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Abstract 
 

Social genetic effects (SGE, also called indirect genetic effects) are associations 

between genotypes of one individual and phenotype of another. SGE arise when two 

individuals interact and heritable traits of one influence the phenotype of the other. 

Recent studies have shown that SGE substantially contribute to phenotypic variation 

in humans and laboratory mice, which suggests that SGE, like direct genetic effects 

(DGE, effects of an individual’s genes on their own phenotype), are amenable to 

mapping. Using 170 phenotypes including behavioural, physiological and 

morphological traits measured in outbred laboratory mice, we empirically explored the 

potential and challenges of genome-wide association study of SGE (sgeGWAS) as a 

tool to discover novel mechanisms of social effects between unrelated individuals. For 

each phenotype we performed sgeGWAS, identifying 21 genome-wide significant 

SGE associations for 17 phenotypes, and dgeGWAS for comparison. Our results 

provide three main insights: first, SGE and DGE arise from partially different loci and/or 

loci with different effect sizes, which implies that the widely-studied mechanism of 

phenotypic “contagion” is not sufficient to explain all social effects. Secondly, several 

DGE associations but no SGE associations had large effects, suggesting sgeGWAS 
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is unlikely to uncover “low hanging fruits”. Finally, a similar number of variants likely 

contribute to SGE and DGE. The analytical framework we developed in this study and 

the insights we gained from our analyses will inform the design, implementation and 

interpretation of sgeGWAS in this and other populations and species. 

 

Main text 
 

Introduction 
 
Social interactions between individuals can result in the phenotype of one individual 

being affected by genotypes of their social partners. Such associations arise when the 

phenotype of interest is influenced by heritable traits of social partners (Figure 1a), 

and are called social genetic effects (SGE, also called indirect genetic effects1,2).  

 SGE have been shown to contribute significantly and substantially to a range 

of phenotypes across species, including educational attainment in humans3-5 and 

behavioural, physiological, and morphological phenotypes in laboratory mice6-8. One 

key implication of the existence of SGE is the possibility to use them as a tool to 

understand the mechanisms of social effects, through genome-wide association 

studies of SGE (sgeGWAS). Similarly to how GWAS of “traditional” direct genetic 

effects (DGE, effects of an individual’s genotypes on its own phenotype) have provided 

valuable insights into the “within-body” pathways affecting disease and quantitative 

phenotypes9, sgeGWAS could help dissect the “between-bodies” pathways of social 

effects, namely  the traits of social partners that mediate social effects (Figure 1a).  

 To date, only a handful of studies have mapped SGE7,8,10-12 and only three have 

mapped SGE genome-wide: one used inbred strains of Drosophila melanogaster to 

investigate SGE on male courtship behaviour12 and two used inbred strains of mice to 

investigate SGE on maternal and pup behaviour 7,8. Thus, sgeGWAS has never been 

performed in an outbred population nor for biomedical phenotypes. In order to explore 

the utility of sgeGWAS in this context, we analysed 170 behavioural, physiological and 

morphological phenotypes measured in unrelated outbred laboratory mice (Figure 1b 

and 1c) and performed a comparative analysis of SGE and DGE. Specifically, we 

quantified the correlation between SGE and DGE acting on the same phenotype in 

order to test whether the mechanism of phenotypic “contagion”, which is the focus of 
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most social studies3-5,13-17, is sufficient to explain social effects and evaluate whether 

sgeGWAS is likely to uncover novel mechanisms. We next performed sgeGWAS and 

dgeGWAS for all phenotypes in order to characterise the architecture of SGE and 

compare it to the architecture of DGE. Our results provide the first insights into what 

sgeGWAS might reveal, and will help design and interpret future sgeGWAS.  

 

 

 
Figure 1 Illustration of social genetic effects (SGE) and experimental design. (a) SGE 

arise when two individuals interact and heritable traits (“mediating traits”) of one (the 

“social partner”) influence the “phenotype of interest”, measured in the “focal 

individual”. (b) Unrelated outbred mice were housed in groups of 3 mice per cage. 

SGE and direct genetic effects (DGE) contributed by each mouse were modelled. r is 

the correlation between SGE and DGE random effects in the variance components 

model (see Methods). (c) Housing conditions and phenotyping. 
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Results 
 
Aggregate contribution of SGE 
Because of our focus on sgeGWAS, we used data from an outbred population of mice 

with genetic characteristics conducive to high mapping resolution: commercially-

available CFW mice18,19. Genome-wide genotypes and 200 behavioural, physiological 

and morphological phenotypes for 1,934 CFW mice were available from Nicod et al.19 

and Davies et al.20. We retained 1,812 mice that were unrelated and housed in cages 

of three mice, and 170 phenotypes that could be satisfactorily normalised (see 

Methods). Males were always housed with males and females with females, and mice 

were left undisturbed in their cages for at least nine weeks before phenotyping started 

(Figure 1c). The number of mice used for each phenotype, which depends on missing 

phenotype data, is shown in Supplementary Table 1.  

