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Abstract 
 
Motivation  
To gain insights into complex biological processes, genome-scale data (e.g., RNA-Seq) are often 
overlaid on biochemical networks. However, many networks do not have a one-to-one 
relationship between genes and network edges, due to the existence of isozymes and protein 
complexes. Therefore, decisions must be made on how to overlay data onto networks. For 
example, for metabolic networks, these decisions include (1) how to integrate gene expression 
levels using gene-protein-reaction rules, (2) the approach used for selection of thresholds on 
expression data to consider the associated gene as “active”, and (3) the order in which these steps 
are imposed. However, the influence of these decisions has not been systematically tested.  
 
Results 
We compared 20 decision combinations using a transcriptomic dataset across 32 tissues and 
showed that definition of which reaction may be considered as active is mainly influenced by 
thresholding approach used. To determine the most appropriate decisions, we evaluated how 
these decisions impact the acquisition of tissue-specific active reaction lists that recapitulate 
organ-system tissue groups. These results will provide guidelines to improve data analyses with 
biochemical networks and facilitate the construction of context-specific metabolic models.   
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Introduction 
Most biological systems can be structured as networks, from cell signaling pathways to cell 
metabolism. These networks are invaluable for describing and understanding complex biological 
processes. For example, metabolic network reconstructions can illuminate the molecular basis of 
phenotypes exhibited by an organism, when used as a platform for analyzing data measuring 
gene expression, protein expression, enzymatic activity, or metabolite concentrations. For these 
analyses, the data are overlaid on the biological networks using Boolean rules that describe the 
relationship between the measured molecules (e.g., mRNAs, metabolites) and the network edges 
and nodes. These logical rules capture how the molecules influence each other’s activity (i.e., 
activation, inhibition, or cooperation), and allow users to quantify each network edge or define 
the status of each network component as either “on” or “off”. Therefore, a biological process can 
be described in a given context by adding or removing nodes and/or edges based on genome-
scale data.  
 
Genome-scale metabolic networks utilize this Boolean formulation connecting genes to reaction, 
and therefore have been used extensively as platforms for analyzing mRNA expression data to 
elucidate how changes in gene expression impacts cell phenotypes [1–8]. These studies have 
spanned diverse applications from identification of disease mechanisms [9,10] to identification 
of drug targets [11,12], and the evaluation of cell responses to drugs [13]. Despite the success of 
the many studies integrating omics data with biochemical networks, there are several challenges 
in the integration of omics data with networks that are infrequently discussed. These challenges 
impact the accuracy of context-specific networks, and include experimental and inherent 
biological noise, differences among experimental platforms, detection bias, and the unclear 
relationship between gene expression and reaction flux [14]. Furthermore, algorithmic 
assumptions influence the quality and functionality of resulting models and the physiological 
accuracy of their predictions [15–19]. 
 
While previous work has discussed the impact of various algorithms on obtaining 
physiologically accurate metabolic networks, the influence of the initial steps of data integration 
with biological networks has not been clearly evaluated and discussed in the literature. Thus, no 
universal rules have been established on how to integrate transcriptomic data, referred to here as 
“preprocessing”. These preprocessing steps include (1) how to account for network elements 
(e.g., reactions) that do not have a one-to-one relationship with genes and reactions (e.g., 
isozymes, complexes, and promiscuous enzymes), referred to here as gene mapping, and (2) how 
to define which genes are expressed or not, referred to here as thresholding, and (3) the order of 
gene mapping and thresholding in data integration. Here we evaluate the influence of the 
transcriptomic preprocessing steps and their consequences on the biological meaning captured by 
the data. Specifically, we do this by evaluating 20 different combinations of preprocessing steps, 
using transcriptomic data from 32 tissues. By evaluating the resulting 640 networks, we identify 
which decisions have the largest impact on network content, and which decisions best capture 
the similarities seen within tissues from the same organ-systems. This results in guidelines for 
overlaying transcriptomic data in metabolic networks and the lessons learned should be 
applicable to the analysis of transcriptomic data in all sorts of biological networks used for 
systems biology analysis.  
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Results 
 
