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Abstract 12 

We have developed an easy-to-use and memory-efficient method called PhenotypeSeeker that (a) 13 

generates a k-mer-based statistical model for predicting a given phenotype and (b) predicts the 14 

phenotype from the sequencing data of a given bacterial isolate. The method was validated on 167 15 

Klebsiella pneumoniae isolates (virulence), 200 Pseudomonas aeruginosa isolates (ciprofloxacin 16 

resistance) and 460 Clostridium difficile isolates (azithromycin resistance). The phenotype prediction 17 

models trained from these datasets performed with 88% accuracy on the K. pneumoniae test set, 88% 18 

on the P. aeruginosa test set and 96.5% on the C. difficile test set. Prediction accuracy was the same 19 

for assembled sequences and raw sequencing data; however, building the model from assembled 20 

genomes is significantly faster. On these datasets, the model building on a mid-range Linux server 21 

takes approximately 3 to 5 hours per phenotype if assembled genomes are used and 10 hours per 22 

phenotype if raw sequencing data are used. The phenotype prediction from assembled genomes takes 23 

less than one second per isolate. Thus, PhenotypeSeeker should be well-suited for predicting 24 

phenotypes from large sequencing datasets.  25 

PhenotypeSeeker is implemented in Python programming language, is open-source software and is 26 

available at GitHub (https://github.com/bioinfo-ut/PhenotypeSeeker/). 27 

Summary 28 

Predicting phenotypic properties of bacterial isolates from their genomic sequences has numerous 29 

potential applications. A good example would be prediction of antimicrobial resistance and virulence 30 

phenotypes for use in medical diagnostics. We have developed a method that is able to predict 31 

phenotypes of interest from the genomic sequence of the isolate within seconds. The method uses 32 

statistical model that can be trained automatically on isolates with known phenotype. The method is 33 

implemented in Python programming language and can be run on low-end Linux server and/or on 34 

laptop computers.     35 
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Introduction 37 

The falling cost of sequencing has made genome sequencing affordable to a large number of labs, and 38 

therefore, there has been a dramatic increase in the number of genome sequences available for 39 

comparison in the public domain [1]. These developments have facilitated the genomic analysis of 40 

bacterial isolates. An increasing amount of bacterial whole genome sequencing (WGS) data has led to 41 

more and more genome-wide studies of DNA variation related to different phenotypes [2–7]. Among 42 

these studies, antibiotic resistance phenotypes are the most concerning and have garnered high public 43 

interest, especially since several multidrug-resistant strains have emerged worldwide [8]. The 44 

detection of known resistance-causing mutations as well as the search for new candidate biomarkers 45 

leading to resistance phenotypes requires reasonably rapid and easily applicable tools for processing 46 

and comparing the sequencing data of hundreds of isolated strains. However, there is still a lack of 47 

user-friendly software tools for the identification of genomic biomarkers from large sequencing 48 

datasets of bacterial isolates [9,10]. 49 

Methods that are based on sequence alignment are limited because they are strongly dependent on the 50 

availability of the list of previously described and confirmed resistance genes and mutations. New 51 

variations relevant to a bacterial phenotype would be missed if we rely on known markers. In 52 

addition, many bacterial species have extensive intra-species variation from small sequence-based 53 

differences to the absence or presence of whole genes or gene clusters. Choosing only one genome as 54 

a reference for searching for the variable components would be highly limiting.  55 

K-mers, which are short DNA oligomers with length k, enable us to simultaneously discover a large 56 

set of single nucleotide variations, insertions and deletions associated with the phenotypes under 57 

study. The advantage of using k-mer-based methods in genomic biomarker discovery is that they do 58 

not require sequence alignments and can even be applied to raw sequencing data. Several k-mer-based 59 

tools for detecting the biomarkers behind different bacterial phenotypes have been previously 60 

published. The SEER program takes either a discrete or continuous phenotype as an input, counts 61 

variable-length k-mers and corrects for the clonal population structure [11]. SEER is a complex 62 

pipeline requiring several separate steps for the user to execute and currently has many system-level 63 
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dependencies for successful compilation and installation. Another similar tool, Kover, handles only 64 

discrete phenotypes, counts user-defined size k-mers and does not use any correction for population 65 

structure [12]. The Neptune software targets so-called 'signatures' differentiating two groups of 66 

sequences but cannot locate smaller mutations, such as single isolated nucleotide variations. The 67 