 As evidence of SGE in laboratory mice is still sparse6-8, we first estimated the 

aggregate contribution of SGE (i.e. the sum of SGE across the genome) to each 

phenotype. To do so, we used the variance decomposition method detailed in Baud 

et al.6, which features random effects for DGE, SGE, direct and social environmental 

effects, and “cage effects” (see Methods). We found significant SGE contributions for 

16 out of 170 phenotypes (P < 0.05, FDR < 0.48), including behavioural, physiological 

and morphological measures (Table 1, Supplementary Table 1). SGE in aggregate 

explained up to 22% of variation in serum LDL levels and an average of 11% across 

the 16 significantly affected phenotypes. A broad range of phenotypes were affected, 

including measures of helplessness (a model of depression), immune status, LDL 

levels, platelet size, and rate of wound healing. These results show that social effects 

have a genetic basis in our datasets and therefore are amenable to mapping. 
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Name Aggregate	
SGE	(%)

Aggregate	
DGE	(%) P	value	SGE Correlation		⍴ P	value	⍴	

≠	1
PST.Immobility.First2min 13+/-4 15+/-3 0.0000099* 0.53	+/-	0.15 0.00066*
Bioch.LDL_BWcorr 22+/-6 14+/-4 0.000015* 0.84	+/-	0.1 0.025*
Adrenals.Adrenals_g_BWcorr 18+/-5 24+/-4 0.000037* 0.73	+/-	0.11 0.038*
WH.Ears_Area 17+/-4 17+/-3 0.00018* 0.65	+/-	0.12 0.0009*
Haem.MPV 14+/-5 10+/-3 0.00031* 1	+/-	0.09 1
Haem.EOS_percent 17+/-5 2+/-3 0.00065* NA NA
Bioch.Amylase_BWcorr 15+/-5 23+/-5 0.0013* 0.5	+/-	0.17 0.0069*
PST.Immobility.Last4min 8+/-3 18+/-3 0.0028* 0.41	+/-	0.19 0.0083*
Hypoxia.TV_AHR_BWcorr 11+/-4 8+/-4 0.0051* -0.06	+/-	0.31 0.047*
Muscles.Gast.g_BWcorr 6+/-3 15+/-4 0.012* 0.57	+/-	0.27 0.17
Haem.MCHC 10+/-5 9+/-4 0.014* 0.66	+/-	0.25 0.16
Haem.Large_PLT 9+/-5 13+/-4 0.018* 0.88	+/-	0.15 0.39
Haem.HDW 5+/-3 24+/-4 0.023* NA NA
FACS.CD3posCD8posCD44pos 9+/-4 10+/-3 0.023* 0.45	+/-	0.25 0.033*
Diss.Tail.Length_BWcorr 7+/-4 15+/-4 0.043* -0.28	+/-	0.35 0.19
Hypoxia.MV_Off_response_BWcor 4+/-4 15+/-4 0.045* NA NA
FACS.CD3posCD4CD8Ratio 9+/-4 32+/-5 0.059 0.34	+/-	0.18 0.03*
FACS.CD3posCD44negCD4CD8Rati 8+/-4 34+/-5 0.095 0.29	+/-	0.19 0.045*
FACS.CD3posCD8pos 6+/-4 28+/-4 0.12 0.4	+/-	0.19 0.094
FACS.CD3posCD44posCD4CD8Ratio 8+/-5 19+/-4 0.14 0.49	+/-	0.23 0.14
Bioch.Calcium_BWcorr 8+/-4 6+/-4 0.15 0.55	+/-	0.38 0.34
Hypoxia.TV_SHR_BWcorr 6+/-4 17+/-4 0.16 0.39	+/-	0.28 0.18
FACS.CD45posCD3negDX5pos 7+/-4 21+/-4 0.17 0.31	+/-	0.22 0.065
Haem.CHCM 5+/-4 8+/-4 0.22 0.71	+/-	0.33 0.43
EPM.OpenArms.Time_BWcorr 6+/-4 9+/-4 0.23 -0.14	+/-	0.36 0.13
FACS.CD45posCD3posCD4pos 7+/-4 6+/-4 0.23 0.47	+/-	0.38 0.24
Bioch.CreatinineEnzymatic_BWcor 6+/-5 8+/-4 0.34 0.65	+/-	0.34 0.36
Neuro.DCX_BWcorr 7+/-5 12+/-4 0.34 0.18	+/-	0.33 0.16
Bioch.Glucose_BWcorr 5+/-4 7+/-4 0.39 0.09	+/-	0.46 0.19
EPM.OpenArms.Distance_BWcorr 5+/-4 8+/-4 0.4 0.04	+/-	0.4 0.17
Sleep.Ampl_BWcorr 6+/-4 11+/-4 0.4 0.06	+/-	0.4 0.19
See	Supplementary	Table	1	for	a	description	of	the	phenotypes
*	P	<	0.05

 

Table 1 Variance explained by SGE and DGE in aggregate, and correlation r between 

random SGE and DGE (see Methods). The phenotypes included in this table are those 

with significant aggregate SGE (P < 0.05) and those for which the correlation r could 

be precisely estimated (i.e. aggregate SGE and aggregate DGE > 5%). The P value 

for aggregate is for being different from 0, that for r is for being different from 1. 
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Correlation between SGE and DGE acting on the same phenotype 
One mechanism underlying social effects is that of phenotypic “contagion” or “spread”, 

whereby the phenotype of interest of a focal individual is influenced by the same 

phenotype of their social partners. In humans, cognitive susceptibility to depression, 

alcohol consumption, obesity, and educational attainment, only to name a few, have 

all been shown to be “contagious” or “spread” across college roommates, friends, 

spouses, or parent/offspring3-5,13-17. In contrast, few studies have considered more 

complex mechanisms whereby other traits of social partners influence the phenotype 

of interest. sgeGWAS, in principle, can discover such mechanisms if they exist. Before 

performing sgeGWAS, we assessed evidence of complex mechanisms of social 

effects by leveraging the parameter r of the variance components model used for 

variance decomposition.  

