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Abstract 22 

1. Bipartite networks are widely-used to represent a diverse range of species interactions, such as 23 
pollination, herbivory, parasitism and seed dispersal. The structure of these networks is usually 24 
characterised by calculating one or more metrics that capture different aspects of network architecture. 25 
While these metrics capture useful properties of networks, they only consider structure at the scale of 26 
the whole network (the macro-scale) or individual species (the micro-scale). ‘Meso-scale’ structure 27 
between these scales is usually ignored, despite representing ecologically-important interactions. 28 
Network motifs are a framework for capturing this meso-scale structure and are gaining in popularity. 29 
However, there is no software available in R, the most popular programming language among 30 
ecologists, for conducting motif analyses in bipartite networks. Similarly, no mathematical 31 
formalisation of bipartite motifs has been developed. 32 

2. Here we introduce bmotif: a package for counting motifs, and species positions within motifs, in 33 
bipartite networks. Our code is primarily an R package, but we also provide MATLAB and Python code 34 
of the core functionality. The software is based on a mathematical framework where, for the first time, 35 
we derive formal expressions for motif frequencies and the frequencies with which species occur in 36 
different positions within motifs. This framework means that analyses with bmotif are fast, making 37 
motif methods compatible with the permutational approaches often used in network studies, such as 38 
null model analyses. 39 

3. We describe the package and demonstrate how it can be used to conduct ecological analyses, using 40 
two examples of plant-pollinator networks. We first use motifs to examine the assembly and 41 
disassembly of an Arctic plant-pollinator community, and then use them to compare the roles of native 42 
and introduced plant species in an unrestored site in Mauritius. 43 

4. bmotif will enable motif analyses of a wide range of bipartite ecological networks, allowing future 44 
research to characterise these complex networks without discarding important meso-scale structural 45 
detail. 46 

 47 
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 49 

Introduction 50 

Bipartite networks are widely used to study the structure of interactions between two groups of species, 51 
such as plants and pollinators, hosts and parasitoids, and plants and seed dispersers (Borrett, Moody, & 52 
Edelmann, 2014). Studies of bipartite networks have yielded many new insights (Bascompte & Jordano, 53 
2007), such as uncovering widespread nestedness and modularity in mutualistic communities 54 
(Bascompte, Jordano, Melián, & Olesen, 2003; Olesen, Bascompte, Dupont, & Jordano, 2007), and 55 
showing that community structure is stable despite substantial turnover in species and interactions over 56 
space and time (Petanidou, Kallimanis, Tzanopoulos, Sgardelis, & Pantis, 2008; Dáttilo, Guimarães, & 57 
Izzo, 2013). Such studies typically describe networks with one or more metrics, such as connectance 58 
(the proportion of possible interactions which are realised), nestedness (the extent to which specialist 59 
species interact with subsets of the species generalist species interact with), degree (number of partners 60 
a species has) and d¢ (the extent to which a species’ interactions deviate from a random sampling of its 61 
partners).  62 

While these metrics describe useful properties of networks, macro-scale measures, such as connectance 63 
and nestedness, can be too broad to capture fine-scale details, while micro-scale metrics, such as degree 64 
as d¢, can be too narrow to capture a species’ indirect interactions (Cirtwill, Roslin, Rasmussen, Olesen, 65 
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& Stouffer, 2018). Capturing network structure at the meso-scale between these macro and micro scales 66 
is necessary to overcome these issues (Cirtwill et al., 2018). For example, a micro-scale metric such as 67 
degree might show that a plant is visited by two pollinators, while meso-scale structure could reveal 68 
that one of these pollinators is a generalist visiting three other generalist plants, while the other is a 69 
specialist visiting only the focal plant. Such distinctions can have important consequences for 70 
understanding the ecology and evolution of communities and so are essential to incorporate in network 71 
analyses. 72 

To capture meso-scale structure, ecologists are increasingly using bipartite motifs: subnetworks 73 
representing interactions between a given number of species (Fig. 1). These subnetworks can be thought 74 
of as the basic ‘building blocks’ of networks (Milo et al., 2002). Bipartite motifs are used in two main 75 
ways. First, to calculate how frequently different motifs occur in a network. For example, Rodríguez-76 
Rodríguez et al. (2017) used this approach to show that plant species involved in both mutualistic and 77 
antagonistic interactions with animals were the most important for pollination. Second, to quantify 78 
species roles in a community by counting the frequency with which species occur in different positions 79 
within motifs. For example, Baker et al. (2015) used this method to demonstrate that species’ roles in 80 
host-parasitoid networks are an intrinsic property of species. However, while the motif framework is 81 
gaining in popularity, no software currently exists to conduct motif analyses of bipartite networks in R, 82 
the most popular programming language among ecologists.  83 