'signatures' that Neptune detects are relatively large genomic loci, which may include genomic 68 

islands, phage regions or operons [13].  69 

We created PhenotypeSeeker as we observed the need for a tool that could combine all the benefits of 70 

the programs available but at the same time would be easily executable and would take a reasonable 71 

amount of computing resources without the need for dedicated high-performance computer hardware. 72 

  73 
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Results 74 

Implementation 75 

PhenotypeSeeker consist of two subprograms: 'PhenotypeSeeker modeling' and 'PhenotypeSeeker 76 

prediction'. 'PhenotypeSeeker modeling' takes either assembled contigs or raw-read data as an input 77 

and builds a statistical model for phenotype prediction. The method starts with counting all possible k-78 

mers from the input genomes, using the GenomeTester4 software package [14], followed by k-mer 79 

filtering by their frequency in strains. Subsequently, the k-mer selection for regression analysis is 80 

performed. In this step, to test the k-mers’ association with the phenotype, the method applies Welch’s 81 

two-sample t-test if the phenotype is continuous and a chi-squared test if it is binary. Finally, the 82 

logistic regression or linear regression model is built. The PhenotypeSeeker output gives the 83 

regression model in a binary format and three text files, which include the following: (1) the results of 84 

association tests, (2) the coefficients of k-mers in the regression model, (3) a FASTA file with 85 

phenotype-specific k-mers, assembled to longer contigs when possible, and (4) a summary of the 86 

regression analysis performed (Fig 1). Optionally, it is possible to use weighting for the strains to take 87 

into account the clonal population structure. The weights are based on a distance matrix of strains 88 

made with an alignment-free k-mer-based method called Mash [15]. The weights of each genome are 89 

calculated using the Gerstein , Sonnhammer and Cothia method [16]. 'PhenotypeSeeker prediction' 90 

uses the regression model generated by 'PhenotypeSeeker modeling' to conduct fast phenotype 91 

predictions on input samples (Fig 1). Using gmer_counter from the FastGT package [17], the tool 92 

searches the samples only for the k-mers used as parameters in the regression model. Predictions are 93 

then made based on the presence or absence of these k-mers. 94 

PhenotypeSeeker uses fixed-length k-mers in all analyses. Thus, the k-mer length is an important 95 

factor influencing the overall software performance. The effects of k-mer length on speed, memory 96 

usage and accuracy were tested on a P. aeruginosa ciprofloxacin dataset. A general observation from 97 

that analysis is that the CPU time and the PhenotypeSeeker memory usage increase when the k-mer 98 

length increases (Fig 2). Previously described mutations in the P. aeruginosa parC and gyrA genes 99 

were always detected if the k-mer length was at least 13 nucleotides. We assume that in most cases, a 100 
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k-mer length of 13 is sufficient to detect biologically relevant mutations, although in certain cases, 101 

longer k-mers might provide additional sensitivity. The k-mer length in PhenotypeSeeker is a user-102 

selectable parameter. Although most of the phenotype detection can be performed with the default k-103 

mer value, we suggest experimenting with longer k-mers in the model building phase. All subsequent 104 

analyses in this article are performed with a k-mer length of 13, unless specified otherwise. 105 

Ciprofloxacin resistance phenotype in Pseudomonas aeruginosa 106 

PhenotypeSeeker was applied to the datasets composed of P. aeruginosa genomes and corresponding 107 

ciprofloxacin MIC-s. We built two separate models using a continuous phenotype for one and binary 108 

phenotype for another. Binary phenotype values were created based on EUCAST ciprofloxacin 109 

breakpoints [18]. Both models detected k-mers associated with mutations in quinolone resistance 110 

determining regions (QRDR) of the parC (c.260C>T, p.Ser87Leu) and gyrA (c.248C>T, p.Thr83Ile) 111 

genes (Fig 3, S2 File). These genes encode DNA topoisomerase IV subunit A and DNA gyrase 112 

subunit A, the target proteins of ciprofloxacin [19]. Mutations in the QRDR regions of these genes are 113 

well-known causes of decreased sensitivity to quinolone antibiotics, such as ciprofloxacin [20]. The 114 

model built using a binary phenotype had a prediction accuracy of 88%, sensitivity of 90% and 115 

specificity of 87% on the test subset. The coefficient of determination (R2) of the test subset for the 116 

continuous phenotype was 0.413 (S2 File). 117 

Azithromycin resistance phenotype in Clostridium difficile   118 

In addition to the P. aeruginosa dataset, we tested a C. difficile azithromycin resistance dataset (S2 119 