 This parameter captures the correlation between the SGE and DGE random 

effects (see Methods and Figure 1c), meaning that it estimates the similarity (in terms 

of loci and effect sizes) between SGE and DGE acting on the same trait. Simulations 

showed that the precision with which r can be estimated depends on the aggregate 

contribution of both SGE and DGE (Supplementary Figure 1), so we limited this 

analysis to 27 phenotypes for which both DGE and SGE explained more than 5% of 

phenotypic variation. The average value of r across these traits was 0.47, and for ten 

measures r was significantly different from one (P < 0.05, Table 1). r significantly 

different from one implies that different loci and/or loci with different effect sizes 

underlie DGE and SGE acting on the same phenotype, which rules out phenotypic 

contagion as the sole mechanism of social effects and indicates that other traits of 

cage mates mediate the social influence. Importantly, phenotypes such as depression 

and stress, which have been shown to “spread” across roommates and spouses13,17, 

had r significantly different from 1 (Table 1), implying that traits of cage mates other 

than (or in addition to) depression or stress mediate social effects on depression and 

stress. In conclusion, our results suggest that complex mechanisms of social effects 

are common, which motivates the use of sgeGWAS to uncover them. 

 

sgeGWAS and dgeGWAS of 170 phenotypes 
To map SGE, we calculated the “social genotype” of a focal mouse as the sum of the 

reference allele dosages of its cage mates at the variant, and tested for association 
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between social genotype and phenotype. In order to avoid spurious associations, we 

accounted for background SGE, DGE and non-genetic effects using an extension of 

the variance components model used for variance decomposition; we also accounted 

for local DGE when testing local SGE and vice versa (See Methods). Indeed, we found 

that direct and social genotypes at a variant tended to be more correlated than 

permuted genotypes (Supplementary Figure 2a, 2b and 2c), as a result of each mouse 

serving both as focal individual and cage mate in the analysis (Supplementary Note). 

Using each individual as focal individual and social partner is a strategy that has been 

used before10 as it maximises sample size when all individuals have been both 

phenotyped and genotyped, but the resulting genotypic correlations and their 

consequences had not been documented. We found that even small correlations (R2 

< 0.04) can lead to spurious SGE in the presence of a co-localised large-effect DGE 

(Supplementary Figure 2d). Conditioning on the direct genotypes at the locus tested 

avoided spurious associations (Supplementary Figure 2e). The impact on power of 

conditioning depended on whether a large-effect DGE co-localised with the tested 

SGE and on the correlation between direct and social genotypes (Supplementary 

Figure 3a-d). In the real data we found less significant genotypic correlations at 

genome-wide significant SGE and DGE associations, suggesting that conditioning 

may lead to “blind spots” where genetic effects are harder to detect (Supplementary 

Figure 3e). 

 sgeGWAS identified 21 genome-wide significant loci for 17 of the 170 

phenotypes (per-phenotype FDR <10%, Figure 2 and Table 2). In comparison, 

dgeGWAS identified 118 genome-wide significant loci for 63 of the same 170 

phenotypes (Figure 2 and Supplementary Table 2). There was no overlap between 

genome-wide significant SGE and DGE acting on the same phenotype, but variants 

at genome-wide significant SGE loci were enriched in small P values of DGE 

association with the same phenotype (Supplementary Figure 4). Together these 

results suggest a partially distinct basis for SGE and DGE (i.e. partially different loci 

and/or effect sizes), which is consistent with the conclusion from the analysis of the 

correlation parameter r. 
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Figure 2 Superimposed manhattan plots corresponding to 170 sgeGWAS (top panel) 

and 170 dgeGWAS of the same phenotypes (bottom panel). Lead variants for all 

genome-wide significant SGE and DGE loci are represented with a larger dot. In the 

SGE panel, each color corresponds to a class of phenotypes: behavioural (red), adult 

neurogenesis (black), immune (orange), haematological (yellow), blood biochemistry 

(blue), bone phenotypes (green), heart function (brown), and lung function (purple). In 

the DGE panel, a genome-wide significant locus is colored grey when the 

corresponding phenotype does not have a genome-wide significant SGE association; 

when the corresponding phenotype does have an SGE association, the same color is 

used as in the SGE panel. Data points with negative log P < 2 are not shown. 
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Name Chr Pos	(bp) logP %	
variance Candidate	genes

Haem.abs_neuts 1 35731852 5.2 2.1 Hs6st1	Uggt1	Neurl3
Neuro.Ki67_BWcorr 1 71339531 5 2.3 Abca12
PST.Immobility.First2min 1 76512651 5.2 1.7 Epha4

Bioch.Chloride_BWcorr 2 9524584 6.1 2
Gata3,	Taf3,	Atp5c1,	Kin,	
Itih2,	Itih5

Bioch.Calcium_BWcorr 4 156234293 4.8 1.6
Rnf223	Agrn	Isg15	Perm1	
Plekhn1	Klhl17	Noc2l	
Samd11	Vmn2r123	Samd11

PST.Immobility.Last4min 9 88497500 4.9 1.3

Ripply2	Cyb5r4	Mrap2	
Cep162	Tbx18	Nt5e	Snx14	
Syncrip	Zfp949	Trim43a	
Mthfsl

PAS.First5 10 3128239 5.7 1.6 H60c

Neuro.Ki67_BWcorr 10 19045006 5 2.4
Nhsl1	Hebp2	Arfgef3	Perp	
Tnfaip3

BMC.osteoporosis 11 7019042 5.9 1.5
Ddx56	Tmed4	Ogdh	Zmiz2	
Ppia	H2afv	Purb	Myo1g	
Adcy1	Igfbp1	Igfbp3

Sleep.s12h_L_BWcorr 11 35487784 4.5 2
Slit3	Pank3	Wwc1	Rars	Fbll1	
Tenm2

Sleep.s12h_D_BWcorr 11 35909978 5.2 1.9
Slit3	Pank3	Wwc1	Rars	Fbll1	
Tenm2

Neuro.DCX_BWcorr 12 3176906 6.3 2.6 Rab10os
Sleep.VAR_1h_BWcorr 12 10841326 4.9 2 Pgk1-rs7
FACS.CD3posCD4pos 12 45005068 5.9 2.4 Nrcam	Stxbp6
BMC.Kurt 12 113706627 5.3 1.3 Igh*
Hypoxia.f_NR_BWcorr 12 113742891 5.2 1.8 Ighv5-9-1