Preprocessing decisions for overlaying omics data on biochemical networks 
Biochemical and other network types provide valuable platforms for analyzing and interpreting 
data. In these networks, links between nodes often represent enzyme-catalyzed reactions, and as 
such there is often not a one-to-one relationship between the genes and reactions. This 
relationship is represented using logical rules, referred as Gene-Protein-Reaction rules (GPRs, 
Supplementary Figure 1). When overlaying mRNA abundances on biochemical networks, GPRs 
are used to define which genes are the main determinants of the enzyme activity catalyzing a 
reaction. We refer here to this step as gene mapping. The most common assumption for 
multimeric enzyme complexes is that the gene with the minimum expression governs the 
activity. For isoenzymes, the activity may either depend on the total expression of all isoenzyme 
genes [20] or the isoenzyme gene with highest expression [21] (Figure 1A). 
 
Furthermore, the absolute mRNA abundance is often considered to represent a gene’s potential 
activity by using a thresholding approach. That is, if the gene is expressed at a level above a 
threshold, it is often considered to be active. This threshold definition has been implemented in 
many different ways in the literature, from the use of only a single threshold to more complex 
rules involving multiple thresholds. For example, one unique threshold value can be applied to 
all genes (i.e., the global thresholding approach, [22,23]) while others have applied different 
thresholds to each gene (i.e., the local thresholding approach, [24,25]) (Figure 1B). When using 
one single threshold in a global context (i.e., global T1), the genes presenting an expression 
above this value are considered as active (i.e., ON) while the others are inactive (i.e. OFF) 
(Figure 1C). However, when multiple samples are available, one can compute a gene-specific 
threshold based on the distribution of the expression levels observed for this gene over all the 
samples (e.g., a local rule that sets a threshold equal to the mean expression level across all 
samples). In the literature, this gene-specific thresholding approach is often implemented in 
combination with a defined global threshold for genes presenting low expression values among 
all the samples (e.g., below the usual detection level associated to the measurement method) to 
prevent their inclusion with the active genes for some samples (i.e., local T1). Therefore, the 
genes whose expression is below the value defined by this global lower bound will always be 
considered as inactive (i.e., OFF), while other genes will fall under the local rule for gene-
specific threshold definition (i.e., MAYBE ON) (Figure 1C). Another similar extreme case can 
be encountered when the gene expression level is high in all the samples. Therefore, we propose 
to also analyze the influence of using one lower and one upper threshold values defined based on 
the distribution of expression level off all the genes in all the samples (i.e. local T2). Doing so, 
the local rule for gene-specific threshold definition is actually applied only to the genes whose 
expression is between the range of values defined by the lower and upper bounds (i.e., MAYBE 
ON), ensuring that genes presenting low expression values among all the samples are always 
considered as inactive (i.e., OFF) while the ones with very high expression values among all the 
samples are always considered as active (i.e., ON) (Figure 1C).  
 
Preprocessing of transcriptomic data for their integration into biochemical networks relies 
mainly on these two decisions: gene mapping and thresholding, but these can be implemented in 
different orders, with either gene mapping or thresholding occurring first (Figure 1D). Therefore, 
multiple combinations of these decisions could be made when overlaying data onto biochemical 
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networks, and these decisions may influence the data integration and the subsequent biological 
interpretation (see Table 1, Figure 1, and a detailed explanation about the decisions presented in 
Methods section). 
 