File) studied using Kover in Drouin et al., 2016 [12]. ermB and Tn6110 transposon were the 120 

sequences known and predicted to be important in an azithromycin resistance model by Kover [12]. 121 

ermB was not located on the transposon Tn6110. PhenotypeSeeker found k-mers for both sequences 122 

while using k-mers of length 13 or 16. Tn6110 is a transposon that is over 58 kbp long and contains 123 

several protein coding sequences, including 23S rRNA methyltransferase, which is associated with 124 

macrolide resistance [21]. The predictive models with all tested k-mer lengths (13, 16 and 18) 125 

contained k-mers covering the entire Tn6110 transposon sequence, both in protein coding and non-126 

coding regions. In addition to the 23S rRNA methyltransferase gene, k-mers in all three models were 127 
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mapped to the recombinase family protein, sensor histidine kinase, ABC transporter permease, TlpA 128 

family protein disulfide reductase, endonuclease, helicase and conjugal transfer protein coding 129 

regions. The model built for the C. difficile azithromycin resistance phenotype had a prediction 130 

accuracy of 96.5%, sensitivity of 96% and specificity of 97% on the test subset. 131 

Virulence phenotype in Klebsiella pneumoniae 132 

In addition to antibiotic resistance phenotypes in P. aeruginosa and C. difficile, we used K. 133 

pneumoniae human infection-causing strains as a different kind of phenotype example. K. 134 

pneumoniae strains contain several genetic loci that are related to virulence. These loci include 135 

aerobactin, yersiniabactin, colibactin, salmochelin and microcin siderophore system gene clusters 136 

[22–26], the allantoinase gene cluster [27], rmpA and rmpA2 regulators [28,29], the ferric uptake 137 

operon kfuABC [30] and the two-component regulator kvgAS [31]. The model predicted by 138 

PhenotypeSeeker for invasive/infectious phenotypes included 13-mers representing several of these 139 

genes. Genes in colibactin (clbQ and clbO), aerobactin (iucB and iucC) and yersiniabactin (irp1, irp2, 140 

fyuA, ybtQ, ybtX, and ybtP) clusters showed the most differentiating pattern between carrier and 141 

invasive/infectious strains (Fig 4; S2 File). A 13-mer mapping to a gene-coding capsule assembly 142 

protein Wzi was also represented in the model. The model built for K. pneumoniae invasive/infectious 143 

phenotypes had a prediction accuracy of 88%, sensitivity of 91% and specificity of 78% on the test 144 

subset. 145 

Classification accuracy and running time 146 

To measure the average classification accuracies of logistic regression models, all three datasets were 147 

divided into a training and test set of approximately 75% and 25% of strains respectively. A K-mer 148 

length of 13 was used, and a weighted approach was tested on binary phenotypes (Table 1). When 149 

using sequencing reads instead of assembled contigs as the input, we required a minimum frequency 150 

of 5 for a 13-mer to reduce the influence of sequencing errors. The PhenotypeSeeker prediction 151 

accuracy is not lower when using raw sequencing reads instead of assembled genomes, and therefore, 152 

assembly building is not required before model building. Our results with K. pneumoniae show that 153 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2018. ; https://doi.org/10.1101/302026doi: bioRxiv preprint 

https://doi.org/10.1101/302026
http://creativecommons.org/licenses/by-nd/4.0/


 8

PhenotypeSeeker can be successfully applied to other kinds of phenotypes in addition to antibiotic 154 

resistance. 155 

Table 1. Model prediction accuracy and running time. The results with 13-mers and weighting are 156 

shown. The maximum number of 13-mers selected for the regression model was 1000. In cases where 157 

sequencing reads were used as the input, a minimum frequency of 5 for a 13-mer was required to 158 

reduce the influence of sequencing errors. 159 

Dataset 
 Accuracy 

Number of isolates 
Time for the 

model 
building 

(per model) 