To fill this gap, we introduce bmotif: an R package, based on a formal mathematical framework, for 84 
counting motifs, and species positions within motifs, in bipartite networks. While bmotif is primarily 85 
an R package, we additionally provide MATLAB and Python code that replicates the core package 86 
functionality. Here, we introduce the motifs and motif positions counted by bmotif and describe the 87 
package’s main functions and performance. We then provide two examples showing how bmotif can 88 
be used to answer questions about ecological communities. While here we focus on mutualistic bipartite 89 
networks, our methods are general and can also be applied to other types of interaction, such as 90 
parasitism and herbivory, and even non-biological systems, such as trade networks (Saracco, Di 91 
Clemente, Gabrielli, & Squartini, 2015) and finance networks (Gualdi, Cimini, Primicerio, Di 92 
Clemente, & Challet, 2016). 93 

Description 94 

Defining bipartite motifs 95 

In a bipartite network containing N species, a motif is a subnetwork comprising n species and their 96 
interactions (where n < N and all species have at least one interaction). Fig. 1 shows the motifs included 97 
in bmotif: all 44 possible motifs containing up to six nodes. Within motifs, species can appear in 98 
different positions (Fig. 1). For reasons of symmetry, not all these positions are topologically unique 99 
(Stouffer, Sales-Pardo, Sirer, & Bascompte, 2012). For example, motif six contains four species, but 100 
only two positions (Fig. 1). The 148 unique positions a species can occupy across all motifs up to six 101 
nodes are shown in Fig. 1. Motifs and positions are ordered as in Baker et al. (2015) Appendix 1. 102 

 103 
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 104 

Figure 1: All bipartite motifs containing up to 6 nodes (species). Large numbers identify each motif. Small 105 
numbers represent the unique positions species can occupy within motifs, following Baker et al. (2015) 106 
Appendix 1. Lines between small numbers indicate undirected species interactions. There are 44 motifs 107 

containing 148 unique positions. 108 

Networks in bmotif are represented as incidence matrices (M), with one row for each species in the first 109 
set (such as pollinators) and one column for each species in the second set (such as plants). When 110 
species i and j interact, mij = 1; if they do not interact mij = 0. This widely-used representation was 111 
chosen for compatibility with other packages (Dormann, Frund, Bluthgen, & Gruber, 2009) and open-112 
access network repositories, such as the Web of Life (www.web-of-life.es). Species in rows correspond 113 
to nodes in the top level of the motifs in Fig. 1; species in columns correspond to nodes in the bottom 114 
level.  115 

 116 
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Main functions 117 

bmotif has two functions: (i) mcount, for calculating how frequently different motifs occur in a network, 118 
and (ii) positions, for calculating the frequency with which species (nodes) occur in different positions 119 
within motifs to quantify a species’ structural role. To enumerate motif frequencies and species position 120 
counts, bmotif uses mathematical operations directly on the incidence matrix: for the first time, we 121 
derive 44 expressions for each of the 44 motifs and 148 expressions for each of the 148 positions within 122 
motifs (Appendix S2). 123 

mcount takes a network as input and returns a data frame with one row for each motif (17 or 44 rows 124 
depending on whether motifs up to five or six nodes are requested, respectively) and three columns. 125 
The first column is the motif identity as in Fig. 1; the second column is the motif size class (number of 126 
nodes each motif contains); and the third column is the frequency with which each motif occurs in the 127 
network (a network’s motif profile). For comparing multiple networks it is important to normalise motif 128 
frequencies. Therefore, if the ‘normalise’ argument is TRUE, three columns are added to the data frame, 129 
each corresponding to a different method for normalising motif frequencies. The first column 130 
(‘normalise_sum’) expresses the frequency of each motif as a proportion of the total number of motifs 131 
in the network. The second column (‘normalise_sizeclass’) expresses the frequency of each motif as a 132 
proportion of the total number of motifs within its size class. The final column (‘normalise_nodesets’) 133 
expresses the frequency of each motif as the number of species combinations that occur in a motif as a 134 
proportion of the number of species combinations that could occur in that motif. For example, in motifs 135 
9, 10, 11 and 12, there are three species in the top set (A) and two species in the lower set (B) (Fig. 1). 136 
Therefore, the maximum number of species combinations that could occur in these motifs is given by 137 
the product of binomial coefficients, choosing three species from A and two from P: !"#$!

