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Abstract

Rapid advancements in next generation sequencing technologies have greatly improved the throughput of
sequencing and reduced the cost to under $1000 per genome propelling ambitious projects across the globe
that are pursuing sequencing million or more genomes. In addition, the sequencing throughput is increasing
and the cost is decreasing at a rate much faster than the Moore’s law. This necessitates equivalent rate of
acceleration of NGS secondary analysis that assembles the reads into full genomes and identifies variants
between genomes. Conventional improvement in hardware can at best help accelerate this according to the
Moore’s law if the corresponding software is able to use the hardware efficiently. This is currently not the
case for majority of the dozens of software tools used for NGS secondary analysis. Thus, to keep pace with
the rate of advancement of sequencers, we need – 1) hardware that is designed taking into account the
computational requirements of NGS secondary analysis and 2) software tools that use the hardware
efficiently.

In this work, we take the first step towards that goal by identifying the computational requirements of
NGS secondary analysis. We surveyed dozens of software tools from all the three major problems in
secondary analysis – sequence mapping, de novo assembly, and variant calling – to select seven popular tools
and a workflow for an in depth analysis. We performed runtime profiling of the tools using multiple real
datasets to find that the majority of the runtime is dominated by just four building blocks – Smith
Waterman alignment, FM-index based sequence search, Debruijn graph construction and traversal and
pairwise hidden markov model algorithm. Together, these building blocks cover 80.5%-98.2% of the runtime
for sequence mapping, 63.9%-99.4% of the runtime for De novo assembly, and 72%-93% of the runtime for
variant calling. The beauty of this result is that by just tailoring our software and hardware for these
building blocks, we can get a major performance improvement of NGS secondary analysis.

Keywords: Next-generation sequencing; secondary sequence analysis; variant calling; genome analysis
toolkit; building blocks

1 Introduction 1

The invention and rapid advancements of Next Generation Sequencing (NGS) technology in the last decade 2

has spurred advancements of fields like genetic testing, DNA based disease diagnosis and treatment, gene 3

editing, etc. with applications to human health (e.g. personalized medicine), agriculture, archeology and 4

forensics. This revolution is best exemplified by Illumina sequencers. A single Illumina Hiseq X 10 system, 5

released in 2014, can sequence nearly 18000 human genomes per year, at the low cost of less than $1000 per 6
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genome, producing short DNA fragments (called reads) of length 150 basepairs at the rate of nearly 1.6 7

quadrillion basepairs per year [29]. Moreover, the recently released Illumina NovaSeq 6000 system [30] is 8

nearly 3.75X faster than Illumina HiSeq X system. This has led to widespread adoption of high throughput 9

sequencers with large sequencing centers employing dozens of them. This has ushered in the era of million 10

genomes with several countries and public and private organizations pursuing sequencing genomes of a 11

million or more humans [1,3,13,16,21,22,32,37,63] to enable population level studies and it is estimated that 12

genomes of up to 2 billion humans could be sequenced by 2025 [62]. 13

NGS is performed in three stages as follows. Primary analysis is performed by sequencers. Given a 14

biological sample, typically, multiple copies of the genome sequence contained in it are created and then 15

broken down into small pieces such that each piece contains a substring of the genome. A sequencer reads 16

the sequence of nucleotides in the pieces and generates signals based on what it reads. These signals are 17

interpreted to derive reads as sequences of bases over the nucleotide alphabet {A,C,G,T}, and the 18

corresponding quality score for each base. Thus, the reads correspond to substrings of the genome. The 19

sequencer outputs these reads and quality scores and they are represented across all sequencers using the 20

same uniform representation, typically a FASTQ file [14]. In secondary analysis, one of the fundamental 21

tasks is to construct the complete DNA sequence from the reads. This is typically done by mapping the reads 22

to one or more reference genomes, or assembling them de novo based on read overlaps in the absence of a 23

suitable reference. Another crucial task is to identify variants with respect to a reference or among the 24

samples. After getting the variants, tertiary analysis works on understanding the implications of those 25

variants on the study of interest. 26

The sequencers are getting faster and cheaper at an exponential rate much faster than the Moore’s law. 27

Given the rapid pace of sequencers and the ambitious goals like sequencing millions of genomes, 28

commensurate speeds are required for NGS secondary and tertiary analysis. Conventional architectural 29

improvements can at best help accelerate these according to the Moore’s law. Therefore, we will require 30

efficient use of the current architectures and new architectures that are tailored to achieve high performance 31

for NGS secondary and tertiary analysis. 32

While tertiary analysis is still an emerging field, significant development has happened in secondary 33

analysis. Therefore, in this paper, we focus on NGS secondary analysis. There are hundreds of software tools 34

available for NGS secondary analysis. Even if we restrict to only the most widely used tools, there are still at 35

least a dozen of them. Moreover, given the dynamic nature of the field, the most widely used tools constantly 36

get modified or replaced by newer tools. This makes it impractical to accelerate the tools or design 37

architecture for them. However, while the tools keep changing, the underlying key computations seem 38

restricted to a small set of building blocks. Accelerating these building blocks can have a significant impact 39

on the performance of NGS secondary analysis. Thus, we focus this study on the identification of 40

computational building blocks of NGS secondary analysis. Our work can inform any future efforts to 41

accelerate NGS secondary analysis through improvements in algorithms, software and hardware. 42