Time for the 
phenotype 
prediction 

(per 
phenotype) 

 

Training Testing 

Pseudomonas 
aeruginosa 
(contigs) 

88.0% 150 50 3h 36m 0.81s 

Pseudomonas 
aeruginosa (reads) 

88.0% 150 50 19h 56m 58.0s 

Klebsiella 
pneumoniae 

(contigs) 
88.0% 125 42 3h 38m 0.74s 

Klebsiella 
pneumoniae (reads) 

88.0% 125 42 10h 3m 28.0s 

Clostridium difficile 
(contigs) 

96.5% 345 115 4h 50m 0.61s 

Pseudomonas 
aeruginosa 
(contigs) 

88.0% 150 50 3h 36m 0.81s 

 160 

In our trials, the model building on a given dataset took 3 to 5 hours per phenotype, and prediction of 161 

the phenotype took less than a second on assembled genomes (Table 1). The CPU time of model 162 

building by PhenotypeSeeker depends mainly on the number of different k-mers in genomes of the 163 

training set. The analysis performed on our 200 P. aeruginosa genomes showed that the CPU time of 164 

the model building grows linearly with the number of genomes given as input (S1 Fig).  165 

The memory requirement of PhenotypeSeeker did not exceed 2 GB if default parameter settings are 166 

used, allowing us to run analyses on laptop computers (S2 Fig) if necessary. The p-value cut-offs 167 

during the k-mer filtering step influence the number of k-mers included in the model and have a 168 
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potentially strong impact on model performance. The tables in the S1 File show the effects of 169 

different p-value cut-offs on model performances. 170 

Comparison with other software 171 

We ran SEER and Kover on the same P. aeruginosa ciprofloxacin dataset and C. difficile 172 

azithromycin resistance dataset to compare the efficiency and CPU time usage with PhenotypeSeeker.  173 

In the P. aeruginosa dataset, SEER was able to detect gyrA and parC mutations only when resistance 174 

was defined as a binary phenotype. In cases with a continuous phenotype, those k-mers did not pass 175 

the p-value filtering step. Since Kover's aim is to create a resistance predicting model, not an 176 

exhaustive list of significant k-mers, it was expected that not all the mutations would be described in 177 

the output. gyrA variation already sufficiently characterized the resistant strains set, and therefore, 178 

parC mutations were not included in the model. The same applies to the PhenotypeSeeker results with 179 

16- and 18-mers. parC-specific 16- or 18-mers were included among the 1000 k-mers in the 180 

prediction model (based on statistically significant p-values) but with the regression coefficient equal 181 

to zero because they were present in the same strains as gyrA specific predictive k-mers. 182 

In the C. difficile dataset, our model included the known resistance gene ermB and transposon 183 

Tn6110. We were able to find ermB with both SEER and Kover. We also detected Tn6110-specific k-184 

mers with SEER while running Kover with 16-mers instead of 31-mers as in the default settings. 185 

Regarding the CPU time, PhenotypeSeeker with 13-mers was faster than other tested software 186 

programs (3.5 hrs vs 14-15 hrs) without losing the relevant markers in the output (Table 2). Using 16- 187 

or 18-mers, the PhenotypeSeeker’s running time increases but is still lower than with SEER and 188 

Kover 189 

Table 2. PhenotypeSeeker comparison to Kover and SEER using P. aeruginosa and C. difficile 190 

data. PhenotypeSeeker with the weighting option and maximum 1000 k-mers for the regression 191 

model was used. 192 

 
Pseudomonas aeruginosa (200 

genomes) 
Clostridium difficile (460 

genomes) 
Previously known CIP  Previously known  
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resistance mutations 
detected 

AZM resistance 
genes* detected 

Software 
k-mer 
length 

gyrA 
c.248C>T 

parC c.260C 
>T 

Time 
for 

model 
building 

ermB 
Tn6110 

transposon 

Time 
for 

model 
building 

Phenotype 
Seeker 

13 + + 3h 36m + + 4h 47m 

Phenotype 
Seeker 

16 + - 6h 51m + + 9h 7m 

Phenotype 
Seeker 

18 + - 7h 31m - + 9h 58m 

Kover 16 + - 14h 14m + + 
14h 10 

m 
Kover 31 + - 14h 46m + - 13h 40m 
SEER 9-100 + + 15h 7m + + 15h 32m 

* As reported in Drouin et al. 2016 [12]  193 
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Discussion 194 