Sleep.s12h_D_BWcorr 13 106698960 5.3 1.8
Rnf180	Htr1a	Olfr717-ps1	
Dph3b-ps

Bioch.Calcium_BWcorr 14 21325786 5.2 1.8
Plau	Vcl	Ap3m1	Adk	Kat6b	
Dupd1	Dusp13	Samd8	
Vdac2	Comtd1

PST.Immobility.Last4min 17 71277261 4.8 1.2
Dlgap1	Tgif1	Myl12b	
Myl12a	Myom1	Lpin2	
Emilin2	Smchd1

Sleep.sDif_LD_BWcorr 18 71042115 5.3 2.4
Tcf4	Ccdc68	Rab27b	Dynap	
Stard6	Poli	Mbd2

Cardio.ECG.Tpeak_Tend_BWcorr 19 18645437 5.2 2.2
Carnmt1	Nmrk1	Ostf1	
Trmp6

See	Supplementary	Table	1	for	a	description	of	the	phenotypes
Igh*	denotes	a	large	number	of	Igh	(immunogloblin	hypervariable	region)	genes
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Table 2 Genome-wide significant SGE associations (per-phenotype FDR < 10%). 

Significance and proportion of phenotypic variance explained are indicated for each 

association, as well as candidate genes at each locus (see Methods). 

 

 At five genome-wide significant SGE loci we identified a single candidate gene 

(Table 2, Supplementary Figure 5). Abca12, a gene known for its involvement in lipid 

transport and homeostasis in the skin21, gave rise to SGE on a measure of adult 

neurogenesis in the hippocampus;  Epha4, a signalling genes involved in neural 

system function, influenced cage mates’ helplessness; H60c, a poorly characterised 

gene potentially involved in skin immunity22, influenced locomotor activity of cage 

mates; Pgk1-rs7, a pseudogene of phosphoglycerate kinase-1, affected cage mates’ 

sleep; finally, Ighv5-9-1, a variable region of the T cell receptor, influenced cage mates’ 

response to hypoxia. The mechanism of action of these genes on the phenotypes of 

cage mates could not be inferred from what is known of their direct effects, which 

illustrates the potential for sgeGWAS to discover novel mechanisms of social effects 

but also shows the difficulty of translating sgeGWAS findings into biological insights, 

a difficulty commonly met after dgeGWAS.  

 

Architecture of SGE and comparison with that of DGE 
 

Despite being carried out on the same individuals and phenotypes, and in a perfectly 

analogous manner, sgeGWAS identified fewer genome-wide significant associations 

than dgeGWAS (21 associations for 17 phenotypes and 118 associations for 63 

phenotypes respectively). As very few studies have mapped SGE and none have 

investigated the determinants of power for SGE, it was not clear whether we had 

different power to detect SGE and DGE associations. In order to get a better 

understanding of this issue, we simulated local SGE or DGE and calculated power to 

detect these associations. Briefly (see Methods), we considered random groups of 

three mice per cage, and simulated phenotypes arising from the sum of local genetic 

effects (DGE or SGE), polygenic effects (DGE and SGE), and environmental effects. 

For local SGE, we considered two alternative generative models, both consistent with 

the additive model used for sgeGWAS: an “additive” model in which the social allele 

of a mouse is the sum of the minor direct alleles of its two cage mates, and a 
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“proportional” model in which the social allele is the proportion of minor direct alleles 

across cage mates. For each type of local effect (DGE, additive SGE and proportional 

SGE), we considered variants with low, medium or high minor direct allele frequencies 

(MAF, defined as “traditionally” based on direct genotypes). For all three types of local 

effects we simulated the same allelic effect (but the definition of “allele” was different 

for different types of local effects). 

 Our simulations showed that power always increases with MAF (Figure 3a). For 

a given MAF, power was greater for additive SGE than for DGE, as a result of the 

larger number of alleles giving rise to SGE as compared to DGE (4 versus 2). Indeed, 

simulating SGE from a single cage mate led to the same power as for DGE (simulating 

SGE from a single cage mate is actually equivalent to simulating DGE) and simulating 

SGE from an increasing large number of cage mates under the additive model led to 

greater and greater power. In contrast, power to detect SGE simulated under the 

proportional model from two cage mates was lower than power to detect DGE. These 

results are all consistent with the fact that, for a given phenotype and sample size, 

power to detect an local effect (DGE or SGE) is determined by the phenotypic variance 

explained by the locus, which is equal to the product of the square of the allelic effect 

(set to a constant in these simulations) and the genotype variance. Noting MAF as p 

and number of cage mates as N, the genotype variance is 2p(1-p) for DGE, 2Np(1-p) 

for SGE under the additive model, and 2Np(1-p)/N2 for SGE under the proportional 

model. In conclusion, our simulations showed that power to detect local genetic effects 

is generally determined by allelic effect and genotype variance; the former depends 

on the definition of allele (direct, social additive or social proportional) and the latter 

on the number of cage mates (for SGE) as well as the definition of allele. 

Consequently, allelic effects and genotype variances are most useful to compare 

sgeGWAS results (so long as the same number of social partners and definition of 

social allele are used); SGE and DGE associations, in contrast, are best compared in 

terms of variance explained as this overcomes definition issues.  

 Accordingly, we report social allelic effects and genotype variances of genome-

wide significant SGE associations for comparison with future sgeGWAS 

(Supplementary Figure 6) but focus here on comparing genome-wide significant SGE 

and DGE associations in terms of variance explained. This comparison yielded two 

main results: firstly, genome-wide significant SGE associations explained a maximum 

of 2.5% of phenotypic variance, while eleven genome-wide significant DGE 
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associations explained more than 5% of phenotypic variance (Figure 3b). This result 

shows that sgeGWAS is unlikely to uncover “low hanging fruits”. Secondly, SGE and 

DGE genome-wide significant associations explained a similar fraction of the 

corresponding aggregate variance (mean 32.5% and 32.1% respectively, Figure 3c 

and 3d), suggesting that a similar number of variants give rise to SGE and DGE. 