Decisions Variables Existing approaches Biological meaning 

Gene Mapping 
GPR transformation for 

expression selection 

AND/OR = MIN/MAX 
Isoenzyme reaction activity is 

given by isoenzymes presenting 
the maximum activity 

AND/OR = MIN/SUM 
Isoenzyme reaction activity is 

given by the sum of the isoenzyme 
activities 

Thresholding 

Approach 
local  Gene-specific threshold values 

global  
Unique threshold value for all the 

genes 

Number of states 

2 states = 1 global threshold OFF/ON 
2 states = 1 global threshold 

and 1 local rule 
OFF/MAYBE ON 

3 states = 2 global thresholds 
and 1 local rule 

OFF/MAYBE ON/ ON 

Order of the 
steps 

Gene Mapping (GM) 
Thresholding (T) 

GM + T 
The cutoff of activity is defined at 

the reaction level  

T + GM 
The cutoff of expression is defined 

at the gene level  
Table 1: Decisions involved in transcriptomic data preprocessing 
 
 
Here, we integrated transcriptomic data from 32 different tissues in the Human Protein Atlas [25] 
with the Human genome scale model Recon 2.2 [26] using 20 different combinations of the 3 
main preprocessing decisions (Table 1, Figure 1). This resulted in 640 different tissue-specific 
profiles of “expression” values for all gene-associated reactions in Recon 2.2. To specifically 
evaluate the immediate impact of the preprocessing decisions on the resulting networks, we 
focused our analysis on the content of the networks themselves (i.e., the definition of active 
biochemical pathways therein) and the biological interpretation of these networks. 
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Figure 1 - Formulation and implementation of preprocessing decisions. (A) Two types of gene mapping methods
(GM1 and GM2) are compared. (B) Two types of thresholding approaches (global and local) are compared. (C)
Formulation of three combinations of number of states (Global T1, Local T1, and Local T2) (D) Decisions about the
order in which thresholding and gene mapping are performed. For Order 1, gene expression is converted to reaction
activity followed by thresholding of reaction activity; for Order 2, thresholding of gene expression is followed by its
conversion to reaction activity. 
 
Active reaction sets are influenced by preprocessing decisions 
Decisions regarding gene mapping, thresholding (i.e., approach and number of states), and order
of steps affect the definition of active reaction sets. Specifically, the sets of active reactions (i.e.,
reactions with a non-zero expression level after overlaying the data) varied considerably in size
from 358 reactions to 3286 reactions across all tissues, depending on preprocessing decisions and
tissue type (Figure 2A). To assess the impact of each decision, we conducted a principal
component analysis (PCA) of the reaction sets considered as active, depending on the
preprocessing decisions (i.e., a PCA on the matrix of all active reactions vs. all combinations of
decisions and tissues; see Methods for details). The first principal component explains >35% of
the overall variance in active reaction content (Figure 2B). The thresholding related parameters
(global/local and T1/T2) provide the most significant contribution to the variation in the first
principal component (38.5%), with the differences between the global and local approaches
having the greatest impact (Figures 2C, 2F, and Supplementary Figure 2). The effect of
thresholding impacted the networks more than the differences across tissues, which only
explained 15.8% of the variation in the first principal component. Tissue specific effects did not
dominate until the second principal component, where it explained 73% of the variation in the
component. The order of the preprocessing steps only provides a small contribution to the
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explained variation in the first principal component (Figure 2C, 2D). Meanwhile, the type of 
gene mapping has the least influence on active reaction sets (Figure 2C, 2E). These results 
indicate that the identification of active reactions is most heavily affected by the thresholding 
approach (as defined in Figure 1B), followed by the state definition used for thresholding (as 
defined in Figure 1C) and the order of preprocessing steps (as defined in Figure 1D) while the 
gene mapping method does not seem to have an influence.  
 

 
Figure 2 - Preprocessing decisions affect the definition of active reactions sets. (A) Twenty different combinations 
of preprocessing decisions led to a large diversity number of reactions considered as active. (B) The first three 
principal components (PCs) explain most of the variance in the number of active reactions in a GEM. (C) 
Thresholding contributes the most to the first PC and more specifically the main contributor is the thresholding 
approach (i.e. local or global). (D, E and F). The influence of thresholding parameter selection is clear in the first PC 
(F), while the networks are less influenced by the gene mapping method (E) and the order of preprocessing steps 
used (D). 
 