PhenotypeSeeker works as an easy-to-use application to list the candidate biomarkers behind a studied 195 

bacterial phenotype and to create a predictive model. Based on k-mers, PhenotypeSeeker does not 196 

require a reference genome and is therefore also usable for species with very high intraspecific 197 

variation where the selection of one genome as a reference can be complicated. 198 

PhenotypeSeeker supports both discrete and continuous phenotypes as inputs. In addition, this model 199 

takes into account the population structure to highlight only the possible causal variations and not the 200 

mutations arising from the clonal nature of bacterial populations.  201 

Unlike Kover, the PhenotypeSeeker output is not merely a trained model for predicting resistance in a 202 

separate set of isolates, but the complete list of statistically significant candidate variations separating 203 

antibiotic resistant and susceptible isolates for further biological interpretation is also provided. 204 

Unlike SEER, PhenotypeSeeker is easier to install and can be run with only a single command for 205 

building a model and another single command to use it for prediction. 206 

Our tests using PhenotypeSeeker to detect antibiotic resistance markers in P. aeruginosa and C. 207 

difficile showed that it is capable of detecting all previously known mutations in a reasonable amount 208 

of time and with a relatively short k-mer length. Users can choose the k-mer length as well as decide 209 

whether to use the population structure correction step. Due to the clonal nature of bacterial 210 

populations, this step is highly advised for detecting genuine causal variations instead of strain-level 211 

differences. In addition to a trained predictive model, the list of k-mers covering possible variations 212 

related to the phenotype are produced for further interpretation by the user. The effectiveness of the 213 

model can vary because of the nature of different phenotypes in different bacterial species. Simple 214 

forms of antibiotic resistance that are unambiguously determined by one or two specific mutations or 215 

the insertion of a gene are likely to be successfully detected by our method, and effective predictive 216 

models for subsequent phenotype predictions can be created. This is supported by our prediction 217 

accuracy over 96% in the C. difficile dataset. On the other hand, P. aeruginosa antibiotic resistance is 218 

one of the most complicated phenotypes among clinically relevant pathogens since it is not often 219 
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easily described by certain single nucleotide mutations in one gene but rather through a complex 220 

system involving several genes and their regulators leading to multi-resistant strains. In cases such as 221 

this, the prediction is less accurate (88% in our dataset), but nevertheless, a complete list of k-mers 222 

covering differentiating markers between resistant and sensitive strains can provide more insight into 223 

the actual resistance mechanisms and provide candidates for further experimental testing. 224 

Tests with K. pneumoniae virulence phenotypes showed that PhenotypeSeeker is not limited to 225 

antibiotic resistance phenotypes but is potentially applicable to other measurable phenotypes as well 226 

and is therefore usable in a wider range of studies.  227 

Since PhenotypeSeeker input is not restricted to assembled genomes, one can skip the assembly step 228 

and calculate models based on raw read data. In this case, it should be taken into account that 229 

sequencing errors may randomly generate phenotype-specific k-mers; thus, we suggest using the 230 

built-in option to remove low frequency k-mers. The k-mer frequency cut-off threshold depends on 231 

the sequencing coverage of the genomes and is therefore implemented as user-selectable. One can 232 

also build the model based on high-quality assembled genomes and then use the model for 233 

corresponding phenotype prediction on raw sequencing data. 234 

  235 
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Methods 236 

Data  237 

PhenotypeSeeker was tested on the following three bacterial species: Pseudomonas aeruginosa, 238 

Clostridium difficile and Klebsiella pneumoniae. The P. aeruginosa dataset was composed of 200 239 

assembled genomes and the minimal inhibitory concentration measurements (MICs) for ciprofloxacin. 240 

The P. aeruginosa strains were isolated during the project Transfer routes of antibiotic resistance 241 

(ABRESIST) performed as part of the Estonian Health Promotion Research Programme (TerVE) 242 

implemented by the Estonian Research Council, the Ministry of Agriculture (now the Ministry of 243 