 

 
Figure 3 Power to detect local SGE and DGE, and characterisation of the architecture 

of SGE and DGE. (a) Power to local genetic effects in simulations. Three types of local 

genetic effects were simulated: DGE (or, equivalently, SGE arising from a single cage 

mate), SGE arising from two cage mates under an additive model, and SGE arising 

from two cage mates under a proportional model. For each type of effect, results are 

shown (left to right) for variants with low MAF (MAF < 0.05), medium MAF 

(0.225<MAF<0.275) and high MAF (MAF>0.45) (MAF: minor allele frequency, defined 

as traditionally based on direct genotypes). (b) Histogram of the proportion of 

phenotypic variance explained by genome-wide significant SGE (red) and DGE (black) 

associations. (c) Comparison of the variance explained by social (red) and direct 
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(black) genetic effects in aggregate (x axis) and the corresponding genome-wide 

significant associations (y axis). Each dot corresponds to a phenotype with a genome-

wide significant association. A faint dashed line shows the 5% cutoff used to calculate 

the ration plotted in (d). (d) Histogram of the ratio between phenotypic variance 

explained by all genome-wide significant associations for a given trait and aggregate 

variance, for SGE (red) and DGE (black). Only phenotypes for which the aggregate 

variance was greater than 5% were considered for (d). 

 

Discussion 
 
Our study explored a promising approach, sgeGWAS, to uncover novel mechanisms 

of social effects. For the first time we carried out sgeGWAS in an outbred population. 

We analysed a broad range of biomedical phenotypes measured in laboratory mice 

and performed dgeGWAS on the same phenotypes so as to get general insights about 

SGE. Our main results are the following: first, SGE and DGE arose from different loci 

and/or loci with different effect sizes; secondly, SGE associations, in contrast with 

DGE associations, never explained a large proportion of phenotypic variance; finally, 

genome-wide significant SGE and DGE associations explained a similar fraction of 

the corresponding aggregate variance. 

 This study adds to an increasing body of evidence identifying SGE as an 

important component of phenotypic variation, and sheds light on an ever wider reach 

of social effects. Indeed, while previous work in laboratory mice has reported 

aggregate SGE between family members6-8, we have evidence in this study of 

significant and substantial aggregate SGE between unrelated cage mates, which 

suggests that SGE may arise in any type of social relationship. This result is consistent 

with findings in other species including humans3-5.   

 Furthermore, we found that SGE affected a broad range of phenotypes, some 

of which are known to be socially affected (e.g. mood and immune status) while others 

are not (e.g. LDL levels, platelet size, rate of wound healing). The literature on social 

effects has largely focused on phenotypes for which the mechanism of phenotypic 

“contagion” is conceivable (e.g. mood13, alcohol consumption14,15, but not LDL levels 

or wound healing), because in the absence of such prior one would need to measure 

a very large number of traits of social partners and test whether they affect the 

phenotype of interest, which is impractical. Using SGE we were able to overcome this 
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limitation and test social effects on each of the 170 phenotypes in the dataset, 

independently of the likelihood of phenotypic contagion. Doing so, we uncovered 

social effects on phenotypes not known to be socially affected. By comparing SGE 

and DGE acting on the same trait we further demonstrated that phenotypic contagion 

in many cases is not sufficient to explain social effects. Thus, our results empirically 

establish a need for social studies to consider more complex mechanisms of social 

effects, and suggest SGE may be used as a tool to do so.  

 It is important to note that SGE can and have been used in a more ‘targeted’ 

approach, to test whether a specific trait of social partners affects the phenotype of 

interest. For example, three recent studies in humans3-5 have investigated whether 

educational attainment (EA), height (HT) and body-mass index (BMI) of social partners 

(friends or parents) affect EA of focal individuals. These studies used polygenic scores 

derived from large pre-existing dgeGWAS of EA, HT and BMI to correlate the 

polygenic score of social partners with EA of focal individuals. Thus, they relied on 

aggregate – but not genome-wide - SGE to test whether specific traits of social 

partners affect the phenotype of interest. The goal of sgeGWAS is quite different, 

namely identifying novel, unsuspected mechanisms of social effects. 

 Another appeal of sgeGWAS is that it may help characterise the architecture of 

SGE, which we know from DGE studies to be important23. We found that, in this 

population, individual SGE associations never explained a large fraction of phenotypic 

variance, which contrasts with DGE associations explaining up to 40% of phenotypic 

variance. As effect size is key to identify genes underlying GWAS loci24, this greatly 

reduced our ability to identify novel genes and mechanisms of social effects. More 

generally, this result suggests sgeGWAS will yield few “low hanging fruits” and require 

large sample sizes as well as optimised designs. Our results also suggested that SGE 

and DGE likely arose from a similar number of variants. Information about the levels 

of polygenicity of genetic effects can help develop models for their mode of action25. 

Here we reasoned that the level of polygenicity of SGE being a function of the number 

of traits of cage mates that mediate social effects and their respective DGE 

polygenicity, a similar level of polygenicity between SGE and DGE was consistent with 

two mechanistic scenarios: SGE arising from a small number of traits of cage mates 

or SGE arising from multiple traits of cage mates with a simpler DGE architecture than 

the phenotypes included in this dataset. Such traits could be “social phenotypes”, such 

as aggression or pheromone levels, because they were notably missing from this 
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dataset and the DGE architecture of “social phenotypes” is poorly understood 

compared with biomedical traits; thus, it could be simples. However, our inference on 

polygenicity levels is based on a very small number of phenotypes for SGE (five), so 

additional sgeGWAS are required to further explore this question. 