To identify the building blocks, we performed a rigorous survey of the secondary analysis methods to 43

select tools and techniques for our study. We used the following criteria for the selection – the tools should 44

be high-quality, well-maintained and widely used. We downloaded the latest source of the tools, studied the 45

source codes to understand them in full detail to identify various common building blocks across tools and 46

hand instrumented them with runtime profiling instructions. We followed the instructions given the 47

documentation of the tools to build, install, and run the tools. The evaluation was carried out using real 48

datasets. Overall, we studied seven tools and a workflow from the three primary areas of De novo assembly, 49

sequence mapping and variant calling in the secondary analysis. The evaluation of the runtimes revealed 50

following four primary building blocks: Smith-Waterman sequence alignment, FM-index based sequence 51

search, Pairwise hidden markov model algorithm for sequence alignment likelihood calculations (PairHMM), 52

and de Bruijn graph for De novo assembly. Together, these building blocks cover 63.9%-99.4% of time for De 53

novo assembly, 80.5%-98.2% of time for sequence mapping and 72%-93% of time for variant calling. The 54

beauty of this result is that by just tailoring our software and hardware for these building blocks, we can get 55

a major performance improvement of NGS secondary analysis. To the best of our knowledge, there hasn’t 56

been a comprehensive effort to study a large range of software tools from NGS secondary analysis that tries 57

to carve out similar building blocks across them by studying the source code of each of them in detail and 58
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formally establishes the building blocks with profiles generated using real datasets. 59

The rest of the paper is organized as follows. Section 2 describes the experimental setup used for our 60

experiments. Section 3 discusses the secondary analysis areas. Section 4 discusses different sequence mapping 61

techniques; Section 5 discusses different denovo genome assembly techniques; Section 6 discusses Genome 62

Analysis ToolKit’s variant calling tool, HaplotypeCaller; with section 8 concluding the paper. 63

2 Experiment Setup 64

We use the following experimental setup for evaluation of all the tools and workflows used in this paper. All 65

the single node experiments along with multi-node experiments for ABySS (section 5) were carried out on a 66

cluster with 16 nodes with each node comprising of a dual-socket Intel R© Xeon R© processor with 18-cores per 67

socket (HE5-2699). Each compute node is equipped with 128GB of memory, running CentOS Linux version 68

7.2. The compute nodes are interconnected using Infiniband FDR interconnect. Multi-node experiments for 69

HipMer (section 5) were performed on NERSC’s Cori supercomputer. Each compute node is equipped with a 70

dual-socket Intel R© Xeon R© processor with 16-cores per socket (HE5-2698 v3) along with 128 GB of memory. 71

The compute nodes are interconnected by Cray Aries interconnect with Dragonfly topology. 72

3 Secondary Analysis Methods 73

NGS secondary analysis takes raw reads generated from a sample using primary analysis as input and 74

outputs the corresponding genome and variants compared to other genome(s). The first step is to reconstruct 75

the genome by stitching together the reads by either mapping them to a reference genome, called sequence 76

mapping, or assembling them de novo by leveraging the coverage depth and overlap information among the 77

reads. 78

Given genomic datasets, a crucial task in sequence analysis is finding the differences among the genomes. 79

Variant calling (VC) aims at precisely finding the genomic locations exhibiting variations such as single 80

nucleotide variants, short indels, and large structural variants. De novo genome assembly has several benefits 81

in this regard – a) it can produce more accurate genomes as sequence mapping based genomes are limited by 82

the reference genome, and b) it allows direct identification of variants between sample reads and the 83

reference genome. However, generating high-quality genomes using De novo assembly is both difficult and an 84

extremely time consuming task. Consequently, almost all VC workflows use sequence mapping as the 85

preprocessing step. However, this can change in the future as De novo assembly becomes more tractable. 86

VC workflows are sequence of steps, each performed by a software tool, that need to be executed to go 87

from reads to variants. The choice of tools used in such workflows depends on the type of application. The 88

high impact of, and the challenges posed by, VC has prompted the development of numerous VC tools and 89

workflows. Among the various VC calling workflows such as Samtools [41], GATK (Genome Analysis 90

ToolKit) [18] best practices workflows, Platypus [57], DeepVariant [54], GATK best practices workflows 91

developed at Broad Institute are by far the most popular and actively-maintained workflows. They are 92

hosted at venues like Google cloud, Microsoft Azure, Amazon web services, Ali cloud, etc. to name a few and 93

are used by researchers all over the world. GATK best practices workflows have been widely adopted by the 94

community due to its ability to handle large-scale VC studies and to identify high quality variants. Recently 95

proposed convolution neural network based DeepVariant workflow demonstrated impressive results, however, 96

further studies are required to convincingly establish its practical applicability. Therefore, in this work, we 97

focus on GATK workflows; we begin with a study and runtime profiling of GATK workflows to highlight the 98

compute-dominant stages. 99

3.1 GATK Best Practices Workflows 100

GATK encompasses a suite of software tools targeted towards studying different kinds of variants such as 101

SNP/indels/copy number variations (CNV) of germline or somatic type. In addition to the software, GATK 102

is augmented with a wealth of literature and best practice guidelines [8] for using the workflow of interest. 103
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Figure 1. GATK-3.8 best practices workflow for germline VC.