Rural Affairs), and the National Institute for Health Development. Isolated strains originated from 244 

humans, animals and the environment (Laht et al., Pseudomonas aeruginosa distribution among 245 

humans, animals and the environment (submitted); Telling et al., Multidrug resistant Pseudomonas 246 

aeruginosa in Estonian hospitals (submitted)). Full genomes were sequenced by Illumina HiSeq2500 247 

(Illumina, San Diego, USA) with paired-end, 150 bp reads (Nextera XT libraries) and de novo 248 

assembled with the program SPAdes (ver 3.5.0) [32]. MICs were determined by using the epsilometer 249 

test (E-test, bioMérieux, Marcy l'Etoile, France) according to the manufacturer instructions. Binary 250 

phenotypes were achieved by converting the MIC values into 0 (sensitive) and 1 (resistant) 251 

phenotypes according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) 252 

breakpoints [18]. The C. difficile dataset was composed of 460 assembled genomes received from the 253 

European Nucleotide Archive [EMBL:PRJEB11776 254 

((http://www.ebi.ac.uk/ena/data/view/PRJEB11776)] and the binary phenotypes of azithromycin 255 

resistance (sensitive=0 vs resistant=1), adapted from Drouin et al., 2016 [11]. The K. pneumoniae 256 

dataset included 167 isolates analyzed in Holt et al., 2015 [33] using human carriage status vs human 257 

infection (including invasive infections) as a binary clinical phenotype (carriage=0 vs 258 

invasive/infectious=1). Reads of those 167 strains were de novo assembled with SPAdes (ver 3.10.1) 259 

[32]. Therefore, each test dataset was composed of pairs (x, y), where x is the bacterial genome 260 

x∈{A,T,G,C}∗, and y denotes phenotype values specific to a given dataset y ∈ {0.008, …, 1024} 261 

(continuous phenotype) or y ∈ {0, 1} (binary phenotype). 262 
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Compilation of k-mer lists 263 

All operations with k-mers are performed using the GenomeTester4 software package containing the 264 

glistmaker, glistquery and glistcompare programs [14]. At first, all k-mers from all samples are 265 

counted with glistmaker, which takes either FASTA or FASTQ files as an input and enables us to set 266 

the k-mer length up to 32 nucleotides. Subsequently, the k-mers are filtered based on their frequency 267 

in strains of the training set. By default, the k-mers that are present in or missing from less than two 268 

samples are filtered out and not used in building the model. The remaining k-mers are used in 269 

statistical testing for detection of association with the phenotype. 270 

Weighting  271 

By default, PhenotypeSeeker conducts the clonal population structure correction step by using a 272 

sequence weighting approach that reduces the weight of phylogenetically closely related isolates. For 273 

weighting, pairwise distances between genomes of the training set are calculated using the free 274 

alignment software Mash [15]. Distances estimated by Mash are subsequently used to calculate 275 

weights for each genome according to the algorithm proposed by Gerstein, Sonnhammer and Chothia 276 

[16]. The calculation of GSC weights is conducted using the PyCogent python package [34]. The 277 

GSC weights are taken into account while calculating Welch two-sample t-tests or chi-squared tests to 278 

test the k-mers’ associations with the phenotype. Additionally, the GSC weights can be used in the 279 

final logistic regression or linear regression (if Ridge regularization is used) model generation. 280 

Chi-squared test 281 

In the case of binary phenotype input, the chi-squared test is applied to every k-mer that passes the 282 

frequency filtration to determine the k-mer association with phenotype. The null hypothesis assumes 283 

that there is no association between k-mer presence and phenotype. The alternative hypothesis 284 

assumes that the k-mer is associated with phenotype. The chi-squared test is conducted on these 285 

observed and expected values with degrees of freedom=1, using the scipy.stats Python package [35]. 286 

If the user selects to use the population structure correction step, then the weighted chi-squared tests 287 

are conducted according to the previously published method [36]. 288 
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Welch two-sample t-test 289 