%
&$ (Poisot & 138 

Stouffer, 2016). The most appropriate normalisation depends on the question being asked. For example, 139 
‘normalise_sum’ allows for consideration of whether species are more involved in smaller or larger 140 
motifs. Conversely, ‘normalise_sizeclass’ focuses the analysis on how species form their interactions 141 
among different arrangements of n nodes. 142 

positions takes a network as input and returns a data frame, W, with one row for each species and one 143 
column for each position (46 or 148 columns, depending on whether motifs up to five or six nodes are 144 
requested, respectively; Fig. 1). wrc gives the number of times species r occurs in position c. Each row 145 
thus represents the structural role or ‘interaction niche’ of a species. The ‘level’ argument allows 146 
positions to be requested for all species, species in set A only or species in set B only, returning a data 147 
frame with A + B rows, A rows or B rows, respectively. Two types of normalisation are provided: ‘sum’ 148 
normalisation expresses a species’ position frequencies as a proportion of the total number of times that 149 
species appears in any position; ‘size class’ normalisation uses the same approach, but normalises 150 
frequencies within each motif size class. Again, the most appropriate normalisation depends on the 151 
question being asked: if movements between motif size classes are of interest, ‘sum’ normalisation is 152 
most appropriate; if the focus is on how species form interactions among a given number of nodes, then 153 
‘size class’ normalisation should be chosen. 154 

 155 

Computational performance 156 

To assess the speed of bmotif functions, we used mcount and positions to calculate the complete motif 157 
profiles of 175 empirical pollination and seed dispersal networks and the positions of all their 158 
constituent species. While most of these networks use the frequency of animal visits to plants as a 159 
surrogate for true pollination or seed dispersal, this has been shown to be a reasonable proxy (Vázquez, 160 
Morris, & Jordano, 2005; Simmons et al., 2018). The networks varied in size from 6 to 797 species 161 
(mean: 77.1; standard deviation: 117.8). Further details of the networks used for this analysis are given 162 
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in Supplementary Data 1. Analyses were carried out on a computer with a 4.0 GHz processor and 32 163 
GB of memory. Functions were timed using the R package ‘microbenchmark’ (Mersmann, 2015). 164 
Results are shown in Fig. 2. 165 

 166 

Figure 2: Relationship between network size and computational performance for mcount and positions. 167 
Functions were timed on 175 empirical networks, for motifs containing up to five and six nodes. Lines are best 168 

fit polynomial curves of degree 2. 169 

As expected, the time taken for a function to run increases monotonically with the size of the network 170 
(number of species). When six-node motifs were excluded, mcount and positions took 0.36 and 0.66 171 
seconds, respectively, to complete for the largest network in our dataset (797 species). For smaller 172 
networks which are more typical of the communities analysed by ecologists, both functions completed 173 
in substantially less than one second. This speed is possible as all formulae involved in calculations of 174 
motifs up to five-nodes use relatively simple operations, such as matrix multiplication or the binomial 175 
coefficient. When six-node motifs were included, for a network with 78 species (close to the mean 176 
network size of 77.1 species), mcount completed in 0.01 seconds, while positions completed in 0.32 177 
seconds. For the largest network, mcount completed in 7.8 seconds, while positions took 13.9 minutes. 178 
Six-node motifs slow down calculations as, unlike five-node motifs, their algorithms require the use of 179 
the tensor product. 180 
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We carried out additional analyses using randomly-generated networks to disentangle the effects of 181 
both network dimensions and connectance on computational performance (Appendix S1). We found 182 
that connectance had little effect on the performance of individual motif and position calculations, while 183 
a polynomial of degree two explained the increase in time with network size (R2 > 0.99) (Appendix 184 
S1). 185 