Among the matured workflows in GATK, workflows utilizing HaplotypeCaller tool are suitable for detecting 104

germline SNP/indel, while workflows utilizing MuTect2 tool are suitable for detecting somatic SNP/indel. 105

MuTect2 tool has majority of its operations similar to HaplotypeCaller tool; with MuTect2 borrowing the 106

assembly based engine of HaplotypeCaller to original MuTect [12]. Considering the similarity between the 107

two tools, and the maturity and high-quality variant detection capability [28, 51] of HaplotypeCaller, in this 108

work, we focus on GATK-HaplotypeCaller workflow. 109

Next, we describe different stages of the workflow and the tools recommended for executing them 110

(Figure 1). Given a reference genome and read set, the workflow executes the following steps: 111

• Sequence Mapping. For each read, sequence mapping outputs a set of locations in the reference genome 112

where the read aligns to the reference genome sequence while allowing a few mismatches and gaps in 113

the alignment. GATK best practices recommends available prominent sequence mapping tools such as 114

BWA-MEM [38]. 115

• Sorting. With genomic locations of the reads known, reads are sorted using genome-coordinates, to 116

cluster together reads mapped to the same region in the reference genome. This also helps in 117

identifying duplicate reads. GATK best practices recommends Picard’s [53] SortSam tool for this step. 118

• Mark Duplicate Reads. Duplicates are reads that are likely to have originated from duplicates of the 119

same original DNA fragments. Each read provides independent evidence towards identifying the 120

variations; however, duplicate reads offer no additional information about the variations but can 121

artificially skew the support towards a particular variant and also require more time in processing. 122

Thus, duplicate copies are marked and excluded from further processing. GATK recommends 123

Picard’s MarkDuplicates tool for this step. 124

• Base Recalibration. Base quality scores are extensively incorporated during variant discovery. However, 125

the quality scores reported by the sequencers contain technical errors which can be estimated and fixed. 126

This workflow first models the error patterns in the data using its Base Recalibrator tool. 127

• Recalibrate Base Scores. GATK provides PrintReads tool which adjusts the base quality score, based on 128

the model learned in the previous step. The best practices categorizes all the processing until this step 129

as data pre-processing. The pre-processed data is then ready for variant detection. 130

• Variant Discovery. Given pre-processed data, variant discovery identifies genomic locations exhibiting 131

variations. GATK provides HaplotypeCaller (HC) [55] tool for germline VC. The variants reported by 132

the variant discovery step are subjected to further post-processing which is categorized under the 133

tertiary analysis. 134
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Table 1. Time spent in different tools of end-to-end execution of GATK’s germline-VC workflow on human
genome dataset. The numbers in the brackets in single-node runs specify the maximum number of cores
utilized by the tools.

Tools Single-core Single-node
Time (h) Time (%) Time (h) Time (%)

BWA-MEM 17.50 52.54 0.70 (36) 10.82
Picard SortSam 0.68 2.04 0.68 (01) 10.51
Picard MarkDuplicates 0.65 1.95 0.65 (01) 10.05
BaseRecalibrator 2.00 6.00 0.24 (28) 3.71
PrintReads 3.40 10.20 1.55 (08) 23.96
HaplotypeCaller 9.08 27.26 2.65 (07) 40.96

Overall runtime 33.31 6.47

Different tools in the workflow support different type of parallelism. BWA-MEM and PrintReads support 135

thread-level parallelism, while BaseRecalibrator and HaplotypeCaller support parallelism using scatter-gather 136

method. The scatter-gather method works as follows. In scattering phase, the data is partitioned into 137

multiple smaller parts. These parts are worked on using process-level parallelism in which individual process, 138

with its memory space, is spawned for each part of the partitioned input data. At the end of the execution 139

results from all these processes are gathered to report the combined results. 140

We used GATK version 3.8, the most recent version available at the time of this study that has full 141

documentation available, to perform runtime profiling of the workflow. We used human genome version 38 142

(NCBI) as the reference genome, and low coverage (GBR population, identifier HG00119) read sets acquired 143

from NCBI’s Sequence Read Archive (SRA, accession no. SRX020470 and SRX020450). The read sets are 144

sequenced by Broad Institute using Illumina Genome Analyzer-II [6]. The datasets contain seven paired-end 145

read sets with each read set containing on average 34 million reads, collectively containing 250 million reads. 146

The end-to-end sequential execution of GATK’s workflow on given input datasets took 33.31 hours on 147

single core (Table 1). The runtime profile of the workflow revealed that Sequence Mapping and Variant 148

Discovery are dominant stages, consuming 52.5% and 27.3% receptively, of the total runtime. Similar 149

observations are also witnessed by a study [56] on multiple human genome-scale datasets. For multi-core 150

parallel runs, we followed the GATK recommendations and, for each tool, we experimented with different 151

number of cores. We present the best performing multi-core result for each tool in the table. BWA-MEM is 152

able to scale well up to all the 36 cores of single node. The Picard tools, SortSam and MarkDuplicates, do 153

not have parallel implementations and thus can utilize only a single core. However, various parallel 154

implementations are available for sorting, while MarkDuplicates operation offers ample parallelism to 155

accelerate it, which would lead to significant drop in the time consumption of these tools. Even though 156

PrintReads consumes significant enough time to be considered important for acceleration, in the recent 157

release of GATK (version 4.0), it has been replaced with ApplyBQSR that is significantly faster making it 158

relatively unimportant for this study. Thus, with BaseRecalibrator consuming relatively small time, we are 159

left with Sequence Mapping and Variant Discovery as the compute dominant stages. Therefore, we narrow 160

our search for building blocks in VC to Sequence Mapping tools (section 4) and Variant Discovery tools 161

(section 6), along with De novo assembly (section 5). 162

4 Sequence Mapping 163

Given a reference genome and a set of reads, sequence mapping or alignment finds the probable locations for 164

each of the reads in the reference genome. Many workflows use sequence mapping as the first step to VC. 165

Most modern sequence mapping tools use the seed-and-extend strategy to map a read to a reference 166

sequence. In the seeding stage, they find regions in the reference sequence that closely match subsequences 167

from the read, called seeds. In the extend stage, these regions are evaluated more closely to verify if they are 168

a good match of the entire read. A majority of tools use dynamic programming (DP) based algorithms for 169
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extension. On the other hand, data structures play a central role in seeding, primarily used for indexing 170

either the reference genome or the read sequences, or both. 171

Many sequence aligners have been proposed over the years, employing different data structures. 172