In the case of continuous phenotype input, the Welch two-sample t-test is applied to every k-mer that 290 

passes the frequency filtration to determine if the mean phenotype values of strains having the k-mer 291 

are different from the mean phenotype values of strains that do not have the k-mer. The null 292 

hypothesis assumes that the strains with a k-mer have different mean phenotype values from the 293 

strains without the k-mer. The alternative hypothesis assumes that the means of the strains with and 294 

without the k-mer are the same. The t-test is conducted with these values using the scipy.stats Python 295 

package [35], assuming that the samples are independent and have different variance. If the user 296 

selects the population structure correction step, then the weighted t-tests are conducted [36]. In that 297 

case, the p-value is calculated with the function scipy.stats.t.sf, which takes the absolute value of the t-298 

statistic and the value of degrees of freedom as the input. 299 

Regression analysis 300 

To perform the regression analysis, first, the x features matrix of the samples is created. The samples 301 

in this matrix are strains given as the input and the features represent the k-mers that are selected for 302 

the regression analysis. The values (0 or 1) in this matrix represent the presence or absence of a 303 

specific k-mer in the specific strain. The target variables of this regression analysis are the resistance 304 

values of the strains. Thereupon, input data are divided into training and test sets whose sizes are by 305 

default 75% and 25% of the strains, respectively. In the case of a continuous phenotype, a linear 306 

regression model is built, and in the case of a binary phenotype, a logistic regression model is built. In 307 

both cases, the Lasso or Ridge regularization can be selected. The Lasso regularization is used by 308 

default due to its ability to shrink the coefficients of non-relevant features to zero, which simplifies 309 

the identification of k-mers that have the strongest association with the phenotype. To enable the 310 

evaluation of the output regression model, PhenotypeSeeker provides model-evaluation metrics. For 311 

the logistic regression model quality, PhenotypeSeeker provides the mean accuracy as the percentage 312 

of correctly classified instances across both classes (0 and 1). Additionally, the model provides 313 

averaged (and for both classes separately) precision, recall and F1-score as a weighted average of 314 
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precision and recall. For the linear regression model, PhenotypeSeeker provides the mean squared 315 

error and the coefficient of determination of the model. To select for the best regularization parameter 316 

alpha, a k-fold cross-validation on the training data is performed. By default, 25 alpha values spaced 317 

evenly on a log scale from 1E-6 to 1E6 are tested with 10-fold cross-validation and the model with the 318 

best mean accuracy (logistic regression) or with the best coefficient of determination (linear 319 

regression) is saved to the output file. Regression analysis is conducted using the sklearn.linear_model 320 

Python package [37]. 321 

Parameters used for training and testing 322 

 Our models were created using mainly k-mer length 13 (“-l 13”; default). We counted the k-mers that 323 

occurred at least once per sample (“-c 1”; default) when the analysis was performed on contigs or at 324 

least five times per sample (“-c 5”) when the analysis was performed on raw reads. In the first 325 

filtering step, we filtered out the k-mers that were present in or missing from less than two samples (“-326 

-min 2 --max 2”; default) when the analysis was performed on a binary phenotype or fewer than ten 327 

samples (“--min 10 --max N-10”; N – total number of samples) when the analysis was performed on a 328 

continuous phenotype. In the next filtering step, we filtered out the k-mers with a statistical test p-329 

value larger than 0.05 (“--p_value 0.05”; default).  330 

The regression analysis was performed with a maximum of 1000 lowest p-valued k-mers (“--n_kmers; 331 

1000”; default) when the analysis was done with binary phenotype and with a maximum of 10,000 332 

lowest p-valued k-mers (“--n_kmers 10000”; default) when the analysis was performed with a 333 

continuous phenotype. For regression analyses, we split our datasets into training (75%) 334 

and test (25%) sets (“-s 0.25”; default). The regression analyses were conducted using Lasso 335 

regularization (“-r L1”; default), and the best regularization parameter was picked from the 25 336 

regularization parameters spaced evenly on a log scale from 1E-6 to 1E6 (“--n_alphas 25 --alpha_min 337 

1E-6 --alpha_max 1E6”; default). The model performances with each regularization parameter were 338 

evaluated by cross-validation with 10-folds (“--n_splits 10”; default).  339 
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The correction for clonal population structure (“--weights +”; default) and assembly of k-mers used in 340 

the regression model (“--assembly +”; default) were conducted in all our analyses.  341 