 Our study made several important methodological contributions that will help 

design, perform and interpret sgeGWAS, particularly in outbred populations where 

both DGE and SGE contribute to phenotypic variation. Specifically, we presented a 

model to account for (background) polygenic DGE and SGE in sgeGWAS. We also 

described the determinants of power for SGE, and finally shed some light on an 

important issue arising when the same individuals are used as focal individuals and 

social partners, namely correlations between direct and social genotypes. These 

genotypic correlations will result in spurious SGE associations unless accounted for 

by conditioning on direct genotypes. Our results suggest this strategy may 

unfortunately lead to true SGE associations being missed. Correlations between direct 

and social genotypes may arise for different reasons in other datasets, notably when 

focal individuals and social partners are related, or as a result of direct assortments 

(e.g. assortative mating26,27, homophily between friends3). Accounting for these 

correlations will be key to the interpret the results of sgeGWAS correctly. 

 Our study sheds light on a promising approach, sgeGWAS, to dissect the 

mechanisms of social effects. This information is important to understand the evolution 

of social species and for applied goals such as improved welfare and healthcare23.  

 

 

Methods 
 

Phenotypes and experimental variables 

 

Phenotypes and experimental variables (covariates) for 1,934 Crl:CFW(SW)-US_P08 

(CFW) mice were retrieved from http://wp.cs.ucl.ac.uk/outbredmice/. We normalized 

each phenotype using the boxcox function (MASS package28) in R, and excluded 

phenotypes that could not be normalised satisfactorily (lambda outside of -2 to 2 

interval). The subset of covariates used for each phenotype is indicated in 

Supplementary Table 1. Because data for some phenotypes were missing for some 
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mice, the sample size varied. The sample size for each phenotype after all filtering 

(see below) is indicated in Supplementary Table 1. 

 

Caging information 

 

Mice were four to seven weeks old when they arrived at the phenotyping facility. They 

were grouped with their cage mates and then spent nine to twelve weeks undisturbed 

in quarantine. They spent a further four weeks together during phenotyping. Males 

were always housed with males and females with females.  

 Cage assignments were not included in the publicly available dataset but were 

provided by the authors upon request and are now provided in Supplementary Table 

3. Cage assignments were recorded at eleven time points throughout the study and 

showed that a few mice were taken out of their original cages and singly housed, 

presumably because they were too aggressive to their cage mates. When this 

happened, we excluded all the mice in that cage from the analysis. We also excluded 

cages where some of the mice were “genetically close” (as defined below) to many 

other mice. Finally, we only retained cages with exactly three mice per cage. Although 

from the sleep test on all mice were singly housed, we still investigated “persistent” 

SGE on sleep and tissue phenotypes (persistence over one day for sleep phenotypes 

and over one week maximum for tissue measures).  

 

Genome-wide genotypes 

 

From http://wp.cs.ucl.ac.uk/outbredmice/ we retrieved both allele dosages for 7 million 

variants and allele dosages for a subset of 353,697 high quality, LD-pruned variants 

(as described in Nicod et al.19). We used high quality, LD-pruned variants for all 

analyses but the identification of candidate genes at SGE loci (see below), for which 

we used the full set of variants. 

 

Genetic relatedness matrix (GRM) and exclusion of “genetically close” mice 

 

The genetic relatedness matrix was calculated as the cross-product of the dosage 

matrix after standardizing the dosages for each variant to mean 0 and variance 1. 
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We excluded some mice and all their cage mates based on GRM values as follows: 

we defined a “close pair” of mice as having a GRM value greater than 0.3 (based on 

the histogram of all GRM values). 199 mice in 145 cages were involved in such close 

pairs. Excluding all mice from these 145 cages plus their cage mates would have 

resulted in excluding 435 mice out of a total of 1,812. As this would have reduced 

power too much for sgeGWAS and dgeGWAS, we only excluded mice from cages 

involved in 4 or more close pairs (19 cages, 57 mice). 

 

Variance decomposition 

 

The same method as described in details in Baud et al.6 was used. Briefly, the model 

used was: 

𝑦" = 	𝑋"𝑏 + 𝑎)," +	𝑒)," +	𝑍"𝑎- 	+	𝑍"𝑒- +	𝑊"𝑐 		+ 	𝑍"𝐺-𝑏-   (0) 

𝑦" is the phenotypic value of the focal mouse 𝑓, 𝑋" is a row of the matrix 𝑋 of covariate 

values and 𝑏 a column vector of corresponding estimated coefficients. 𝑎)," is the 

additive direct genetic effects (DGE) of 𝑓. 𝑍" is a row of the matrix 𝑍 that indicates 

cage mates (importantly 𝑍2,2 = 0) and 𝑎- the column vector of additive social genetic 

effects (SGE). 𝑒) refers to direct environmental effects and 𝑒- to social environmental 

effects. 𝑊" is a row of the matrix 𝑊 that indicates cage assignment and 𝑐 the column 

vector of cage effects. 

The joint distribution of all random effects is defined as: 

 

𝑎)
𝑎-
𝑒)
𝑒-
𝑐

	~	MVN	(	0	,

𝜎:;
< A	 𝜎:;>A 0 0 0

𝜎:;>A
? 𝜎:>

< A 0 0 0
0	 0 𝜎@;

< I 𝜎@;>I 0
0 0 𝜎@;>I

? 𝜎@>
< I 0

0	 0 0 0 𝜎B<I

 

 

where A is the GRM and I the identity matrix.  