Preprocessing decisions influence ability to capture tissue similarities within organ-systems 
We assessed the similarities of tissues belonging to the same organ-system, based on the 
knowledge of the set of active reactions. We assumed that organ-system groups are formed by 
tissues working collaboratively to achieve a specific function (e.g., the gastrointestinal system 
turns food into energy). Therefore, we hypothesized that similarities of tissues within an organ 
system may lead to a more similar set of active metabolic reactions within the system, in 
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comparison to other systems, as suggested by previous transcriptomic analyses [27,28] . To this 
end, we calculated Euclidean distances between pairs of tissues belonging to the same organ-
system (Figure 3, Supplementary Figure 3, see Methods for more details). Our results highlight 
the influence of preprocessing decisions on the significance of tissue grouping at the reaction 
level. Moreover, we observed that some decisions improved the significance of tissue grouping: 
Order 2 works generally better than Order 1.  Local T2 also is better than GlobalT1 and LocalT1. 
However, there was not a clearly superior approach for gene mapping in our analysis (Figure 4, 
Supplementary Figure 4).  
 
Some organ classification systems will group dissimilar organs together into a single organ-
system, and we wondered if our analysis would still suggest the removal of such tissues from the 
organ-systems based on metabolic differences. For example, our previous analysis was done 
without associating the placenta to the Female reproductive organ-system group. However, the 
Human Protein Atlas groups it into the Female reproductive organ group (Supplementary Table 
1). The placenta is functionally and histologically different from the other tissues of this group, 
being derived from both maternal and fetal tissue. This biological difference was successfully 
captured when we compared the tissue similarity analysis with and without the placenta in the 
Female reproductive organ-system group (Supplementary Figure 5).  
 

 
Figure 3  - Influence of preprocessing decisions on capturing tissue similarities. Visual representation using a 
Principal Coordinates Analysis of the similarity between tissues grouped by organ system for each preprocessing 
decision (numbers in legends are the mean Euclidean distance of the tissues belonging to each group; F – Female 
reproductive group, G – Gastrointestinal group, and L – Lymphatic group). 
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Figure 4 - Preprocessing decisions influence the significance of tissue grouping at organ-system level. We 
compared the mean Euclidean distance observed between tissues belonging to the same organ-system to the mean 
Euclidean distance for 10000 randomly selected groups with the same number of tissues. The significance of the 
grouping (P-value) is computed as the proportion of random distances lower than the observed distance for each 
organ-system. 

 

Discussion 
 
Several methods have been developed to integrate transcriptomic data in GEMs, thus enabling 
the comprehensive study of metabolism for different cell types, tissue types, patients, or 
environmental conditions [8,12,22,23,29,30]. However, while these, and many other studies rely 
on preprocessing decisions to integrate the transcriptomic data in biochemical networks, each 
study makes different decisions without reporting the reason for their approach. Indeed, no 
rigorous comparison of the impacts of such decisions has been reported.  
 