Comparison to existing software 342 

SEER was installed and run on a local server with 32 CPU cores and 512 GB RAM, except the final 343 

step, which we were not able to finish without segmentation fault. This last SEER step was launched 344 

via VirtualBox in ftp://ftp.sanger.ac.uk/pub/pathogens/pathogens-vm/pathogens-vm.latest.ova. Both 345 

binary and continuous phenotypes were tested for P. aeruginosa and the binary phenotype in C. 346 

difficile cases. Default settings were used. Kover was installed on a local server and used with the 347 

settings suggested by the authors in the program tutorial.  348 

Acknowledgements 349 

The authors are grateful to Triinu Kõressaar for her invaluable suggestions toward improvement of 350 

the manuscript. 351 

Supporting information  352 

S1 File. The effects of different p-value cut-offs on model performances. (PDF) 353 

S2 File. Phylogenetic trees and isolate specific information of the studied P. aeruginosa, C. 354 

difficile and K. pneumoniae isolates. (XLSX) 355 

  356 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2018. ; https://doi.org/10.1101/302026doi: bioRxiv preprint 

https://doi.org/10.1101/302026
http://creativecommons.org/licenses/by-nd/4.0/


Figures 357 

 358 

Fig 1. Schematic presentation of PhenotypeSeeker workflow. Panel A shows the 'PhenotypeSeeker 359 

modeling' steps, which generate the phenotype prediction model based on the input genomes and their 360 

phenotype values. Panel B shows the 'PhenotypeSeeker prediction' steps, which use the previously 361 

generated model to predict the phenotypes for input genomes.  362 
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 363 

Fig 2. The influence of k-mer length on the CPU time of PhenotypeSeeker (bars, left axis) and 364 

on the number of different k-mers present in the genomes (line, right axis).  365 
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 366 

Fig 3. The positions of ciprofloxacin-resistant P. aeruginosa strains on cladogram. The MIC 367 

values (mg/l) are marked to the external nodes with corresponding strain names. Strains with MIC > 368 

0.5 mg/l are highlighted with pink to denote ciprofloxacin resistance according to EUCAST 369 

breakpoints [18]. Strains with detected mutations in QRDR of gyrA and parC are marked with the 370 

color code on the perimeter of the cladogram.  371 
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Fig 4. Virulence genes in corresponding clusters and wzi included in the PhenotypeSeeker 373 

prediction model in K. pneumoniae strains (13-mers, weighted, max. 10 000 k-mers for the 374 

regression model). Each row is one strain, and each column represents one protein coding gene. Blue 375 

cells represent 13-mers in the model for the corresponding gene and a strain. Genes in colibactin, 376 

aerobactin and yersiniabactin clusters show the most differentiating pattern between carrier and 377 

invasive/infectious strains. Virulence genes belonging to the same clusters but without 13-mers in the 378 

prediction model are not shown.  379 
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 380 

S1 Fig. Relationship between the number of input genomes and the CPU time. The 381 

PhenotypeSeeker CPU time depends mainly on the number of different k-mers in input genomes and 382 

on computations made with every genome. The analysis performed on our 200 P. aeruginosa genomes 383 

showed that the PhenotypeSeeker CPU time has a good linear relationship (R2=0.997) with the 384 

number of genomes given as input. Although the number of k-mers grows logarithmically with the 385 

number of genomes given as input, the linear relationship is because some of the computations made 386 

with every genome are more time-consuming when there are larger numbers of different k-mers 387 

present in the input genomes. 388 
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 389 

S2 Fig. Relationship between the number of input genomes and RAM memory usage. The 390 

maximum resident set size of PhenotypeSeeker increases in steps with the number of genomes that are 391 

given as the input for model training. This is due to the fact that the maximum resident set size of 392 

PhenotypeSeeker is defined by the size of the Python dictionary object into which all different k-mers 393 

and their frequencies in genomes are stored. The Python dictionary uses a hash table implementation, 394 

and the size of the hash table doubles when it is two thirds full. Therefore, when more genomes are 395 

analyzed, more different k-mers are stored into the hash table, and if a certain threshold is exceeded, 396 

the next step in the maximum resident set size is taken. However, if the regression is performed with a 397 

large number of k-mers, the regression could easily become the most memory using part of the 398 

analysis as the data matrix (k-mers x samples), read into memory, grows larger (analysis with 150, 399 

170, 180, 190 and 200 genomes).  400 
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