The phenotypic covariance is: 

𝐶2,D = 	𝑐𝑜𝑣	(𝑦2	, 𝑦D) 	

= 	𝜎:;
< 	𝐴2,D + 	𝜎:;> 	+		𝜎:>

< (𝑍𝐴𝑍?)2,D 	+ 	𝜎@;
< 	𝐼2,D + 	𝜎@;>	{	(𝐼𝑍

?)2,D 	

+ 	(𝑍𝐼?)2,D	} 	+ 		𝜎@>
< (𝑍𝐼𝑍?)2,D 	+ 	𝜎B<	(𝑊𝐼𝑊?)2,D 	

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 17, 2018. ; https://doi.org/10.1101/302349doi: bioRxiv preprint 

https://doi.org/10.1101/302349
http://creativecommons.org/licenses/by/4.0/


The variances explained by DGE and SGE were calculated respectively as 

 𝑠𝑎𝑚𝑝𝑙𝑒𝑉𝑎𝑟 𝜎:;
< 	𝐴  / 𝑠𝑎𝑚𝑝𝑙𝑒𝑉𝑎𝑟 𝐶  and 𝑠𝑎𝑚𝑝𝑙𝑒𝑉𝑎𝑟 𝜎:>

< (𝑍𝐴𝑍?) 	/	𝑠𝑎𝑚𝑝𝑙𝑒𝑉𝑎𝑟 𝐶  

where 𝑠𝑎𝑚𝑝𝑙𝑒𝑉𝑎𝑟 is the sample variance of the corresponding covariance matrix: 

suppose that we have a vector 𝑥 of random variables with covariance matrix 𝑀, the 

sample variance of 𝑀 is calculated as 

𝑠𝑎𝑚𝑝𝑙𝑒𝑉𝑎𝑟 𝑀 =	 ?U(VWV)
XYZ

  

𝑇𝑟 denotes the trace, 𝑛 is the sample size, and 𝑃 = 𝐼 − ZZ_

X
 29,30.  

 

For those phenotypes where body weight was included as a covariate, we checked 

that this did not lead to systematically increased (or decreased) estimates of the 

aggregate contribution of SGE (collider bias). 

 

Significance of variance components was assessed using a two-degree of freedom 

log likelihood ratio (LLR) test (i.e., the test statistics was assumed to follow a two-

degree of freedom chi2 distribution under the null). Note that this testing procedure is 

conservative. 

 

Correlation between DGE and SGE 

 

The correlation 𝜌 between 𝑎) and 𝑎- was calculated as: 

𝜌 = 	
𝜎:;>

𝜎:;	×	𝜎:>
 

 

r reflects the correlation between SGE and DGE similarly to how “traditional” genetic 

correlations measure the correlation between DGE on two traits; r can actually be 

interpreted as the correlation between effect sizes of DGE on the mediating trait(s) of 

cage mates and DGE on the phenotype of interest. 

We tested whether r was significantly different from 1 using a one-degree of freedom 

LLR test.  

 

Simulations 1: for Supplementary_Figure1. 
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Phenotypes were simulated based on the genotypes and cage relationships of the full 

set of 1,812 mice. Phenotypes were drawn from model (0) with the following variances: 

𝜎:;
< =	15, 𝜎:>

<  = 8, 𝜌:;>= 0.47, 𝜎@;
< = 22, 𝜎@>

< = 16, 𝜌@;> = -0.97, 𝜎B< = 26. These variances 

correspond to the median value of estimates across traits with aggregate SGE and 

DGE > 5%. After building the phenotypic covariance matrix, the sample variance of 

the simulations was calculated and used to calculate “realised” simulation parameters 

from the “target” parameters above. The realised parameters were used for 

comparison with the parameters estimated from the simulations. 

 

Definition of “social genotype” for sgeGWAS 

 

In the sgeGWAS, we assumed additive effects across cage mates and calculated the 

“social genotype” of a mouse as the sum of the reference allele dosages of its cage 

mates. 

 
Correlation between direct and social genotypes at a variant 

 

Spearman's rank correlation coefficient was used. We tested whether the correlation 

was different from 0 using the function cor.test in the R package stats31. 

 

Models used for sgeGWAS and dgeGWAS 

 

To test SGE of a particular variant, we compared the following two models: 

 

𝑦" = 	𝑋"𝑏 + 𝑎)," +	𝑒)," +	𝑍"𝑎- 	+	𝑍"𝑒- +	𝑊"𝑐 +	𝐺"𝑏)   (1, null) 

 

𝑦" = 	𝑋"𝑏 + 𝑎)," +	𝑒)," +	𝑍"𝑎- 	+	𝑍"𝑒- +	𝑊"𝑐 		+ 	𝐺"𝑏) 	+	𝑍"𝐺𝑏- (2, alternative) 

 

Here, 𝐺 is the vector of direct genotypes at the tested variant, 𝑏) the estimated 

coefficient for local DGE and 𝑏- the estimated coefficient for local SGE. 

The models were fitted using LIMIX32,33 with the covariance of the model estimated 

only once per phenotype, in the model with no local genetic effect (model 0). 
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The significance of local SGE was calculated by comparing models (1) and (2) with a 

1-degree of freedom LLR test. 

We refer to the inclusion of 𝐺"𝑏) in model (1) as “conditioning”. 

 

dgeGWAS was carried out similarly, by comparing model (3) and model (2) below: 

𝑦" = 	𝑋"𝑏 + 𝑎)," +	𝑒)," +	𝑍"𝑎- 	+	𝑍"𝑒- +	𝑊"𝑐 		+ 	𝑍"𝐺𝑏-  (3, null) 

We refer to the inclusion of 𝑍"𝐺𝑏- in model (3) as “conditioning”. 