Here, we highlighted how different preprocessing decisions might influence information 
extracted from tissue specific gene expression data. We evaluated the influence of each 
preprocessing decision quantitatively by studying the active reaction sets and qualitatively by 
evaluating tissue grouping at an organ-system level. Our analysis suggested that thresholding 
related decisions have the strongest influence over the set of active pathways, and more 
specifically the thresholding approach (i.e., global or local; Figure 1C). This can be explained by 
the considerable influence of the decision on thresholding on the number of genes selected as 
expressed (Supplementary Figure 6). We note that threshold value choice for global thresholding 
was previously found to be the dominant factor influencing cell type-specific model content 
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when context specific extraction methods were benchmarked [18].  When using global 
thresholds, the number of the genes selected to be active significantly decreases with increasing 
threshold value. However, the use of local thresholding leads to a smaller variation in the number 
of genes predicted to be active (Supplementary Figure 7). Furthermore, for similar state and 
value attribution (e.g. T1 25th percentile), the use of the global thresholding approach leads to the 
selection of a larger number of genes predicted to be active in all tissues than the local approach 
(Supplementary Figure 6). Therefore, using a global threshold leads to fewer differences between 
tissues and a higher correlation of active reaction sets across tissues (Supplementary Figure 8), 
thus losing improved tissue specificity of the networks seen with the local thresholding 
approaches (Figure 4). This may have an important impact on analyses of tissue specific 
metabolism. Furthermore, the use of global thresholding is likely to lead to many false-negative 
reactions (i.e., reactions predicted to be inactive but are active), such as housekeeping genes that 
might be lowly expressed since they make essential vitamins, prosthetic groups, and 
micronutrients that are needed in low concentrations. Interestingly, the use of the T2 state 
definition seems to be less dependent on threshold values attributed than the T1 state definition 
when using a local approach (Supplementary Figure 7). Therefore, the use of a T2 state 
definition in combination of a local approach seems to successfully overcome the arbitrary 
aspect of threshold value selection and its influence on data preprocessing.  
 
The order of preprocessing steps only moderately influences the definition of active reactions 
sets (Figure 1C). This decision implies two different interpretations of the influence of the RNA 
transcript levels on the determination of the enzyme abundance and activity associated to a given 
reaction. Indeed, the Order 1 suggests that the measured expression levels determine the enzyme 
abundance available for a reaction while its associated activity will be defined depending on the 
gene chosen as the main determinant of the reaction behavior. On the other hand, the Order 2 
relies on a comparison of the activities of each gene associated with enzymes that might catalyze 
a reaction without directly accounting for the absolute transcript abundance. Our analyses 
suggest that Order 2 provides more significant grouping for the Gastrointestinal and 
Lymphoreticular systems and does not considerably influence the grouping of the Female 
reproductive system. Advances in fluxomic measurement techniques will be invaluable to further 
investigate this preprocessing decision. Indeed, this would allow the analysis of the correlation 
between the RNA transcript levels and gene activity (expression data transformed using 
thresholding) of all the genes contributing to the definition of a reaction activity. Furthermore, 
this correlation analysis will further help with biological interpretation of this preprocessing 
decision and further refine guidelines for gene mapping decisions. 
 
In our analysis, both gene mapping methods handle the AND relationships within a GPR rule in 
the same way but they differ in the treatment of OR relationships by either considering the 
maximum expression value (GM1) or a sum of expression values (GM2). Therefore, GM1 
assumes that a reaction activity is determined by only one enzyme while GM2 accounts for the 
activity of all potential isoenzymes for a reaction. Surprisingly, while most of the reactions in 
Recon 2.2 are associated with at least two isoenzymes (Supplementary Figure 9A), the 
distributions of these reaction activities do not significantly change between the gene mapping 
approaches (Supplementary Figure 10). Indeed, even if there is a significant difference in the 
number of genes mapped to the model depending on the techniques used: an average of 58.3% of 
the genes present in the model and available in the HPA dataset are mapped to the model 
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reactions using GM1 while 89.5 % are mapped using GM2. The expression value of genes that 
are unmapped using GM1 but mapped with GM2 is often below the 50th percentile of the overall 
transcriptomic data available (Supplementary Figure 11) and therefore seems to not significantly 
influence the distribution of the reaction activities obtained. This is why the decisions relating to 
the gene mapping method do not influence the set of active reactions in the case of the 
transcriptomic dataset used in this study. However, it may not be the case for all transcriptomic 
datasets, especially if more metabolic genes are associated to high gene expression values. In this 
context, the development of more biologically meaningful gene mapping methods might be the 
key to capture differences between cell-types or tissues. Current gene mapping methods consider 
all enzymes as specialists (i.e. one enzyme is associated to one reaction). However, numerous 
enzymes are actually “generalists” as they exhibit promiscuity [31,32] (Supplementary Figure 
9D). This functional promiscuity of an enzyme may be manifested in the form of competition 
between reactions catalyzed by this enzyme, and therefore influence the catalytic activity of an 
enzyme. In this context, future work may benefit from exploring strategies to handle enzyme 
promiscuity [33]. 
 