Hash-based aligners [27,31,42,43,46,58,61] are used to hash k-mers either in the reference or in the reads. 173

Seeding stage uses the hash table to find regions in the reference that has matches for k-mers from the read 174

or their minor modifications. Prefix/suffix trie is another important data structure used for indexing the 175

sequences [4, 26, 33, 50]. A suffix (prefix) trie stores all the suffixes (prefixes) of a sequence S, such that each 176

edge is labeled by a character from S. Any path from the root to a leaf in the suffix trie corresponds to a 177

suffix of S and from root to an internal node corresponds to a substring of S (and vice-versa for prefix trie). 178

A seed is searched in a trie by traversing it from the root using the characters of the seed. Methods using 179

hash-table or trie are expensive in terms of memory usage. 180

Most prominent mapping software use either the space-efficient Burrows Wheeler Transform (BWT) [9], 181

or the BWT-based FM-index data structure proposed by Ferragina and Manzini [20] for seeding. For a 182

conceptual understanding of the BWT of a string S of length n− 1, consider appending the lexicographically 183

smallest character $ to S. Consider the n× n matrix obtained by listing the n rotations of the appended 184

string as its rows. The BWT matrix is the resulting matrix when these rows are lexicographically sorted. 185

The last column of the BWT matrix represents the BWT. BWT has an interesting property termed last-first, 186

or LF mapping, which preserves the order of instances of character X between the last and the first column 187

of the matrix. The LF property led Ferragina and Manzini to create the FM-index and derive an exact string 188

matching method based on it. The FM-index maintains additional auxiliary arrays including suffix array 189

(SA). SA stores the reference locations for each row (i.e.suffix) of the matrix. Query sequences are passed 190

through the FM-index in reverse order (called as backward search), which is equivalent to top-down traversal 191

on a prefix trie. Memory footprint of FM-index is very small (less than a few GB), which makes it a highly 192

practical and preferred choice over the other data structures. Many sequence mapping tools [34–36,38–40,44] 193

based on BWT have been proposed over the years, of which BWA-MEM [38] (recommended by GATK best 194

practices workflow) and Bowtie2 [35] are by far the most popular due their speed and accuracy. Hence, we 195

selected Bowtie2 and BWA-MEM for our study. 196

4.1 Chosen Sequence Mapping Tools 197

Bowtie2 and BWA-MEM also use of the popular seed-and-extend strategy. Both the tools use bi-directional 198

FM-index of the reference sequence for seeding and dynamic programming (DP) based alignment methods for 199

extending the seeds. The tools differ in their approaches for seeding and extension. 200

For a given read, Bowtie2 extracts seeds (substrings of reads) of a particular length at a regular interval 201

from the read and its reverse compliment. It offers the options of exact matching as well as in-exact 202

matching (with 1-mismatch) of seeds in the references sequence. 203

The output of the seeding stage is a list of regions in the reference genome where at least one seed 204

matches, called candidate regions. For each candidate region, the extension phase verifies whether the region 205

is a good match of the read or not. During extension, Bowtie2 uses a DP technique based on 206

Smith-Waterman algorithm for sequence alignment. The DP technique computes a two-dimensional matrix 207

between the reference and query sequences. At the end of the matrix computations, it reports the high 208

scoring alignment. For paired-end reads, Bowtie2 follows the seed-and-extend steps for each end individually. 209

Once the first end of the paired-end read is aligned, based on the insert distance, Bowtie2 computes the 210

reference window which contains the probable location for the second end. The sequence alignment is 211

performed for the second end in the identified window. 212

BWA-MEM performs seeding by finding super maximal exact matches (SMEMs) between the read and the 213

reference sequence using FM-index. For a given position in the read, the SMEM corresponding to that 214

position is the longest exact match through that position. For paired-end reads, BWA-MEM sorts all the 215

SMEMs according to the genome coordinates to identify the SMEMs corresponding to paired-end reads. In 216

the extension phase, BWA-MEM uses DP based banded Smith-Waterman algorithm. In banded 217

Smith-Waterman, during the matrix computations, only the cells falling within certain band size around the 218

diagonal are computed. BWA-MEM also applies following additional heuristics to DP computations. (a) 219

During matrix computations, if the score falls significantly below the best score, the execution halts; (b) if 220
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Figure 2. Percentage of the overall runtime consumed by different blocks of Bowtie2 for single as well as
36 cores (C). Exact and Inexact refer to exact seed matching and seed matching with 1 mismatch allowed,
respectively.

Figure 3. Percentage of the overall runtime consumed by different blocks of BWA-MEM for single as well
as 36 cores.

the difference between the best local alignment score and the global alignment score is below a certain 221

threshold, then the best local score is discarded in favor of the global score. These heuristics reduce the 222

computations and provide control over reference bias. 223

4.2 Results 224

For both Bowtie2 and BWA-MEM, we downloaded the latest available source codes (Bowtie2-2.3.2 and 225

BWA-MEM-0.7.15) for our evaluation, studied them in full detail to identify boundaries of similar building 226

blocks, hand instrumented them with runtime profiling instructions, and followed the recommendations given 227

in the corresponding readme files to install, compile, and run them. We also used recommended default 228

parameter settings. We used two different datasets for evaluating the software. The first consists of full 229

human reads sets (identifier HG00119) that we also used for profiling GATK’s best practices workflow. The 230

second is a low coverage (CEU population, identifier NA12878) single-end read set acquired from NCBI’s 231