 186 

Example analyses 187 

Comparing community structures 188 

Here we use bmotif to examine the assembly and disassembly of an Arctic plant-pollinator community. 189 
Networks were sampled daily, when weather conditions allowed, at the Zackenberg Research Station 190 
in northeastern Greenland, across two full seasons in 1996 (24 days) and 1997 (26 days) (Olesen, 191 
Bascompte, Elberling, & Jordano, 2008). Basic network properties are given in Supplementary Data 2. 192 
We used mcount to calculate motif frequencies in each daily network in both years, normalised using 193 
‘normalise_nodesets’. Days 1 and 24 in 1996, and days 1 and 26 in 1997, were excluded from the 194 
analysis as they were too small for some motifs to occur. Using nonmetric multidimensional scaling 195 
(NMDS), we visualised how the community structure changed from assembly after the last snow melt 196 
to disassembly at the first snow fall, in two consecutive years (Fig. 3). More positive values of the first 197 
NMDS axis are associated with motifs where generalist pollinators compete for generalist plants, while 198 
negative values are associated with motifs where more specialist pollinators have greater 199 
complementarity in the specialist plants they visit. More positive values of the second NMDS axis are 200 
associated with loosely connected motifs containing specialist plants interacting with both specialist 201 
and generalist pollinators, while negative values are associated with highly connected motifs containing 202 
pollinators competing for generalist plants. While the community was relatively stable over time in the 203 
1996 season, there were larger structural changes in 1997, with a largely monotonic shift from high 204 
competition between generalist pollinators at the start of the season, to lower competition between more 205 
specialist pollinators at the end of the season, with a more complementary division of plant resources 206 
(Fig. 3). Thus while network structure may appear stable when analysed with traditional indices such 207 
as connectance (Olesen et al., 2008), motifs reveal the presence of complex, ecologically-important 208 
structural dynamics. Additionally, it is clear that, even in consecutive years, the community followed 209 
different structural trajectories, emphasising the danger of treating networks as static entities 210 
(Rasmussen, Dupont, Mosbacher, Trøjelsgaard, & Olesen, 2013).  211 

 212 
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 213 

Figure 3: Nonmetric multidimensional scaling plot (NMDS) showing change in Arctic plant-pollinator network 214 
structure over the 1996 and 1997 seasons, quantified using motifs. Numbers represent the days of sampling. 215 

 216 

Comparing species’ structural roles 217 

We use positions to compare the roles of native and introduced plant species in a plant-pollinator 218 
community sampled in Mauritius in November 2003 (Kaiser-Bunbury, Memmott & Müller 2009; 48 219 
species, 75 interactions, connectance = 0.134). We calculated the sum-normalised roles of all plant 220 
species (16 native and 4 introduced) and plotted them on two NMDS axes (Fig. 4). This figure shows 221 
three striking features. First, there is almost no overlap between native and introduced species’ 222 
interaction niches. Similar to research showing that non-native species can occupy different functional 223 
niches to native species (Ordonez, Wright, & Olff, 2010), these results suggest they may also occupy 224 
unexploited interaction niches. Further research could use motifs to investigate whether introduced 225 
species ‘pushed’ native species out of previously occupied interaction niche space, or whether 226 
introduced species colonised previously-unused space. Second, the interaction niche of introduced 227 
species is much smaller than that of native species: the four introduced species all occupy similar areas 228 
of motif space, possibly suggesting a single ‘invader role’. Third, introduced species occupy lower 229 
values on the second NMDS axis, corresponding to motif positions where they are visited by generalist 230 
pollinator species, possibly due to the absence of co-evolutionary associations with specialists. NMDS 231 
analyses were conducted with the metaMDS function in the R package vegan (Oksanen et al., 2016). 232 
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 233 

Figure 4: The roles of native and introduced species in a plant-pollinator network. Each point represents the role 234 
of a species in the network. Shaded polygons are convex hulls either containing all introduced species or all 235 

alien species. 236 

 237 

Implementation and availability 238 

The bmotif package is available for the R programming language. The package can be installed in R 239 
using install.packages(“bmotif”). This paper describes version 1.0.0 of the software. The source code 240 
of the package is available at https://github.com/SimmonsBI/bmotif. Any problems can be reported 241 
using the Issues system. The code is version controlled with continuous integration and has code 242 
coverage of approximately 98%. MATLAB and Python code replicating the core package functionality 243 
is available at https://github.com/SimmonsBI/bmotif-matlab and 244 
https://github.com/SimmonsBI/bmotif-python respectively. All code is released under the MIT license. 245 

 246 

Conclusions 247 

bmotif is an R package and set of mathematical formulae enabling motif analyses of bipartite networks. 248 
Specifically, bmotif provides functions for two key analyses: (i) enumerating the frequency of different 249 
motifs in a network, and (ii) calculating how often species occur in each position within motifs. These 250 
two techniques capture important meso-scale variation in network structure that may be missed by 251 
traditional methods. Motif approaches represent a new addition to the network ecologists ‘toolbox’ for 252 
use alongside other techniques to analyse bipartite networks. We hope bmotif encourages further uptake 253 
of the motif approach to shed light on the ecology and evolution of species and communities. 254 

 255 
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