This benchmarking study emphasizes the importance of carefully evaluating the decisions and 
parameters for integrating transcriptomic data into biochemical networks. Indeed, numerous 
steps and decisions involved in the estimation of enzyme abundance and activity from 
transcriptomic data rely on biological assumptions that have not yet been leveraged. With the 
increasing availability and affordability of omic measurement techniques, studies filling the gap 
between mRNA expression and enzymatic activity will be of crucial importance.  
 
Conclusion 
Decisions must be made on how to best handle and incorporate transcriptomic data into 
biochemical networks. Our benchmarking analysis of preprocessing decisions showed that 
thresholding approach influences the active reaction sets the most, even more than tissue-specific 
effects. Meanwhile, gene mapping has the lowest influence. We showed that some decisions 
better capture the functional tissue similarity across different organ systems. Overall, our 
analysis showed that transcriptomic data preprocessing decisions influence the ability to capture 
meaningful information about tissues. However, current preprocessing techniques present 
important limitations and decisions associated to this process should be made very carefully. In 
this context, development of more robust and biologically meaningful preprocessing techniques 
will be the key of the improvement of our understanding of tissue-specific behavior of an animal. 
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Methods 
 
Transcriptomic data 
We used the Human Protein Atlas transcriptomic dataset (HPA) which includes RNA-Seq data 
of 20344 genes across 32 different human tissues [25]. Out of 20344 genes, 1663 can be mapped 
to the metabolic genes present in Recon 2.2 (99.4 % of coverage) [26]. Supplementary Table 2 
presents the 10 genes of Recon 2.2 that are not associated with expression values in the HPA 
dataset and Supplementary Figure 12 presents the distribution of gene expression values in the 
HPA dataset. 
 
Genome-scale model of human metabolism – Recon2.2 
Recon 2.2 [26] includes 1673 genes, 5324 metabolites and 7785 reactions. 3061 reactions do not 
have GPR associations. The remaining 4724 reactions are associated to 1797 different enzymes 
and about 20% of these reactions can be catalyzed by multiple isoenzymes. Almost 21% of the 
enzymes are formed by enzyme complexes (up to 46 subunits - reaction: NADH2_u10m) and 
about 54% of the enzymes are promiscuous enzymes (Supplementary Figure 9). 
 
Gene mapping 
In metabolic networks, the relationship between genes and reactions is represented using logical 
rules, referred as Gene-Protein-Reaction rules (GPRs). These rules describe the association 
between the genes responsible for the expression of protein subunits forming the enzyme that 
catalyzes a reaction (AND for enzyme complexes; OR for isoenzymes). This relationship linking 
enzymes to reactions may have different types of GPR patterns. Some relationships are simple, 
with one gene encoding one enzyme that catalyzes one reaction. However, many are more 
complicated, in which one enzyme catalyzes multiple reactions (promiscuous), multiple proteins 
form an enzyme complex that catalyzes one reaction (multimeric), multiple enzymes catalyze 
one reaction (isoenzymatic), or multiple enzymes could catalyze multiple reactions 
(isoenzymatic promiscuous) [32] (Supplementary Figure 1). Gene mapping methods (GMMs) 
require combined use of the GPR rule and gene expression data to determine the enzyme activity 
associated to a reaction. In this regard, two methods have been used prominently in the field:  

i. Selection of the minimum expression value among all the genes associated to an enzyme 
complex (AND rule) and the maximum expression value among all genes associated with 
an isoenzyme (OR rule). We refer to this method as GM1 [21]. 

ii. Selection of the minimum expression value among all the genes associated to an enzyme 
complex (AND rule) and sum of expression values of all the genes associated to an 
isoenzyme (OR rule). We refer to this method as GM2 [20]. 