Sequence Read Archive (SRA, accession no. SRX206890); the read set contains 1.4 billion reads, however, 232

due to high compute demands of in-exact matching in Bowtie2, we uniformly sampled 30 million reads from 233

this dataset to use for this study. 234

Figures 2 & 3 show the percentage of the overall runtime consumed by each block in Bowtie2 and 235

BWA-MEM, respectively. Seed matching using BWT, SA2Ref, and seed extension using Smith-Waterman 236

(SWA) appear to be the runtime dominant blocks for both software tools. Given a seed, once the row range 237

in BWT matrix is computed, SA2Ref looks up the SA entries in the FM-index corresponding to the range to 238

find the corresponding reference genome locations. Blocks that are not profiled are denoted as Misc. Bowtie2 239

also allows one mismatch for seed search spending a lot more time in BWT in that case due to a significantly 240

larger search space. 241
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SA2Ref and BWT together constitute the building block FM-index based sequence search that uses the 242

FM-index of a sequence to find the positions of all the occurrences of another sequence in it. Our runtime 243

profiling shows that FM-index based sequence search and SWA constitute the most significant blocks in 244

run-time consumption for both the sequence mapping tools for single as well as multiple threads covering 245

80.5%− 98.2% of the total time. Thus, we categorize FM-index based sequence search and SWA as key 246

building blocks. 247

5 De novo Assembly 248

Constructing genomes directly from raw reads is a fundamental step in studying the genome of an organism, 249

and is the only viable path in the absence of a suitable reference sequence. Factors such as small read 250

lengths, large number of reads, sequencing errors, and genomic repeats make de novo genome assembly 251

extremely challenging. Pevzner et al. [52] successfully applied de Bruijn graphs for genome assembly, which 252

has since been used by a majority of the genome assemblers. 253

Numerous assemblers have been proposed over the years, leading to the establishment of competitions 254

such as Assemblathon [2] and GAGE [48,59] to benchmark their accuracy and performance. These 255

competitions extensively evaluate submitted assembly workflows over a range of metrics using benchmark 256

datasets. Recently held Assemblathon-II competition concluded that majority of the assemblers perform 257

better than others only a particular set of metrics and datasets. Thus, in a scenario where choice of 258

assemblers heavily relies on the type of study, we picked a few assemblers that are matured and favored 259

among the assembly workflows benchmarked in such competitions. We observed that among the genome 260

assembly workflows submitted to Assemblathon-II and GAGE-A/ B, ABySS [60], SOAPDenovo [45,47], 261

SPAdes [5] , Meraculous (HipMer) [11,24], AllPaths [10], Ray [7], and Velvet [64] consistently performed 262

better over a range of metrics and were highly preferred. From these assemblers, we selected a blend of 263

distributed and shared memory assemblers which are popular and widely used. Since it is difficult and 264

unnecessary to study all the high performing assemblers, we restricted the number of assembler for out study 265

to following four: ABySS, SOAPDenovo, SPAdes, and Meraculous (HipMer). Given a reads set, a majority 266

of the new generation assemblers use the following assembly framework. 267

1. Graph Construction. De Bruijn graph is a directed (or bidirected when both DNA strands are directly 268

modeled) graph, with k-mers as nodes and edges connecting k-mers that share (k-1) length suffix-prefix 269

overlap. A de Bruijn graph can be stored in a hash-table. k-mers are used as keys and the counts of 270

each extension (i.e.A,T,C,G) of k-mers are stored as values in the hash table. 271

2. Graph Cleaning. Errors in reads manifest as various structural artifacts such as bubbles, tips, tiny 272

repeats, etc., in the constructed graph. As a result, such artifacts need to be located and cleaned before 273

extraction of contigs. Graph cleaning is accomplished by traversing the graph. 274

3. Contig Extraction. The graph is traversed along unambiguous paths, generating initial contigs. 275

4. Read Alignment. Information contained in paired-end reads can be utilized to extend the contigs. As a 276

first step, paired-end reads are aligned to their corresponding contigs. The alignment helps identify 277

contig orientation and ordering. 278

5. Scaffolding. Contigs corresponding to paired-end reads are identified. Link between the contigs is 279

created if a certain number of read pairs support it. 280

6. Gap Closer. Gaps between contigs in a scaffold primarily contain repetitive regions. Paired-end 281

information can be used to fill the gaps. Paired-end reads having one read mapped to a contig and the 282

other falling in a gap are retrieved. The reads corresponding to the gaps are then de novo assembled to 283

fill the gaps. In the presence of multiple insert libraries for paired-end reads, the libraries are utilized 284

iteratively from smaller to larger insert sizes. This step is performed iteratively. 285
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In the above framework, the first three steps can be performed using reads without pairing information, 286

while paired-end reads are required to expand the initial contigs. Three of the four assembly programs we 287

have selected for our study follow the above framework, while SPAdes assembler employs paired de Bruijn 288

graphs. 289

5.1 Assembly Methods and Software 290

We briefly describe the methodologies behind the four assembly software selected for the study. 291

ABySS. De novo assembly is memory intensive, and for assembling mammalian sized genomes large read 292

sets must be analyzed. To ease the memory limitations, Simpson et al. [60] proposed ABySS, a 293

distributed-memory based parallel assembler where one core runs one process. A key aspect of ABySS is the 294

distributed-memory construction of the de Bruijn graph, constructed as follows. Given the reads, the 295

extracted k-mers are converted to numerical values by assigning (0,1,2,3) to (A,C,G,T) bases, and treating 296

them as base 4 numbers. The resulting k-mer values are hashed, and distributed to cores based on their 297

values modulo P (total number of cores in the distributed system). For each k-mer, 8 bits are used to store 298

its adjacency information. Each bit represents the presence or absence of each possible extension (i.e.an edge) 299

on either side of the k-mer. After graph construction, contigs are extracted by traversing the graph in 300

parallel. ABySS uses sequential computations to execute the rest of the steps in the assembly framework. 301

