accession numbers are indicated in parentheses. Proteins from 1029 species without accession numbers were predicted *ab initio* using SNAP (90) (see Materials and 1030 1031 Methods for details). Chemical structures and names of secondary metabolites produced by NAPDOS reference sequences are indicated and highlighted distinct colors for clarity. Scale bars 1032 indicate amino acid substitutions per site. Values along branches indicate bootstrap support for 1033 the adjacent node. 1034

bioRxiv preprint doi: https://doi.org/10.1101/301895; this version posted April 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license.

1037 Figure 5. Within genera alignments of p450nor-containing genomic regions (N = 136) from species with and without p450nor. Alignment of two species with p450nor-containing genomic 1038 regions (red circles) (A) or between two species where only one member possesses p450nor (teal 1039 1040 circles) (B). The overlay of the two plots in (C) indicates conservation of genomic architecture regardless of *p450nor* presence or absence. The size of the circles is proportional to the square 1041 root of the aligned length of the genomic regions. The gene synteny plot (D) highlights 1042 conservation of genomic architecture using a p450nor-containing genomic region from 1043 Exophiala xenobiotia aligned to three additional closely-related Exophiala species that do not 1044 possess *p450nor*. The arrows represent gene models within the gene region displayed. Both 1045 1046 arrows and connecting lines above and below arrows are colored according to Figure 3 (see Materials and Methods for details). Lines connecting arrows between species indicate the genes 1047 are homologous. The scale bars (left to right) in (D) indicate substitutions per site and genome 1048 size in kilobases, respectively. The location of p450nor in E. xenobiotica is indicated in red font. 1049 The labels in black font describes the putative functions of proteins encoded by each gene. PKS -1050 polyketide synthase, hyp – hypothetical protein, PGA2 – protein trafficking protein, MMS1 N – 1051 MMS1-like protein, dehyd - dehydrogenase, F-box - F-box domain containing protein, Mre-11 1052 1053 - double strand break repair protein Mre-11, Upf3 – nonsense mediated mRNA decay protein 3, MPP – metallophosphatase, AAA – ATPase, CAD1 – cinnamyl alcohol dehydrogenase, MHR 1054 TF – middle homology region transcription factor, P450 – cytochrome P450 reductase, Zn Pep – 1055 zinc peptidase superfamily protein, UvdE – UV-endonuclease, C2H2 – zinc finger C2H2 type, 1056 DAO – D-amino acid oxidase, endogluc – endoglucanase. 1057

1058 List of Supplemental Materials

1059 **Table S1**. Counts of denitrification traits and their co-occurrences in fungal genomes.

Table S2. Results from approximately unbiased tests for the monophyly of fungal classes within *napA*, *nirK*, and *p450nor* gene trees. Where indicated, the monophyly of two lineages was also assessed. Bold font data indicate that the AU test rejected the monophyly of the taxa. Test significance was evaluated at $p \le 0.05$.

Table S3. Results from species-tree gene-tree reconciliation using NOTUNG software for *napA*,
 nirK, and *p450nor* genes in fungi. Values are averages of solutions with standard deviations
 reported in parentheses.

Table S4. Predicted horizontal gene transfers of fungal *p450nor*, *napA*, and *nirK* genes based onalien index algorithm.

Table S5. List of genera containing species with and without *p450nor*.

Figure S1. Gene abundances of *narG*, *napA*, *nirK*, *p450nor*, and flavohemoglobins (colored
 bars) mapped on to fungal families (cladogram, left). Relationships among fungal families in the
 cladogram were derived from the NCBI taxonomy using the online tool phyloT
 (http://phylot.biobyte.de/index.html).

1074 Figure S2. Maximum-Likelihood phylogenies connecting fungal species with their respective 1075 NO reductase (p450nor) gene sequence(s). On the left, an amino acid phylogeny of 238 1076 concatenated single copy orthologues from fungal species in which one or more p450nor gene(s) were detected. The p450nor nucleotide phylogeny (right) demonstrates many instances of 1077 1078 incongruence with the fungal species phylogeny. Black dots in each phylogeny represent bootstrap percentages greater than or equal to 90%. Scale bars represent amino acid (left tree) 1079 and nucleotide (right tree) substitutions per site. A high-resolution file of the tree is available at 1080 https://doi.org/10.6084/m9.figshare.c.3845692. 1081

Figure S3. Cophylogenetic plot of *napA*-containing fungal species (left, N = 75) and the *napA* nucleotide tree (right, N = 78). Both are midpoint rooted Maximum-Likelihood trees where black dots represent bootstrap percentages ≥ 90 %. Scale bars indicate substitutions per site for the concatenated amino acid species phylogeny and nucleotide phylogeny, respectively. A highresolution file of the tree is available at https://doi.org/10.6084/m9.figshare.c.3845692.

Figure S4. Cophylogenetic plot of *nirK*-containing fungal species (left, N = 82) and the *nirK* nucleotide tree (right, N = 83). Both are midpoint rooted Maximum-Likelihood trees where black dots represent bootstrap percentages ≥ 90 %. Scale bars indicate substitutions per site for the concatenated amino acid species phylogeny and nucleotide phylogeny, respectively. A highresolution file of the tree is available at https://doi.org/10.6084/m9.figshare.c.3845692.

1092	Figure S5 . Plot of alien index values observed for $p450nor$ genes (N = 178). Points above the
1093	hashed line at the origin are indicative of HGT. Names of fungal species with alien index values

above zero are ordered as their points appear on the graph. Thick horizontal lines represent the
 median alien index value. See Materials and Methods in the main text for details on alien index
 calculations.

1097Figure S6. Bayesian tree reconstruction of actinobacterial and proteobacterial 16S rRNA genes1098(left, N = 55) and cytochrome P450 family 105 amino acid sequences (right, N = 57). Both1099phylogenies represent 50% majority-rule consensus trees. The tree on the left is rooted with1100proteobacterial sequences as outgroup to the *Actinobacteria*. The tree on the right is midpoint1101rooted. Nodes with posterior probabilites ≥ 0.95 are indicated by black circles on an adjacent1102branch.

Figure S7. Midpoint rooted Bayesian (left) and Maximum-Likelihood phylogenies (right) of
cytochrome P450 sequences (N = 408) demonstrating the affiliation of P450nor with other
sequences belonging to members of the bacterial phyla Actinobacteria and Proteobacteria.
Cyanobacterial cytochrome P450 sequences were included as outgroups. Black squares on
branches (left tree) indicate ≥0.95 posterior probability or ≥90 % bootstrap replication (right
tree). The colored legend indicates the cytochrome P450 family specified by shared amino acid

1108 tree). The colored legend indicates the cytochrome P450 family specified by s 1109 identity of \geq 40 % (D.R. Nelson, Hum Genomics 4:59-65, 2009).

Figure S8. Bayesian and Maximum-likelihood phylogenies of NapA, NirK, and P450nor amino acid sequence homologs extracted from the RefSeq protein database. A high-resolution file of

1112 these trees are available at https://doi.org/10.6084/m9.figshare.c.3845692.

1113 **Figure S9**. Genome regions chosen for in depth presentation of protein coding genes

surrounding *p450nor* in predicted BGC regions. Labels above genes are functional annotations

1115 from alignments to the eggNOG database. NCBI gene loci accessions are labeled below each

1116 gene.