 
Thresholds 
Thresholding Approaches: Thresholding approaches describe the scheme of threshold imposition 
on the gene expression value for a gene and/or reaction to be considered as “active”.  

i. Global approach: The threshold value is the same for all the genes. The global approach 
is often applied when only one sample or condition is available and/or no information is 
available in the literature to define an expression threshold for a single gene. The “global 
threshold” is most often defined using the distribution of expression values for all the 
genes, and across all samples if multiple samples are available. This type of thresholding 
approach has been used, for example, in combination with a model extraction method 
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called Gene Inactivity Moderated by Metabolism and Expression (GIMME) [22]. 
ii. Local approach: The threshold value is different for all the genes. The local approach is 

often applied when multiple samples are available as it allows a comparison of 
expression relative to many other samples and conditions. The “local threshold” for a 
gene is most often defined as the mean expression value of this gene across all the 
samples, tissues, or conditions [24,25,29]. 

 
The definition of thresholding criteria requires one to decide on how to partition the gene 
expression or reaction activity. In this regard, the ON/OFF state definition is often used in the 
literature. This type of state definition requires only one value to qualify if a gene/reaction is 
active. For example, when using one single threshold in a global context (i.e., hereafter referred 
as global T1), the genes presenting an expression above this value are considered as active (i.e., 
ON) while the others are inactive (i.e. OFF). However, this type of gene expression partition in a 
local context (e.g., expression threshold of a gene defined by its mean expression across all 
samples) presents limitations when facing genes with very low or very high expression values for 
all the samples. Indeed, when a gene presents always very low expression values, the use of the 
mean as threshold will lead to the consideration of its expression in some samples. Contrarily, 
some genes may be associated with very high expression values in all the samples. Doing so, 
while this gene should be considered as active, the current state partition will lead to considering 
this gene as non-expressed in all the samples presenting an expression value below the mean. 
 
To overcome this problem, the gene-specific thresholding approach is often implemented in 
combination with the definition of a global threshold definition for genes presenting low 
expression values among all the samples (e.g., below the usual detection level associated to the 
measurement method) to prevent their definition as an active set for some samples (i.e., local 
T1). Therefore, the genes whose expression is below the value defined by this global lower 
bound will always be considered as inactive (i.e., OFF), while other genes will fall under the 
local rule for gene-specific threshold definition (i.e., MAYBE ON). The T1 state definition of 
local thresholding approach can be defined as follows “the expression threshold for a gene is 
determined by the mean of expression values observed for that gene among all the tissues BUT 
the threshold must be higher or equal to a lower percentile bound globally defined”. 
 
Another similar extreme case can be encountered for genes with high expression values in all 
samples. To this end, an upper and a lower bound can be introduced to define the expression 
values for which a gene should always be considered as expressed or non-expressed. This will 
ensure that genes with very low expression values across all the samples will never be 
considered as active (i.e., OFF) and genes with very high expression across samples are always 
considered as active (i.e., ON). Doing so, the local rule for gene-specific threshold definition is 
applied only to the genes whose expression is in between the range of values defined by the 
lower and upper bounds (i.e., MAYBE ON). The definition of the local threshold with a T2 state 
definition can be expressed as follows: “the expression threshold for a gene is determined by the 
mean of expression values observed for that gene among all the tissues BUT the threshold:(i) 
must be higher or equal to a lower percentile bound globally defined and (ii) must be lower or 
equal to an upper percentile bound globally defined.” 
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Threshold values: The threshold values depend on the approach (i.e. local or global) and on the 
number of states (i.e. T1 or T2) used for thresholding. The global approach can only be 
associated with T1 state definition as it requires the assignment of only one threshold value. On 
the other hand, the local thresholding approach can be used in combination with either a T1 or a 
T2 state definition, as mentioned above. In the context of this study, we have chosen to compare 
the following combination of threshold value attribution: 

i. Global thresholding values: The global threshold values chosen in this study are either 
the 50th or the 75th percentile (named respectively Global T1 50th and Global T1 75th). We 
also assessed the impact of using the 25th and the 90th percentiles. These thresholds 
exhibited tissue-specific sets of active genes that were more highly correlated and 
therefore decreased the ability to differentiate between tissues (Global T1 25th, 
Supplementary Figure 8) or more uncorrelated with more highly expressed genes 
removed, leading to a decreased ability to connect similar tissues (Global T1 90th, 
Supplementary Figure 6). 