SOAPDenovo. SOAPDenovo [47] is a shared-memory genome assembler that performed very well in 302

Assemblathon-I competition ranking overall second on evaluation in eight categories. SOAPDenovo2 [47] 303

further improves upon SOAPDenovo on various fronts, as follows: (a) Memory consumption of SOAPDenovo, 304

a bottleneck, is mainly contributed by the graph construction stage. SOAPDenvo2 constructs a sparse de 305

Bruijn graph instead, which reduces memory footprint by grouping linear chains of k-mers, thus avoiding the 306

need to store each k-mer separately. (b) The choice of k-mer size impacts de Bruijn graph construction. For 307

assembly, smaller k-mer sizes offer advantage in low coverage regions, while larger k-mer sizes are useful to 308

handle repetitive sequences. SOAPDenovo2 avails the benefits of multiple k-mer sizes, by iteratively building 309

de Bruijn graph using different k-mer sizes. (c) To improve quality of the scaffolds, SOAPDenovo2 performs 310

additional processing to ease the effects of heterozygosity, chimeric scaffolds, and false contig links during 311

scaffolding. (d) SOAPDenovo2 improves the accuracy of the Gap Closer step in highly repetitive regions. At 312

each iteration in Gap Closer, in addition to the reads that map to the gaps in the current iteration, 313

SOAPDenovo2 also utilizes mapped reads from the previous iterations to fill the gaps. 314

SPAdes. Bankevich et al. proposed the SPAdes genome assembler for shared-memory parallel systems, 315

designed to overcome the challenges posed by both single-cell as well as multi-cell genomes. SPAdes deviates 316

from common assembly framework which utilizes paired-end reads (referred to as bireads) only after contig 317

extraction. After constructing the de Bruijn graph from reads, SPAdes applies the concept of paired de 318

Bruijn graph (PDBG) by Medvedev et al. [49], utilizing biread information to generate the final contigs. 319

While distances between the reads in bireads are only known approximately, the construction of PDBG 320

requires knowledge of exact distances. SPAdes addresses this issue by estimating the distances. 321

SPAdes execution has the following four major stages. (a) SPAdes iteratively constructs the de Bruijn 322

graph by utilizing multiple k-mer sizes; the constructed graph is referred to as multisized de Bruijn graph. 323

Given multiple k-mer sizes, the multisized de Bruijn graph is constructed as follows. For a given k-mer size, 324

a standard de Bruijn graph is constructed, and all the paths having vertices with in- and out-degree as 1 325

(referred as h-edges) are extracted from it. The extracted h-edges are thus included as reads for the next 326

iteration of graph construction. Using multisized de Bruijn graphs, SPAdes simultaneously exploits the 327

advantages of both small and large k-mer sizes by increasing value of k-mer at each iteration. (b) A major 328

impediment to generate the PDBG is finding the exact distances within bireads. SPAdes uses a 329

computational method based on the Fast Fourier Transform to estimate these distances within the bireads 330

(or k-bimers, pair of k-mers). The k-bimers are then adjusted according to the estimated distance. (c) The 331
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PDBG is then constructed by using the estimated distances and adjusted k-bimers. For more details, the 332

reader is referred to [49]. (d) Contigs are then extracted by traversing the PDBG. 333

HipMer. HipMer [24] is an extreme-scale distributed-memory parallel implementation of the Meraculous 334

assembler [11]. Meraculous follows steps of the outlined assembly framework with one distinction: it counts 335

the frequency of occurrence of individual k-mers and discards low frequency k-mers by classifying them as 336

erroneous, instead of identifying and removing errors through topological features of the graph. HipMer 337

employs novel techniques and parallelizes each assembly step to scale to thousands of processors. High 338

communication overhead degrades throughput during distributed graph traversal. HipMer overcomes the 339

challenge by applying a communication avoidance algorithm. The algorithm derives and makes use of a 340

partitioning function. The partition function allocates k-mers to processors such that k-mers belonging to 341

the same contig are likely allocated to the same processor. HipMer generates the partitioning function by 342

exploiting the fact that genomes of different individuals of the same organism are highly similar. 343

After contig extraction, Hipmer maps the reads to contigs using the parallel sequence aligner, 344

merAligner [25]. The contigs are then connected to form scaffolds, using the aligned paired-end reads. For 345

gap closing, HipMer employs multiple techniques depending on the complexity of the gaps. Gap closing is 346

parallelized by equally dividing the gaps among the processors. Each processor applies the following methods 347

in succession to fill the gaps. Spanning, which finds out the reads which overlap with a contig tail at one end 348

of the gap and another contig’s head at the other end; mini-assembly, which re-assembles the reads aligned 349

to the gap regions and traverses the graph to find the fillers; and Patching, for cases when graph traversal 350

from both the ends of a gap fails, then HipMer tries to patch the two traversals by finding the overlap 351

between them. 352

5.2 Results 353

Table 2. Benchmark short-reads datasets for VC De novo assembly (M-Millions). Chr14 refers to the
chromosome 14 or the human genome.

Datasets Library No. of reads Avg. read len. Insert len.