 

Identification of genome-wide significant associations 

 

Following Nicod et al.19, for each phenotype and for each type of genetic effect (social 

and direct), we ran 100 “permuted GWAS” by permuting the rows of the matrix of social 

(respectively direct) genotypes, and testing each variant at a time using the permuted 

genotypes together with the un-permuted phenotypes, covariates, GRM and matrix of 

direct (respectively social) genotypes (for conditioning). For each permutation we then 

compiled a list of loci that would be significant at a nominal P value of 0.01. Using the 

un-permuted data, we similarly compiled a list of loci that would be significantly 

associated at a nominal P value of 0.01. Ordering the latter in order of decreasing 

significance and going down the list, we calculated for each locus an associated FDR 

until the FDR was above 10%. For a given P value x, the FDR was calculated as: 

𝐹𝐷𝑅(𝑥) = 	
#	𝑙𝑜𝑐𝑖	𝑤𝑖𝑡ℎ	𝑃 < 𝑥	𝑖𝑛	𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑	𝑑𝑎𝑡𝑎	

100	×	#	𝑙𝑜𝑐𝑖	𝑤𝑖𝑡ℎ	𝑃 < 𝑥	𝑖𝑛	𝑢𝑛𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑	𝑑𝑎𝑡𝑎
 

 

We report only those loci whose P value corresponds to an FDR < 10%. 

This strategy controls the per-phenotype FDR; it does not mean that the study-wide 

FDR is <10% (the study-wide FDR cannot be calculated as the false positive rate is 

not defined for those phenotypes where the 10% per-phenotype FDR was never 

achieved). 

 

Definition of candidate genes at associated loci 

 

At each significantly associated locus we defined a 4Mb window centered on the lead 

variant, identified all variants in this window based on the full set of 7M variants, and 
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reran the sgeGWAS with those variants. We then defined candidate genes based on 

the association profile in the 4Mb window.  

 

Variance explained by genome-wide significant SGE and DGE associations 

 

The variance explained by genome-wide significant SGE and DGE associations was 

estimated using model (2) and calculated, respectively, as: 

 
𝑣𝑎𝑟(𝐺𝑏))

𝑣𝑎𝑟 𝑋n𝑏n + 	𝑣𝑎𝑟 𝐺𝑏) + 	𝑣𝑎𝑟(𝑍𝐺𝑏-) + 𝑠𝑎𝑚𝑝𝑙𝑒𝑉𝑎𝑟 𝐶
 

 

and 

 
𝑣𝑎𝑟(𝑍𝐺𝑏-)

𝑣𝑎𝑟 𝑋n𝑏n + 	𝑣𝑎𝑟 𝐺𝑏) + 	𝑣𝑎𝑟(𝑍𝐺𝑏-) + 𝑠𝑎𝑚𝑝𝑙𝑒𝑉𝑎𝑟 𝐶
	

 

 

Simulations 2: for Supplementary Figure 2d and 2e. 

 

Phenotypes were simulated based on the genotypes and cage relationships of the full 

set of 1,812 mice. Phenotypes were simulated as the sum of random effects and local 

DGE (from model (1)), with the following parameters: 𝜎:;
< =	5 or 20, 𝜎:>

<  = 5 or 20, 

𝜌:;>= 0.5, 𝜎@;
< = 30, 𝜎@>

< = 30, 𝜌@;> = -0.97, 𝜎B< = 25. The values for 𝜌:;>, 𝜎@;
< , 𝜎@>

< , 𝜌@;>, 

and 𝜎B< were close to the median of the corresponding estimates from the real data. 

𝜎:;
< = 		5 and 𝜎:>

< = 		5 correspond to low polygenic effects in the real data, and 𝜎:;
< =

		20 and 𝜎:>
< = 		20 correspond to high polygenic effects in the real data. We simulated 

local DGE at variants where direct and social genotypes were either lowly correlated 

(Spearman correlation negative log P value < 0.05) or more highly correlated (negative 

log P value > 2), and simulated variances of 0, 5, 20 or 50.  

 The results we show in Supplementary Figure 2d and 2e are based on a subset 

of simulations: 𝜎:;
< = 		20 and 𝜎:>

< = 		20 and local DGE variance of 20. 

 

Simulations 3: for Supplementary Figure 3a-d, and Figure 3a. 
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Phenotypes were simulated based on the real genotypes but random cages for a 

random subset of 1,800 mice (in order to be able to draw full cages of 2, 3, 4, 5, or 6 

mice). Phenotypes were simulated as the sum of random effects, local DGE and local 

SGE (model (2)) with the following parameters: 𝜎:;
< =	17, 𝜎:>

<  = 17, 𝜌:;>= 0.65, 𝜎@;
< = 

19, 𝜎@>
< = 15, 𝜌@;> = -0.8, 𝜎B< = 25. Those values correspond to the median estimates 

for phenotypes with aggregate SGE and DGE > 0.1.  

 We simulated local SGE and DGE at variants where direct and social 

genotypes were either lowly correlated (Spearman correlation negative log P value < 

0.05) or more highly correlated (Spearman correlation negative log P value > 0.2), and 

had with low MAF (MAF < 0.05), medium MAF (0.225<MAF<0.275) or high MAF 

(MAF>0.45). We simulated local DGE with an allelic effect of 0 or 1 (1 corresponds to 

a large effect in the real data) and simulated local SGE under the additive or the 

proportional model, in all cases with an allelic effect of 0.2 (similar to the average allelic 

effect estimated under the additive model in the real data).  

  

 The results we show in Supplementary Figure 3a-d are based on a subset of 

simulations with group size 3 and are averaged across low, medium and high MAF. 

Power was calculated at a genome-wide significance threshold of negative log P 5, 

which is similar to the significance of associations detected at FDR < 10%. 

 The results we show in Figure 3a are based on a subset of simulations with 

group size 2 and 3, no local DGE, and averaged across high and low genotypic 

correlations. Power was also calculated at a genome-wide significance threshold of 

negative log P 5. 

 

Scripts used in this study 

 

All the scripts used in this study are available from http://github.com/limix/SGE.  

LIMIX can be downloaded from http://github.com/limix/limix. 
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