ii. Local thresholding values: we used the 25th percentile of the overall gene expression 
distribution as lower bound for the local thresholding approach. This combination is 
referred as Local T1 25th when used alone. Note that, in the case of the HPA dataset, the 
25th percentile is equal to 1.2 FPKM and the detection limit of RNA-Seq technique is 
often considered at 1 FPKM (Supplementary Figure 12). Two different upper bounds 
have been used for the T2 state definition of the local approach: the 75th (referred as 
Local T2 25th & 75th) or the 90th (referred as Local T2 25th & 90th) percentiles of the 
overall gene expression distribution. The choice of the 75th percentile as upper bound is 
based on the distribution of the mean expression value for each gene in the HPA dataset.  
Indeed, more than half of the genes are associated to a mean higher than the 50th 
percentile of gene expression distribution (Supplementary Figure 13). To objectively 
assess the influence of the choice of this upper bound, we also compared the results 
obtained by imposing an upper bound of 90th percentile. 

 
Ordering of preprocessing steps 
The preprocessing for transcriptomic data could be done in two possible ways as described 
below: 

i. Order 1: The gene expression values are associated to reactions using one of the gene 
mapping methods. These “reaction expressions” can further be used to define the set of 
active reactions by imposing thresholds of activity. 

ii. Order 2: The thresholding is used to define the activity of each gene based on gene 
expression data. These “gene activities” are mapped to the reactions using one of the 
mapping methods. 

For Order 1, thresholding is imposed on these “reaction expressions” and no longer on the gene 
expression. This leads to the necessity to adapt the local threshold definition in the case of a 
preprocessing combination using Order 1 with GM2 gene mapping. Indeed, as the GM2 
approach map multiple genes to a reaction, the activity of this reaction can no longer be defined 
by using the gene expression distribution. Therefore, the activity threshold for a reaction is 
determined by the sum of mean expression values observed for the genes mapped to this 
reactions) among all the tissues, but the mean expression value of each gene mapped to the 
reaction must be higher or equal to a lower percentile bound globally defined. Furthermore, it 
must be lower or equal to upper percentile bound globally defined. 
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Principal Component Analysis (PCA) 
A binary matrix is constructed in which each row represents one of the 20 preprocessing 
approaches and each column represents a variable: a reaction being active (1) or not active (0) in 
the GEM. The PCA analysis was conducted on this matrix after the removal of reactions being 
active for all or no preprocessing combinations and having each row centered to have zero mean.  

Assessment of tissues similarities 
The set of active reactions have been used to compute the Euclidean distance between each 
tissue. We associated each tissue to an organ system using the classification proposed in the 
Human Protein Atlas (Supplementary Table 1) and computed the average Euclidean distance 
between tissues belonging to the same organ system. Note that, we only considered organ 
systems presenting more than two tissues within the same group (i.e. Female Reproductive, 
Lymphatic and Gastrointestinal). To compute the significance of our results, we generated the 
mean Euclidean distance for 10000 randomly selected group with the same number of tissues 
and computed the exact p-value (i.e. proportion of random distance lower than the observed 
distance) associated to each organ system. 

Data and software availability 

The Human Protein Atlas transcriptomic dataset (HPA) were acquired from supplementary 
material of [25]. Recon 2.2 model was downloaded from 
https://github.com/u003f/recon2/tree/master/models. The matlab code for applying the different 
preprocessing combinations are available in COBRA toolbox v3.0, in the papers section [34]. 
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