Ecoli Frag 28M 101bp 215bp

Chr14
Frag 36M 101bp 155bp
Short 22M 101bp 2283-2803bp
Long 2M 76-101bp 35Kbp-35Kbp

Bumble Bee Frag 1303M 124bp 400bp

We downloaded the latest available source codes of all the assemblers – ABySS-1.9.0, SOAPDenovo-2.0, 354

SPAdes-3.10.1, and HipMer-0.9.4.1, performed an in-depth study on them to identify boundaries of similar 355

blocks and hand instrumented them for runtime profiling. We followed the instructions from readme files to 356

install, compile, and run the programs. Each software tool is run using standard benchmark datasets from 357

GAGE [59] (Table 2), using default parameters. 358

For each assembler, we used at least two datasets and conducted experiments using small as well as a 359

large number of cores, to study changes in the runtime of the blocks with change in scale of data or the 360

hardware used. For single node experiments, we used the smaller datasets E. coli and Human chromosome-14 361

(Chr14). For Abyss and Hipmer that have support for distributed memory systems, we used the larger 362

Bumblee Bee dataset to perform experiments using higher number of nodes. Moreover, as the choice of k-mer 363

size affects the runtime of an assembler, we experimented with different k-mer sizes for all the assemblers 364

except SPAdes. SPAdes performs automatic selection of k-mer size based on the read length. While we 365

noticed different runtimes for different k-mer sizes, the proportion of the total runtime for the individual 366

blocks remained approximately the same. Therefore, we only report the performance for one k-mer size. 367

Figures 4 - 7 show the percentage of overall runtime consumed by each block for the four assembly 368

software. De Bruijn graph construction is used by all the four assemblers and consumes a major portion of 369
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Figure 4. Percentage of overall runtime consumed by different blocks of ABySS on Chr14 and Bumble Bee
datasets. The runtimes are collected by setting k-mer size to 51. The 144 core experiment uses 4 nodes of 36
cores each.

Figure 5. Percentage of overall runtime consumed by different blocks of SOAPDenovo2 on Chr14 and Ecoli
datasets. The runtimes are collected by setting k-mer size to 51.

Figure 6. Percentage of overall runtime consumed by different blocks of SPAdes on Chr14 and Ecoli datasets.
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Figure 7. Percentage of overall runtime consumed by different blocks of HipMer on Chr14 and Bumble Bee
datasets. The runtimes are collected by setting k-mer size to 51. The 256 core experiment uses 8 nodes of 32
cores each.

the overall runtime for each. Except for SPAdes, all the other assemblers follow the framework described in 370

section 5.1; and for them, Sequence alignment and gap closer blocks are the other two primary consumers of 371

the overall runtime. Gap closer iteratively performs assembly over the gap regions. Thus, we do not classify 372

it as a separate building block. For SPAdes, k-mer Adjustment forms the second big block; however, runtime 373

consumed by it remains relatively small. As before. the runtime spent in portions of the code that are not 374

profiled is labeled as Misc. It is clear that the runtime of major blocks remains dominant with the change in 375

the number of cores. 376

De Bruijn graph construction and sequence alignment are pervasive in genome assembly methods and 377

consume the majority of the time. Excluding gap closer, these two blocks cover 63.9%-99.4% of the total 378

time of these tools. Sequence Alignment is computationally similar to sequence mapping operation, thus, 379

constituting of similar building blocks as the latter. 380

6 Variant Calling 381

Variant Calling is the process of identifying the differences between a given and reference sequence. Variants 382

can be in the form of single nucleotide (SNV), multiple nucleotide (MNV), insertion, deletion, or replacement. 383

Among various available VC tools [12,17,41,55,57] currently, GATK’s HaplotypeCaller, for germline 384

SNP/indel variant detection, is the most preferred tool. The popularity of HC is evident by the use of 385

GATK’s germline workflow in various other VC workflows [15,23,28,51]. Hence, in this work, we exclusively 386

focus on HC to find the building blocks of variant calling. Given a set of reads that are aligned to reference 387

sequence, HC uses the following steps for VC. 388

Active regions. HC narrows down the variant search space along the genome by finding the active regions 389

which are potential regions in the genome likely to contain variants. Active Regions are identified as follows. 390

First, a raw activity score is computed for each genome position, which realizes a raw activity profile. The 391

raw activity score is the probability of a variant at a given position, calculated by reference-confidence model. 392

Next, at each position p, all the activity scores over a small window of the genome with position p in the 393

center are added to calculate the smoothed activity profile curve. Along the activity profile, local maxima 394

that rise above a given threshold are located. Finally, appropriate intervals along the activity profile are set 395

to extract the active regions. 396

Re-assembly and haplotype extraction. Once the active regions are identified, the next goal is to 397

construct the complete sample sequence (or haplotype) corresponding to each active region. These 398
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Figure 8. Percentage of the overall runtime consumed by different blocks of HC. Experiments are performed
using optimized PairHMMM (OP) and un-optimized PairHMM (UP) on entire human genome and human
chromosome 21 datasets.

haplotypes are constructed by de novo assembly of all the reads that are mapped to the region, as follows. 399

An assembly De Bruijn graph is constructed from the reference genome portion of the region. Then, all the 400

reads corresponding to that region are passed along the paths in the assembly graph. For any mismatch, a 401

new node is inserted into the assembly graph. Edges in the graph accumulate the support as the reads pass 402

through them. Subsequently, haplotypes are extracted by traversing the paths that amassed enough support 403

from the reads. 404

Haplotype re-alignment. To identify the variant sites, for each active region, the haplotypes are 405

re-aligned to the region in the reference sequence. This task is accomplished by the Smith-Waterman 406

algorithm. 407

Haplotype evidence computation. The haplotype extraction step used a quick heuristic based method 408

to screen the haplotypes, and thus the extracted haplotypes act as candidate haplotypes to be verified later. 409

Further evidence on haplotypes is gathered by aligning each read to the candidate haplotypes using Pairwise 410

Hidden Markov Model (PairHMM) [19] algorithm. For a read and haplotype pair, PairHMM provides the 411

likelihood score for the haplotype given the read. PairHMM also incorporates the base quality scores during 412

likelihood calculations. 413

Genotype assignment. HC performs the genotyping step, which classifies the variants in the haplotypes 414

according to the genotypes. HC uses Bayes theorem to calculate the genotype likelihoods. Finally, HC 415

reports all the identified variants in a VCF file. 416

6.1 Results 417

We performed a detailed study of the source code of the HC tool from GATK-3.8 to understand the algorithm 418

and identify boundaries of the above mentioned steps and hand instrumented it for profiling. HC was 419

evaluated using the same settings used for evaluating the GATK best practices workflow. Figure 8 shows the 420

assembly and SWA blocks to be runtime dominant. Note that the PairHMM step in GATK-3.8 has already 421

been accelerated using architecture-aware optimizations like SIMD based vectorization for the modern 422

multi-core processors. This is in contrast with the other key steps in the NGS tools studied in this work for 423

which, while there have been significant efforts to improve the complexity of the algorithm, there is little 424

architecture-aware programming to improve important performance determinants like data locality and 425

number of instructions required. Thus, we also profiled HC with the unoptimized version of PairHMM so as 426

to study it at the same level as the other key steps. Figure 8 shows runtime profiling results corresponding to 427
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optimized and unoptimized versions of the PairHMM step. Unoptimized PairHMM (UP) consumes ≈ 40% of 428

the HC runtime. Thus, we also classify PairHMM as a key building block. The optimized version of 429

PairHMM (OP) consumes only ≈ 11% of the HC runtime, thus improving the HC runtime by ≈ 18%. This 430

result stresses that targeting significant building blocks for optimizations would result in significant gains in 431

the overall runtimes. Misc represents the un-profiled blocks and consumes a small portion of the overall 432

runtime. Thus, the key blocks of assembly, PairHMM and SWA cover 72%− 93% of the total runtime of 433

variant calling. 434

7 Discussion 435

To summarize, we identified three important problems – sequence mapping, De novo assembly and variant 436

calling – that account for a majority of the time consumed in NGS secondary analysis. For each of these, we 437

studied the prominent tools in full detail understanding the source code and carving out key steps that are 438

similar across tools. 439

We profiled these tools using real datasets to identify the most time consuming blocks. Our results show 440

that sequence mapping spends a large portion of its time in FM-index based sequence search and 441

Smith-Waterman algorithm. The most time consuming steps of De novo assembly are De Bruijn graph 442

construction and sequence alignment. Sequence alignment, in turn, is very similar to sequence mapping and 443

can be performed using one of the sequence mapping tools. Thus, it consists of the same building blocks as 444

sequence mapping. Variant calling spends a majority of time in assembly, Pairwise Hidden Markov Model 445

algorithm and Smith-Waterman algorithm. The assembly block of variant calling is performed using De 446

Bruijn graphs and is similar in computation to De novo assembly. Apart from these computations, sorting is 447

used quite frequently. It is one of the steps of GATK best practices workflow and is performed using Picard’s 448

SortSam tool. It also appears frequently within quite a few tools. 449

Therefore, we identify four primary building blocks of NGSsecondary analysis – FM-index based sequence 450

search, Smith-Waterman algorithm, De Bruijn graph construction and Pairwise Hidden Markov Model 451

algorithm. We also identify sorting as a secondary building block. FM-index based sequence search exists in 452

a few different flavors – exact and inexact match of seeds (default length 22) or entire reads and super 453

maximal exact matches between the reads and the reference sequences. BWA-MEM uses banded 454

Smith-Waterman algorithm without any need of backtracking information. On the other hand, 455

HaplotypeCaller computes the full Smith-Waterman matrix and requires backtracking. De Bruijn graphs are 456

constructed using single or multiple k-mer sizes and typically use hash tables for k-mer indexing and 457

counting. PairHMM and SWA both use dynamic programming and are very similar in structure. 458

8 Conclusion and Future Directions 459

Given the rapid pace at which next generation sequencers are producing data, it is imperative to accelerate 460

NGS secondary analysis. In this work, we performed a comprehensive study of secondary analysis methods 461

to find out that the runtime is dominated by just four primary and one secondary building blocks. 462

From our results, it is clear that any acceleration of these building blocks would go a long way in 463

accelerating the overall execution of the NGS secondary analysis. Moreover, the fact that all the identified 464

blocks are algorithmically mature puts us in a good position to do so. 465

This work can help inform future hardware designs for the domain of Next Generation Sequencing. In 466

addition, availability of standardized off-the-shelf implementation of such blocks that are optimized according 467

to the hardware would not only accelerate current tools, but will also speed up the development of new tools 468

in NGS secondary analysis. 469

Key Points 470
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• Availability of population genomic data has created opportunities for studying genomic differences
across individuals or species.

• Advances in sequence data generation technology has prompted innovations in algorithmic and
computational domain for the secondary analysis of sequence data.

• The progress in the NGS secondary analysis domain is marred both by the unavailability of suitable
hardware and by incapability of the available tools in efficiently utilizing the available hardware.

• Majority of the secondary analysis tools make use of a few building blocks whose speedup can
greatly increase the throughput of the tools or workflows using them.

• Hardware that is specifically tailored for these building blocks and implementations that can use
that hardware optimally has the potential to improve the performance of NGS secondary analysis
by leaps and bounds allowing it to keep pace with the rate of data generation. 471
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